首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristic fluorescence excitation and emission is induced by either acetone-sensitized 313 nm irradiation of mixtures of 8-bromoadenosine and adenosine or 254 nm irradiation of oligo- and polynucleotides containing adenine neighbors. The acetone-sensitized reaction involves cleavage of bromine from 8-bromoadenosine with activation of C-8, leading to formation of an 8,8-adenosine dehydrodimer. Comparable fluorescence properties arise in the unsensitized photoreaction of dApdA, pdApdA, ApA, poly(dA), poly(A), poly(dA.dT), and poly(dA.U). The previously unidentified adenine ultraviolet photoproduct described by Porschke has been isolated as several variants from solutions of pdApdA and poly(dA) irradiated at 254 nm. Based upon fluorescence spectra and mass spectra, these variants are shown to contain the 8,8-adenine dehydrodimer moiety.  相似文献   

2.
A new type of dimeric adenine photoproduct has been isolated from d(ApA) irradiated at 254 nm in neutral aqueous solution. It is formed in comparable amounts to another, quite distinct, adenine photoproduct first described by Pörschke (J. Am. Chem. Soc. (1973), 95, 8440-8446). Results from high resolution mass spectrometry and 1H NMR indicate that the new photoproduct comprises a mixture of two stereoisomers whose formation involves covalent coupling of the adenine bases in d(ApA) and concomitant incorporation of the elements of one molecule of water. The photoproduct is degraded specifically by acid to 4,6-diamino-5-guanidinopyrimidine (DGPY) whose identity has been confirmed by independent chemical synthesis. Formation of the new photoproduct in UV-irradiated d(pA)2 and poly(dA), but not poly(rA), has been demonstrated by assaying their acid hydrolysates for the presence of DGPY. The properties of the photoproduct are consistent with it being generated by the hydrolytic fission of an azetidine photoadduct in which the N(7) and C(8) atoms of the 5''-adenine in d(ApA) are linked respectively to the C(6) and C(5) positions of the 3''-adenine.  相似文献   

3.
Phage T4 polynucleotide kinase (EC 2.7.1.78) proved incapable of catalyzing the phosphorylation of thymidylyl-(3'----5')-thymidine containing either a cis-syn-cyclobutane pyrimidine dimer (d-T less than p greater than T) or a 6-4'-[pyrimidin-2'-one]pyrimidine photoproduct (d-T[p]-T), and similarly the UV-modified compounds of (dT)3 bearing either photoproduct at their 5'-end (d-T less than p greater than TpT and d-T[p]TpT). In contrast, the 3'-structural isomers of these trinucleotides (d-TpT less than p greater than T and d-TpT[p]T) were phosphorylated at the same rate as the parent compound. These phosphorylatable lesion-containing oligonucleotides are quantitatively released from UV-irradiated poly(dA):poly(dT) by enzymatic hydrolysis with snake venom phosphodiesterase and alkaline phosphatase (Liuzzi, M., Weinfeld, M., and Paterson, M. C. (1989) J. Biol. Chem. 264, 6355-6363). By combining this digestion regimen with phosphorylation by polynucleotide kinase and [gamma-32P]ATP, pyrimidine dimers were quantitated at the fmol level following exposure of poly(dA):poly(dT) and herring sperm DNA to biologically relevant UV fluences. The rate of dimer induction in the synthetic polymer, approximately 10 dimers/10(6) nucleotides/Jm-2, was in close agreement with that obtained by conventional methods. Dimers were induced at one-fourth of this rate in the natural DNA. Further treatment of the phosphorylated oligonucleotides derived from irradiated herring sperm DNA with nuclease P1 released the labeled 5'-nucleotide, thus permitting analysis of the nearest-neighbor bases 5' to the lesions. We observed a ratio for pyrimidine-to-purine bases of almost 6:1, implicating tripyrimidine stretches as hotspots for UV-induced DNA damage.  相似文献   

4.
When poly(dA), poly(dA-dT), and salmon testis DNA were gamma-irradiated under nitrogen, the major deoxyadenosine damage product (excluding liberated adenine) was identified as the alpha-anomer of deoxyadenosine. The yields of alpha-deoxyadenosine from poly(dA), poly(dA-dT), and salmon testis DNA irradiated with a dose of 500 Gy under anoxic conditions were 1.5, 1.3, and 1.3%, respectively. No alpha-deoxyadenosine was detected after irradiation under oxic conditions. The presence of nucleotides with the alpha-configuration at the anomeric carbon atom in the DNA chain may have a significant effect on its tertiary structure and possibly modify its biological activity.  相似文献   

5.
Photoaddition between adjacent adenine and thymine bases occurs, with a quantum yield of approximately 5 X 10(-4) mol einstein-1, when d(T-A), dT-A, d(pT-A), d(T-A-T), d(T-A-T-A) and poly(dA-dT) are irradiated, at 254 nm, in aqueous solution. The photoadduct thus formed is specifically degraded by acid to the fluorescent heterocyclic base 6-methylimidazo[4,5-b]pyridin-5-one (6-MIP) with retention of C(8) of adenine and the methyl group of thymine. This reaction, coupled with either spectrofluorimetric or radiochemical assay of 6-MIP isolated by high voltage paper electrophoresis, has been used to demonstrate formation of the adenine-thymine photoadduct on UV irradiation of poly(dA-dT).poly(dA-dT) and both native and denatured DNA from calf thymus and E. coli. Estimated quantum yields for this new type of photoreaction in DNA show that it is substantially quenched by base pairing. Possible biological implications of the photoreaction are discussed.  相似文献   

6.
Synthetic homopolyribonucleotides poly(A), poly(U), poly(C), and poly(G), poly(A, G, U), apurinic acid and native and denatured DNA from calf thymus were analyzed by means of cyclic voltammetry (CV) using a hanging mercury drop electrode. It was shown that guanine containing polynucleotides, i.e. poly(G), poly(A, G, U) and DNA yield an anodic peak of guanine in the vicinity of a potential of -0.3 V (against a saturated calomel electrode). The guanine peak appeared only at a sufficiently negative switching potential (about -2 V). The appearance of the guanine peak was conditioned by a reduction of guanine residues in the region of the switching potential and reoxidation of the reduction product in the vicinity of -0.3 V. Native and thermally denatured DNAs were investigated under the conditions of both complete and incomplete coverage of the electrode in various background electrolytes. Both DNA forms yielded anodic CV peaks of guanine with the peak of denatured DNA being always higher than that of native DNA. Irradiation of native DNA with relatively small doses of gamma radiation (5-120 Gy) resulted in an increase of the anodic peak. A comparison of changes induced by gamma radiation in the anodic (guanine) and cathodic (reduction of adenine and cytosine) peaks showed a steeper increase of the cathodic peak as compared to that of the anodic one. It has been concluded that in the given dose range the DNA double-helical structure is mainly damaged in the adenine-thymine rich regions.  相似文献   

7.
Poly(dA).poly(dT) and DNA duplex with four or more adenine bases in a row exhibits a broad, solid-state structural premelting transition at about 35 degrees C. The low-temperature structure is correlated with the phenomena of "bent DNA." We have conducted temperature-dependent ultraviolet resonance Raman measurements of the structural transition using poly(dA).poly(dT) at physiological salt conditions, and are able to identify, between the high and low temperature limits, changes in the vibrational frequencies associated with the C4 carbonyl stretching mode in the thymine ring and the N6 scissors mode of the amine in the adenine ring of poly(dA).poly(dT). This work supports the model that the oligo-dA tracts' solid-state structural premelting transition is due to a set of cross-stand bifurcated hydrogen bonds between consecutive dA. dT pairs.  相似文献   

8.
The effect of berenil on plasmid DNA replication was studied on pBR322-derived plasmids containing poly(dA)poly(dT) sequences. In comparison to the parental plasmid pBR322, plasmid pKH47 harboring 100 bp of poly(dA)poly(dT) at the PvuII site showed a decrease in plasmid yield in the presence of berenil. This effect was also observed in pVL26, a related plasmid in which the location of the poly(dA)poly(dT) region had been shifted to the EcoRV site in pBR322. [(3)H]Thymidine incorporation experiments indicated that DNA synthesis may be affected in these plasmids in the presence of the drug. Bromodeoxyuridine incorporation experiments coupled to Cs(2)SO(4) equilibrium density gradient centrifugation indicated that the lower plasmid yield was due to an inhibition of DNA replication by berenil. We have also found that berenil induces DNA degradation in plasmids containing the homopolymer. Our studies strongly suggest that the effect of berenil on plasmid replication and DNA stability results from its binding to the poly(dA)poly(dT) region present in these plasmids. Moreover, we have found a correlation between the position of the poly(dA)poly(dT) region and this inhibitory effect. Thus, plasmid pKH47, containing the poly(dA)poly(dT) region most proximal to the origin of pBR322 replication, was most severely affected.  相似文献   

9.
The study by resonance Raman spectroscopy with a 257 nm excitation wave-length of adenine in two single-stranded polynucleotides, poly rA and poly dA, and in three double-stranded polynucleotides, poly dA.poly dT, poly(dA-dT).poly(dA-dT) and poly rA.poly rU, allows one to characterize the A-genus conformation of polynucleotides containing adenine and thymine bases. The characteristic spectrum of the A-form of the adenine strand is observed, except small differences, for poly rA, poly rA.poly rU and poly dA.poly dT. Our results prove that it is the adenine strand which adopts the A-family conformation in poly dA.poly dT.  相似文献   

10.
Incubation of Fe(II) bleomycin and O2 with a number of 'A'-like DNA-RNA hybrid homopolymers at 4 atm O2 results in formation of base propenal and base in a ratio of approximately 1.0:1.0. This ratio differs dramatically from the corresponding ratio of approximately 10:1.0 observed when activated BLM degrades 'B'-like DNA homopolymers. Experiments were undertaken to determine if the shift to enhanced base production observed in the A-like hybrids is the result of C-1' chemistry in addition to the C-4' chemistry normally observed with B-like DNA under identical conditions. Increased accessibility of the 1'-hydrogen might be anticipated due to widening of the minor groove in the A-like conformers. Experiments using poly([1'-3H]dA) poly(rU) and poly([U-14C]dA) poly(rU) indicated that neither 3H2O nor deoxyribonolactone accompanied adenine release. In addition, studies using poly([4'-2H]dA) poly(rU) and poly([1'-2H]dA) poly(rU) unambiguously establish that the altered base to base propenal ratio is not the result of C-1' chemistry, but a direct consequence of C-4' chemistry.  相似文献   

11.
Recent observations that the heteronomous structural model for poly(dA).poly(dT) is not found in solution and that in this DNA, the two strands are conformationally equivalent (J. Biomole. Str. Dyns. 2, 1057 (1985], has added a new dimension to the structural dynamics of DNA-netropsin complex. Does the antibiotic somehow distinguish between the two strands and specifically interact with only one of the conformationally equivalent strands? Model-building studies suggest that netropsin can either bind to the dA-strand in the minor groove such that H-bonds are formed between the imino protons N4-H, N6-H, N8-H of netropsin and N3 atoms of A or can bind to the dT-strand in the minor groove and form H-bonds between the imino-protons N4-H, N6-H, N8-H of netropsin and O2 atoms of T. If netropsin binds to the dA-strand, AH2 atoms of poly(dA).poly(dT) would be in closer proximity to the imino protons N4-H, N6-H, N8-H and pyrrole ring protons C5-H, C11-H of netropsin than they would be, if netropsin binds to the dT-strand. In order to distinguish these possibilities experiments were conducted which involved NOE energy transfer between netropsin and DNA protons in the drug-DNA complex. Difference NOE spectra of netropsin-poly(dA).poly(dT) complex in which AH2 was irradiated indicate that dominant NOEs were observed at the imino and pyrrole ring protons of netropsin. When the netropsin pyrrole ring protons were irradiated, the magnetization transfer was at AH2 of DNA. These observations suggest that netropsin binds to the dA-strand of poly(dA).poly(dT) even though dA/dT strands are conformationally equivalent.  相似文献   

12.
R Lyng  A Rodger  B Nordén 《Biopolymers》1992,32(9):1201-1214
A systematic theoretical study of the CD of [poly(dA-dT)]2 and its complexes with achiral small molecules is presented. The CD spectra of [poly(dA-dT)]2 and of poly(dA):poly(dT) are calculated for various DNA structures using the matrix method. The calculated and experimental spectra agree reasonably well for [poly(dA-dT)]2 but less well for poly(dA):poly(dT). The calculated CD spectrum of [poly(dA-dT)]2 fails to reproduce the wavelength region of 205-245 nm of the experimental spectrum. This discrepancy can be explained by a magnetic dipole allowed transition contributing significantly to the CD spectrum in this region. The induced CD of a transition moment of a molecule bound to [poly(dA-dT)]2 is also calculated. As was the case for [poly(dG-dC)]2, the induced CD of a groove bound molecule is one order of magnitude stronger than that of an intercalated molecule. The calculations also show considerable differences between pyrimidine-purine sites and purine-pyrimidine sites. Both signs and magnitudes of the CD induced into ligands bound in the minor groove agree with experimental observations.  相似文献   

13.
M S Tang  H Htun  Y Cheng  J E Dahlberg 《Biochemistry》1991,30(28):7021-7026
We have determined the effect of H-DNA formation on the distributions of two ultraviolet (UV) light induced photoproducts--cyclobutane dipyrimidines and mean value of 6-4 dipyrimidines. A region of DNA containing the sequence (dT-dC)18.(dA-dG)18 was treated under conditions that specifically yield the triple-stranded H-y3 or H-y5 DNA structure and then irradiated with UV. The positions of cyclobutane dipyrimidines and mean value of 6-4 dipyrimidines were determined by T4 endonuclease V cleavage and by hot piperidine cleavage, respectively. Formation of H-DNA structures greatly decreased the photoproduct yield in the (dT-dC)18.(dA-dG)18 region but not elsewhere in the DNA. Suppression of photoproduct formation is greater in half of the repeat, reflecting whether the DNA is in the H-y3 or H-y5 conformation. Within the repeat, the suppression was less in the middle and toward the ends. Models for the suppression of photoproduct formation in H-DNA and the possible utility of our findings are discussed.  相似文献   

14.
Our recent studies indicate that enzymatic hydrolysis of the intradimer phosphodiester linkage constitutes an early reaction in processing UV light-induced cis-syn-cyclobutane pyrimidine dimers in cultured human fibroblasts. Before characterizing the resultant modified dimer sites in cellular DNA, it is necessary to establish experimental conditions that can distinguish backbone-nicked from intact dimers. We thus constructed a model substrate, i.e. p(dT) 10 <> p(dT)10 containing a dimer with a ruptured sugar-phosphate bond, and determined the products of its reaction with snake venom phosphodiesterase and alkaline phosphatase, an enzymatic digestion mixture known to release dimers from UV-treated poly(dA).poly(dT) within trinucleotides with the photoproduct intact at the 3'-end (d-TpTT). The model substrate was prepared by (i) end labeling p(dT)9 using terminal deoxynucleotidyltransferase and [3H]thymine-labeled TTP; and (ii) annealing the chromatographically purified p(dT)10 oligomers to poly(dA) followed by UV (290 nm)-induced ligation. Photoligated 20-mers with one radioactive and modified internal dimer were isolated and enzymatically digested. High performance liquid chromatographic analysis of the reaction products revealed a novel trithymidylate with its backbone severed at the 3'-terminus (d-TpT<>dT), demonstrating that this procedure could discriminate between intact and modified dimers. The procedure was then exploited to show that (i) Escherichia coli DNA photolyase can monomerize, albeit inefficiently, backbone-ruptured dimers; and (ii) phage T4 polynucleotide kinase can catalyze the phosphorylation of d-TpT<>dT, thus facilitating the development of a sensitive postlabeling assay suitable for modified dimer detection under biologically relevant conditions.  相似文献   

15.
As shown by electron paramagnetic resonance, acridine orange induces the formation of peroxide radicals in DNA when dye-DNA mixtures frozen at 77 K are irradiated with visible light. The reaction is oxygen dependent and strongly reduced by the addition of an electron scavenger. Factors of the medium can modulate the reaction: an ionic strength increased up to 0.3 greatly enhances the dye efficiency whereas the presence of phosphate ions has an inhibiting influence. Acridine orange, which is slightly less efficient than proflavine on native DNA, induces an important peroxide radical formation in poly(dG).poly(dC) but has no action on the poly(dA).poly(dT)polymer.  相似文献   

16.
Summary Non-photoreactivable endonuclease V-sensitive sites have been detected in the DNA of wild type bacteriophage T4 irradiated with near UV light (320 nm). Such sites were not detected in the DNA of (a) wild type T4 irradiated with far UV (254 nm) or (b) in T4 mutants in which non-glucosylated 5-hydroxy-methylcytosine (5HMC) or cytosine replaces glucosylated 5HMC normally present in T4, irradiated with 320 nm or 254 nm light. Although the non-photoreactivable sites accounted for 50% of the endonuclease V-sensitive sites in the DNA of glucosylated T4 irradiated with near UV, there was very little difference in the sensitivities of T4 containing glucosylated 5HMC, non-glucosylated 5HMC and cytosine to near UV (313 nm). We propose that the photoproduct responsible for the non-photoreactivable, but endonuclease V-sensitive, sites in glucosylated DNA is formed from glucosylated 5HMC and that a similar photoproduct is formed from non-glucosylated 5HMC or cytosine in the appropriate phage strains. We further propose that the glucosylated 5HMC photoproduct is non-photoreactivable whereas the cytosine and non-glucosylated 5HMC photoproducts are photoreactivable and are therefore possibly cyclobutane dimers.AECL Refence No. 6370Communicated by B.A. Bridges  相似文献   

17.
Abstract

Recent observations that the heteronomous structural model for poly(dA)·poly(dT) is not found in solution and that in this DNA, the two strands are conformationally equivalent (J. Biomole. Str. Dyns. 2, 1057 (1985)), has added a new dimension to the structural dynamics of DNA-netropsin complex. Does the antibiotic somehow distinguish between the two strands and specifically interact with only one of the conformationally equivalent strands?

Model-building studies suggest that netropsin can either bind to the dA-strand in the minor groove such that H-bonds are formed between the imino protons N4-H, N6-H, N8-H of netropsin and N3 atoms of A or can bind to the dT-strand in the minor groove and form H-bonds between the imino-protons N4-H, N6-H, N8-H of netropsin and O2 atoms of T. If netropsin binds to the dA-strand, AH2 atoms of poly(dA)-poly(dT) would be in closer proximity to the imino protrons N4-H, N6-H, N8-H and pyrrole ring protons C5-H, Cll-H of netropsin than they would be, if netropsin binds to the dT-strand. In order to distinguish these possibilities experiments were conducted which involved NOE energy transfer between netropsin and DNA protons in the drug-DNA complex. Difference NOE spectra of netropsin·poly(dA)-poly(dT) complex in which AH2 was irradiated indicate that dominant NOEs were observed at the imino and pyrrole ring protons of netropsin. When the netropsin pyrrole ring protons were irradiated, the magnetization transfer was at AH2 of DNA. These observations suggest that netropsin binds to the dA-strand of poly(dA)-poly(dT) even though dA/dT strands are conformationally equivalent.  相似文献   

18.
In order to detect possible m5C photoproducts, highly purified rat liver DNA-cytosine methyltransferase was used to specifically generate m5C with a radioactive methyl group. When these DNAs were subjected to a large dose (10 kJ/m2) of 254 nm or 302 nm ultraviolet light (UVB) to enhance the yield, two labeled photoproducts were detected and isolated by reverse phase HPLC after formic acid hydrolysis. Further studies using acetone as a triplet state sensitizer and UVB irradiation suggested that photoproduct II was activated via a triplet state while the more polar photoproduct I was not. Photoreversion of the purified photoproducts with 10 kJ/m2 254 nm light demonstrated the following reactions: Photoproduct I regenerated m5C, while photoproduct II is split and regenerated m5C and photoproduct I. These results suggest that photoproduct I is monomeric while photoproduct II dimeric, and from the latter's elution position possibly a cyclobutyl type dimer arising from a reaction with an adjacent cytosine. Using d[TTG] and d[Cm5CG] as models of typical sequences, irradiation with 10 kJ/m2 254 nm or 302 nm, respectively, gave rise to a small component having altered mobility in sequencing gels. The altered mobility trinucleotides were resistant to degradation by PI and micrococcal nucleases as expected from photodimerization of the pyrimidine bases. Furthermore, oligonucleotide substrates containing m5C were synthesized and shown to be susceptible to T4 endonuclease v action at locations consistent with d[Cm5C] photodimer formation when irradiated in the UVB range.  相似文献   

19.
X-ray diffraction in fibres revealed that the calcium salt of poly(dA).poly(dT) is a 10-fold double helix with a pitch of 3.23 nm. The opposite sugar-phosphate chains in the refined model are characterized by a complete conformational equivalence and contain sugars in a conformation close to C2'-endo. As a result a new model of the sodium salt of poly(dA).poly(dT) has been constructed, which is different from the Heteronomous DNA proposed earlier (S. Arnott et al., Nucl. Acids Res. 11, 4141 (1983)). The new model of Na-poly(dA).poly(dT) has conformationally similar opposite chains; it is a structure of the B-type, rather like that of Ca-poly(dA).poly(dT).  相似文献   

20.
The temperature dependence of the Raman spectrum of poly(dA).poly(dT) (dA: deoxyadenosine; dT: thymidine), a model for DNA containing consecutive adenine.thymine (A.T) pairs, has been analyzed using a spectrometer of high spectral precision and sensitivity. Three temperature intervals are distinguished: (a) premelting (10 < t < 70 degrees C), in which the native double helix is structurally altered but not dissociated into single strands; (b) melting (70 < t < 80 degrees C), in which the duplex is dissociated into single strands; and (c) postmelting (80 < t degrees C), in which no significant structural change can be detected. The distinctive Raman difference signatures observed between 10 and 70 degrees C and between 70 and 80 degrees C are interpreted in terms of the structural changes specific to premelting and melting transitions, respectively. Premelting alters the low-temperature conformation of the deoxyribose-phosphate backbone and eliminates base hydrogen bonding that is distinct from canonical Watson-Crick hydrogen bonding; these premelting perturbations occur without disruption of base stacking. Conversely, melting eliminates canonical Watson-Crick pairing and base stacking. The results are compared with those reported previously on poly(dA-dT).poly(dA-dT), the DNA structure consisting of alternating A.T and T.A pairs (L. Movileanu, J. M. Benevides, and G. J. Thomas, Jr. Journal of Raman Spectroscopy, 1999, Vol. 30, pp. 637-649). Poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) exhibit strikingly dissimilar temperature-dependent Raman profiles prior to the onset of melting. However, the two duplexes exhibit very similar melting transitions, including the same Raman indicators of ruptured Watson-Crick pairing, base unstacking and collapse of backbone order. A detailed analysis of the data provides a comprehensive Raman assignment scheme for adenosine and thymidine residues of B-DNA, delineates Raman markers diagnostic of consecutive A.T and alternating A.T/T.A tracts of DNA, and identifies the distinct Raman difference signatures for premelting and melting transitions in the two types of sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号