首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract.  1. Immune defence imposes fitness costs as well as benefits, so organisms are expected to optimise, not maximise, their immune responses. This should result in variation in immune responses under varying environmental conditions.
2. Males and females are expected to exhibit different immune responses because life-history differences between the sexes affect optimal immune response. These life-history differences should usually result in a greater female, than male, immune defence. In this study, intra- and inter-sexual variation in one component of immune defence, the encapsulation response, in cabbage white butterflies ( Pieris rapae L.), was examined.
3. Encapsulation decreased with increasing age and in response to reduced diet quality.
4. Contrary to predictions, males generally had greater immune responses than females, although this pattern varied with age.
5. These patterns of inter- and intra-sexual variation in encapsulation may result from resource-based trade-offs with components of reproductive effort and/or because of sexual dimorphism in melanin-based wing patterns.  相似文献   

2.
The temperate‐zone butterfly Pararge aegeria can use three developmental pathways corresponding to different seasonal cohorts: (1) development with a pupal winter diapause resulting in early spring adults; (2) development with a larval winter diapause resulting in late‐spring adults and (3) direct development resulting in summer or second generation adults. In order to test adaptive predictions, we compared variation in flight‐ and thermoregulation‐related morphology among adult males and females from the three pathways using both field data (i.e. wild‐caught butterflies) and experimental breeding data (i.e. reared under different photoperiod regimes). Morphological patterns among the pathways were largely similar in the field and rearing data. Seasonal patterns differed between the sexes for most traits, including (relative) size measures and wing colour. Our results suggest sex‐related, adaptive seasonal plasticity for morphological traits related to flight behaviour in a multivoltine insect.  相似文献   

3.
  1. Traits that are significant to the thermal ecology of temperate or montane species are expected to prominently co-vary with the thermal environment experienced by an organism. The Himalayan Pieris canidia butterfly exhibits considerable variation in wing melanisation. We investigated: (i) whether variation in wing melanisation and (ii) activity period of this montane butterfly was influenced by the seasonally and elevationally changing thermal landscape.
  2. We discovered that wing melanisation varied across elevation, seasons, sex, and wing surfaces, with the variation strongly structured in space and time: colder seasons and higher elevations produced more melanic individuals. Notably, melanisation did not vary uniformly across all wing surfaces: (i) melanisation of the ventral hindwing co-varied much more prominently with elevation, but (ii) melanisation on all other surfaces varied with seasonal changes in the thermal environment.
  3. Observed wing surface-specific patterns indicated thermoregulatory function for this variation in melanisation. Such wing surface-specific responses to seasonal and elevational variation in temperature have rarely been reported in montane insects.
  4. Moreover, daily and seasonal thermal cycles were found to strongly influence activity periods of this species, suggesting the potential limits to wing melanisation plasticity.
  5. Overall, these results showed that the seasonal and elevational gradients in temperature influence the thermal phenotype as well as activity periods of this Himalayan butterfly. It will be critical to study the phenotypic evolution of such montane insects in response to the ongoing climate change, which is already showing significant signs in this iconic mountain range.
  相似文献   

4.
In butterflies, wing colour may simultaneously be under sexual selection in the context of mating selection and natural selection in the context of thermoregulation. In the present study, we collected mated females of the green‐veined white butterfly (Pieris napi) from locations spanning 960 km of latitude across Fennoscandia, and investigated sex‐specific latitudinal wing colour variation in their offspring raised under identical conditions. We measured wing colour characteristics, including reflectance at wavelengths 300–700 nm and the degree of wing melanization. At all latitudes, females reflected more light in the short wavelengths (< 400 nm) and less in the long wavelengths (> 450 nm), and they were more melanized than males. However, female wing colour varied more with latitude than that of males. Among females, long wavelength reflectance decreased, whereas short wavelength reflectance and melanization increased, towards the north. By contrast, among males, latitudinal variation was found only in the ventral hindwing melanization. These results are consistent with the idea that the balance between natural and sexual selection acting on wing colour changes with latitude differently in males than females. The dark wing colour of females in the north may be a thermoregulatory adaptation, although males may be constrained from evolving the dark dorsal wing colour favoured by natural selection because of constant sexual selection across latitudes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

5.
This paper reviews the literature concerning the ovipositional behaviour of Pieris rapae (small cabbage white butterfly) and where appropriate considers results from studies involving other butterflies. The paper considers searching behaviour, stimuli utilised in host plant finding and identification and concludes with a general section on the role of learning and prior experience in ovipositional behaviour.  相似文献   

6.
昆虫翅型分化的表型可塑性机制   总被引:1,自引:0,他引:1  
王小艺  杨忠岐  魏可  唐艳龙 《生态学报》2015,35(12):3988-3999
翅多型现象在昆虫中广泛存在,是昆虫在飞行扩散和繁殖能力之间权衡的一种策略,对种群的环境适应性进化具有重要的意义。目前在植食性昆虫中研究较多,有关寄生蜂的翅型分化鲜见报道。综述了昆虫翅型分化的表型可塑性机制。遗传因素和环境因素均对昆虫翅的发育产生影响,基因型对翅型的决定具有显著作用,外界环境条件,包括温度、光周期、食物质量、自身密度、外源激素等因素对昆虫翅的发育也产生重要的调节作用,从而产生翅的非遗传多型性现象。此外,天敌的寄生或捕食作用可能会诱导某些昆虫的翅型产生隔代表型变化。对昆虫产生翅多型现象的生态学意义及其在生物进化过程中的作用进行了讨论,并探讨了寄生性昆虫翅型分化机制在生物防治上的可能应用途径。功能基因组学和表观遗传学的进一步发展可望为彻底揭示昆虫翅型分化机制提供新的机遇和技术手段。  相似文献   

7.
8.
Individual differences in several reproductive parameters of female Pieris rapae were investigated in a controlled laboratory condition. Lifetime and age-specific fecundity showed considerable variability between individuals. Larger females began oviposition at an earlier age than smaller ones, and larger females were more fecund than smaller ones. Larger females laid a larger proportion of their eggs in the early stages of their reproductive lifetime, whilst smaller females laid the larger proportion of their eggs later in their reproductive lifetime. The significance of the variance in age-specific fecundity associated with female size is discussed with respect to the seasonal change in size and habitat utilization of this species.  相似文献   

9.
1. In species where females mate multiply, it is important for males to recuperate quickly in order to maximize their fertilization success. Butterflies produce a spermatophore at mating containing accessory secretions and sperm of two types: a large number of non-fertile 'apyrene' sperm and fewer fertile 'eupyrene' sperm. Many butterfly species eclose with most nutrients for reproduction already present. Males must therefore decide how to allocate resources to the various spermatophore components at any given mating.
2. Recovery rates of apyrene and eupyrene sperm number and spermatophore size was studied in the polyandrous Small White butterfly Pieris rapae . The mass of the first spermatophore increases with time since eclosion, as does the number of both types of sperm. Similarly, on a male's second mating, both the mass of the spermatophore and the number of sperm increases with time since the first mating.
3. However, the rate of increase in eupyrene sperm numbers is higher after the first mating. The difference in rate of increase may be the result of different probabilities of virgin and non-virgin males obtaining future matings.
4. Males have a sperm storage organ, the duplex, in which they retain sperm after their first mating. This ensures that high sperm numbers are available for their second mating, even when remating only 1 h later. Thus, males do not ejaculate all available sperm on any given mating, and seem to have different strategies on their first and second matings.
5. It can be argued that Small White butterfly males allocate sperm strategically according to the probability of obtaining subsequent matings, and the level of sperm competition.  相似文献   

10.
By adopting a longitudinal study design and through geometric morphometrics methods, we investigated individual and ontogenetic variation in size, shape and timing during larval development of the cabbage butterfly Pieris brassicae under laboratory conditions. We found that ontogenetic size progression departs modestly, but significantly, from growth at a constant rate and that size at hatching contributes considerably to determine the size of the individual at all subsequent stages. As for the shape, ontogenetic allometry is much more conspicuous than static allometry, the latter in many cases being close to isometry. Analysis of developmental timing revealed a stage of apparently more effective developmental control at stage 3, supported by both the relatively small variance in cumulative developmental time up to stage 3 and by the pattern of correlation between duration of single stages. While presenting detailed quantitative aspects of growth in P. brassicae, in particular with respect to individual variation, this study and the associated dataset can provide a basis for further explorations of the post‐embryonic development in this insect and contribute to the ongoing investigations on growth regulation and control in insects.  相似文献   

11.
Effect of four different cole crops (Brassica oleracea var. botrytis, Brassica oleracea var. capitata, Brassica oleracea var. italica and Brassica oleracea var. viridis) on biological parameters of the large white butterfly Pieris brassicae was evaluated at temperature 26 ± 1 °C, 60 ± 5% R. H. and a photoperiod of 16: 8 (L:D) h. The shortest larval and pupal period stages were recorded on B. oleracea var. botrytis (22.18 ± 0.20 days) and (13.32 ± 0.17 days), respectively. The life span was longest on B. oleracea var. viridis (60.43 ± 2.34 days) and shortest on B. oleracea var. botrytis (50.19 ± 0.51 days). The highest percentage of larval and pupal mortality was observed on B. oleracea var. viridis (74%), and (53%), respectively. We found that P. brassicae prefers B. oleracea var. botrytis and B. oleracea var. capitata among cole crops; it is due to the lowest percentage of larval and pupal mortality and the highest rate of life table parameters, including survival rate (lx) and life expectancy (ex), which makes them to be susceptible varieties to this pest. Contrary, a longer developmental time on B. oleracea var. viridis may be attributed to poor nutritional status and reduced survival of the cohort, resulting in high rates of mortality, which was partial resistance to pest. Knowledge of the biology and life table parameters of P. brassicae on different cole crops could be effective in detecting and monitoring the pest infestation, variety selection and crop breeding.  相似文献   

12.
Phenotypic plasticity may enable organisms to maximize their fitness in seasonally variable environments. However, in butterflies, seasonal polyphenism is often striking but functionally obscure. This paper addresses the possible adaptive significance of phenotypic variation in the tropical butterfly Hypolimnas bolina (L.) (Nymphalidae). Plasticity in body size and wing coloration can be elicited in this species under laboratory conditions, however it is not known how this plasticity is expressed in the wild. Moreover, adult H. bolina spend the winter dry season in a reproductive diapause, which allows certain predictions regarding the occurrence of seasonal plasticity. Based on consideration of the requirements of diapausing and directly developing individuals, we predicted that if seasonal plasticity in phenotype were adaptive, then overwintering individuals should be larger and darker than their directly developing counterparts. This prediction was largely - although not entirely - fulfilled. Dry season butterflies were duller and darker than their wet season counterparts (this plasticity was superimposed on a genetic colour polymorphism), however size plasticity varied geographically. Dry season adults were consistently larger than wet season adults in the tropical north, but not in the south. We use these findings to discuss the possible adaptive significance of seasonal variation in the colour and size of this tropical butterfly.  相似文献   

13.
Structure and ontogeny of the hair mechanosensilla on the distal segment of the pupal labial palp of Pieris rapae (Lepidoptera : Pieridae) were investigated in 7 successive stages between 28 hr after pupation and emergence of the imago. There are 7–8 mechanosensilla in the distal region of each palp in both sexes. These sensilla house a single sensory cell characterized by a tubular body, and 3 enveloping cells.At 28 hr after pupation, the anlagen of the hair mechanosensila are visible. Consecutive steps in the formation of the sensilla are: (1) elongation of the outer dendritic segment and of the dendritic sheath; (2) outgrowth of the trichogen cell and cuticle deposition; (3) increase in the diameter of the dendritic outer segment and in the number of microtubules within it; (4) reduction of the distal part of the dendritic outer segment and formation of the tubular body; (5) folding of the membrane of the dendritic outer segment and appearance of the receptor lymph cavity.The tubular body is formed during a period of about 80 hr. Its earliest appearance comprises groups of 3–4 microtubules, which are connected by electron-dense material. The final dense tubular body develops via microtubules linked together by electron-dense material.  相似文献   

14.
R. E. Jones 《Oecologia》1987,72(1):69-76
Summary Australian and U.K. Pieris rapae differ markedly in their oviposition behaviour; U.K. females produce a more aggregated egg distribution, and lay their eggs more quickly, than do Australian females. The adaptive reason for this divergence probably lies in the relative costs of increased flight time (more costly in the U.K.) and increased local crowding (more costly in Australia). There is also a strong relationship between juvenile developmental rate (at constant temperature) and oviposition behaviour, but the form of this relationship differed between the two populations. The adaptive reasons for the link between developmental rate and behaviour is not clear. It may be that this link represents the tip of the iceberg; i.e. that physiological, developmental, and behabioral characters all co-vary in ways and for reasons that we do not yet understand.  相似文献   

15.
Increasing structural complexity within crop fields can provide a way to manipulate pest abundance and biological control in agroecosystems. Here, we examine the effect of cover crop mulches in cabbage on the structure and function of an insect food web, investigating the role of cover crop species, structure, and volatile cues on important interactions. We focused on the imported cabbageworm (Pieris rapae L., Lepidoptera: Pieridae), and three of its natural enemies, the spined soldier bug (Podisus maculiventris (Say), Hemiptera: Pentatomidae), the convergent lady beetle (Hippodamia convergens (Guerin), Coleoptera: Coccinellidae), and the parasitoid, Cotesia rubecula Marshall (Hymenoptera: Braconidae). We measured the abundance of these insects in a field experiment and conducted a natural enemy exclusion cage study to determine the level of biological control of the imported cabbageworm in the field. Our field experiments indicated that cover crop species, but not structure, influenced insect abundance, with significantly more imported cabbageworm and C. rubecula in rye cover crop mulch plots compared to vetch mulch or bare soil plots. In the Y-tube assays we found some evidence that the increased parasitoid abundance did not result in increased parasitism because of interference of the mulch with short-range host finding odor cues. The natural abundance of the two predators was not different among our field plots with different cover crop treatments. Mortality and parasitism of sentinel imported cabbageworm larvae was not different in field cages among the different cover crop mulch treatments, but there was a significant difference among cage types indicating that small natural enemies play an important role in the biological control of this cabbage pest.  相似文献   

16.
Summary The retinal morphology of the butterfly, Pieris rapae L., was investigated using light and electron microscopy with special emphasis on the morphology and distribution of its screening pigments. Pigment migration in pigment and retinula cells was analysed after light-dark adaptation and after different selective chromatic adaptations. The primary pigment cells with white to yellow-green pigments symmetrically surround the cone process and the distal half of the crystalline cone, whilst the six secondary pigment cells, around each ommatidium, contain dark brown pigment granules. The nine retinula cells in one ommatidium can be categorised into four types. Receptor cells 1–4, which have microvilli in the distal half of the ommatidium only, contain numerous dark brown pigment granules. On the basis of the pigment content and morphology of their pigment granules, two distal groups of cells, cells 1, 2 and cells 3, 4 can be distinguished. The four diagonally arranged cells (5–8), with rhabdomeric structures and pigments in the proximal half of the cells, contain small red pigment granules of irregular shape. The ninth cell, which has only a small number of microvilli, lacks pigment. Chromatic adaptation experiments in which the location of retinula cell pigment granules was used as a criterium reveal two UV-receptors (cells 1 and 2), two green receptors (cells 3 and 4) and four cells (5–8) containing the red screening pigment, with a yellow-green sensitivity.  相似文献   

17.
Seasonal polyphenism, in which different forms of a species are produced at different times of the year, is a common form of phenotypic plasticity among insects. Here I show that the production of dark fifth-instar caterpillars of the eastern black swallowtail butterfly, Papilio polyxenes, is a seasonal polyphenism, with larvae reared on autumnal conditions being significantly darker than larvae reared on midsummer conditions. Both rearing photoperiod and temperature were found to have individual and synergistic effects on larval darkness. Genetic analysis of variation among full-sibling families reared on combinations of two different temperatures and photoperiods is consistent with the hypothesis that variation in darkness is heritable. In addition, the genetic correlation in larval darkness across midsummer and autumnal environments is not different from zero, suggesting that differential gene expression is responsible for the increase in larval darkness in the autumn. The relatively dark autumnal form was found to have a higher body temperature in sunlight than did the lighter midsummer form, and small differences in temperature were found to increase larval growth rate. These results suggest that this genetically based seasonal polyphenism in larval color has evolved in part to increase larval growth rates in the autumn.  相似文献   

18.
In the cabbage white butterfly, Pieris rapae crucivora, copulation hinders normal expansion and hardening of the wings of newly emerged females. The resulting permanent wing deformation makes it impossible for females to fly and therefore, to find an oviposition site and nectar sources. An attempt was made to clarify whether the newly emerged female butterfly avoids copulation. Observation of wing expansion and hardening reveals that the wings are fully expanded and hard by 20–30 min after emergence. In the field, presentation of females with soft wings to males shows that males will attempt to copulate with these females. However, newly emerged females prevent successful completion of copulation by assuming the mate refusal posture, and thereby avoid a potentially maladaptive copulation. The discussion focusses on the question as to why females and not males avoid early copulation.  相似文献   

19.
The butterfly Pieris napi (L.) and relatives exemplify recently evolving taxa, exhibiting variation that makes their evolutionary dynamics interesting, but their systematics difficult. Wing-pattern characters commonly used to distinguish these Holarctic insects display both genetic polymorphism and environmentally-cued polyphenism. Often, these causes of variation are confounded, impairing the characters' phylogenetic usefulness. DNA sequences of four mitochondrial genes offer an independent view of pierine phylogeny. Sampling diverse relatives within family Pieridae assists resolution of the P. napi complex, suggests previous underestimation of clade diversity in subfamily Pierinae, and shows that other genera near Pieris also display confusions of wing-pattern-based phylogenetic inference. The European P. napi is sister to all North American taxa, and is well diverged from them all in sequences. The North American taxa comprise a northern subclade including Pieris oleracea , and questionably distinct Pieris ' angelika ', and a southern subclade including distinct Pieris virginiensis , Pieris marginalis , and Pieris macdunnoughii , and other regional entities yet to be clarified. Weak bootstrap support for some nodes in this group arises from a closeness of sequence identity rather than character conflict; more sequence data and denser geographical sampling may resolve these nodes more clearly. Evidence of reproductive isolation, from other experimental hybridization studies, agrees with the DNA results where these conflict with other divergent character sets. The system offers much promise for a deeper understanding of character evolution in relation to phyletic differentiation.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 413–435.  相似文献   

20.
This study examines the role of learning and memory in the butterflyPieris rapae crucivora Boisduval during foraging for flowers. In an outdoor cage with 6 flower species,P. rapae showed various visiting patterns: some visited only one species, while others visited several species in a day. The foraging process for flowers ofErigeron annuus (L.) Pers. could be divided into two successive steps: (1) landing on the nectaring caputs, and (2) finding the source of nectar in the caput. Butterflies learned to proceed through the two steps more efficiently with successive attempts: they gradually decreased landings on nectarless caputs and probings on the nectarless petals of ligulate flowers respectively. As a result, handling time per unit caputs became shorter, and apparent rewards per unit time, i.e. the efficiency of collecting nectar, increased. In addition, once learned,P. rapae could remember a rewarding flower color for 3 days, which was not interfered with by learning another flower color. This indicates thatP. rapae keeps memory for a period longer than 3 days, and that they can remember at least two flower species as suitable flower resources. Furthermore, data indicated that they sometimes can apply the foraging skills obtained on other flower species to a novel one. These abilities could enable butterflies to easily switch flower species, or to enhance labile preference. It has been known thatP. rapae also shows flower constancy, which may be due to memory constraints. Therefore, they may appropriately use two foraging tactics: visit consistency and labile preference, to get enough nectar according to their circumstances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号