首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Dehydration-responsive-element-binding protein 1 genes have important roles in response to stress. To improve the drought tolerance of an upland rice cultivar NERICA1, we introduced Arabidopsis AtDREB1C or rice OsDREB1B driven by a stress-inducible rice lip9 promoter. Plants of some transgenic lines survived better than non-transgenic plants under severe drought. AtDREB1C transgenic plants had higher dry weights than non-transgenic plants when grown under moderate drought until the late vegetative growth stage. On the other hand, OsDREB1B transgenic plants had lower dry weights than non-transgenic plants under the same condition. Similar results were obtained under osmotic stress. The AtDREB1C transgenic plants headed earlier, had a larger sink capacity, and had more filled grains than non-transgenic plants. These results suggest that AtDREB1C expressed in NERICA1 improves not only survival under severe drought, but also growth and yield under moderate drought.  相似文献   

5.
6.
7.
Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.  相似文献   

8.
9.
10.
11.
12.
Tian Y  Zhang H  Pan X  Chen X  Zhang Z  Lu X  Huang R 《Transgenic research》2011,20(4):857-866
Rice (Oryza sativa L.) is a warm-season plant exposed to various stresses. Low temperature is an important factor limiting extension of rice cultivation areas and productivity. Previously, we have demonstrated that tomato ERF protein TERF2 enhances freezing tolerance of transgenic tobacco and tomato plants. Herein, we report that overexpression of TERF2 enhances transgenic rice tolerance to cold without affecting growth or agronomic traits. Physiological assays revealed that TERF2 could not only increase accumulation of osmotic substances and chlorophyll, but also reduce reactive oxygen species (ROS) and malondialdehyde (MDA) content and decrease electrolyte leakage in rice under cold stress. Further analysis of gene expression showed that TERF2 could activate expression of cold-related genes, including OsMyb, OsICE1, OsCDPK7, OsSODB, OsFer1, OsTrx23, and OsLti6, in transgenic rice plants under natural condition or cold stress. Thus, our findings demonstrated that TERF2 modulated expression of stress-related genes and a series of physiological adjustments under cold stress, indicating that TERF2 might have important regulatory roles in response to abiotic stress in rice and possess potential utility in improving crop cold tolerance.  相似文献   

13.
Rice SPX domain gene, OsSPX1, plays an important role in the phosphate (Pi) signaling network. Our previous work showed that constitutive overexpression of OsSPX1 in tobacco and Arabidopsis plants improved cold tolerance while also decreasing total leaf Pi. In the present study, we generated rice antisense and sense transgenic lines of OsSPX1 and found that down-regulation of OsSPX1 caused high sensitivity to cold and oxidative stresses in rice seedlings. Compared to wild-type and OsSPX1-sense transgenic lines, more hydrogen peroxide accumulated in seedling leaves of OsSPX1-antisense transgenic lines for controls, cold and methyl viologen (MV) treatments. Glutathione as a ROS scavenger could protect the antisense transgenic lines from cold and MV stress. Rice whole genome GeneChip analysis showed that some oxidative-stress marker genes (e.g. glutathione S-transferase and P450s) and Pi-signaling pathway related genes (e.g. OsPHO2) were significantly down-regulated by the antisense of OsSPX1. The microarray results were validated by real-time RT-PCR. Our study indicated that OsSPX1 may be involved in cross-talks between oxidative stress, cold stress and phosphate homeostasis in rice seedling leaves.  相似文献   

14.
15.
16.
ItICE1, a ICE1-like gene, was isolated from a cDNA library from cold-treated woad (Isatis tinctoria L.) tissues. Expression analysis revealed that the ItICE1 gene was expressed constitutively and was predominant in the leaves of woad seedlings and that its mRNA accumulation was altered by salt stress and abscisic acid application, but not by dehydration and cold stresses. The transgenic rice lines overexpressing ItICE1 showed no growth retardation under normal growth conditions as well as enhanced tolerance to cold stress. Physiological assays showed that ItICE1 not only increased the accumulation of free proline and chlorophyll in transgenic rice lines under cold stress, but also reduced malondialdehyde content and electrolyte leakage. The analysis of gene expression in transgenic rice lines indicated that the maize ubiquitin promoter could respond to cold stress and upregulate ItICE1 gene expression level under its control. Under cold stress conditions, transgenic lines had a remarkably increased expression of OsDREB1A, J013078A14, 001-125-G03, 001-023-B08 and J023042N13 compared to wild-type plants (P < 0.05), implying that ItICE1 functions in the CBF/DREB1 cold-response pathway. These results demonstrate that ItICE1 plays an important regulatory role in the improvement of tolerance to cold stress in rice and is potentially useful for improving the cold tolerance of other plants.  相似文献   

17.
ZFP245 is a cold- and drought-responsive gene that encodes a zinc finger protein in rice. The ZFP245 protein localizes in the nucleus and exhibits trans-activation activity. Transgenic rice plants overexpressing ZFP245 were generated and found to display high tolerance to cold and drought stresses. The transgenic plants did not exhibit growth retardation, but showed growth sensitivity against exogenous abscisic acid, increased free proline levels and elevated expression of rice pyrroline-5-carboxylatesynthetase and proline transporter genes under stress conditions. Overproduction of ZFP245 enhanced the activities of reactive oxygen species-scavenging enzymes under stress conditions and increased the tolerance of rice seedlings to oxidative stress. Our data suggest that ZFP245 may contribute to the tolerance of rice plants to cold and drought stresses by regulating proline levels and reactive oxygen species-scavenging activities, and therefore may be useful for developing transgenic crops with enhanced tolerance to abiotic stress.  相似文献   

18.
19.
20.
Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlates with the induction of known stress-responsive genes, and suggests that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.Key words: cold acclimation, dehydration, putrescine, polyamines, stress  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号