首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
Species occurrence in a site can be limited by both the abiotic environment and biotic interactions. These two factors operate in concert, but their relative importance is often unclear. By experimentally introducing seeds or plants into competition‐free gaps or into the intact vegetation, we can disentangle the biotic and abiotic effects on plant establishment. We established a seed‐sowing/transplant experiment in three different meadows. Species were introduced, as seeds and pregrown transplants, into competition‐free gaps and the intact vegetation. They included 12 resident plants from the locality and 18 species typical for different habitats. Last two years, gaps were overgrown with vegetation from surrounding plants and we observed the competitive exclusion of our focal plants. We compared plant survival with the expected occurrence in target locality (Beals index). Many of the species with habitat preferences different from our localities were able to successfully establish from seeds and grow in the focal habitat if competition was removed. They included species typical for much drier conditions. These species were thus not limited by the abiotic conditions, but by competition. Pregrown transplants were less sensitive to competition, when compared to seedlings germinated from seeds. Beals index significantly predicted both species success in gaps and the ability to withstand competition. Survival in a community is dependent on the adaptation to both the abiotic environment and biotic interactions. Statistically significant correlation coefficients of the ratio of seedling survival in vegetation and gaps with Beals index suggest the importance of biotic interactions as a determinant of plant community composition. To disentangle the importance of abiotic and biotic effect on plant establishment, it is important to distinguish between species pool as a set of species typically found in given community type (determined by Beals index) and a set of species for which the abiotic conditions are suitable.  相似文献   

2.
Transformation of coppices to high forests has caused fundamental changes in site conditions and a decline of many species across Central Europe. Nevertheless, some formerly coppiced forests still harbour a number of the declining species and have become biodiversity hotspots in the changing landscape. We focused on the best-preserved remnant of formerly grazed and coppiced subcontinental oak forest in the Czech Republic – the Dúbrava forest near the town of Hodonín. To improve our understanding of the ecology of declining species, we studied local habitat requirements of vascular plants most endangered at the national level. We recorded vegetation composition and sampled important site variables in plots with the largest populations of endangered species and in additional plots placed randomly across all major forest habitats. We demonstrated that sites with endangered species have a highly uneven distribution in ecological space and that their species composition is often similar to open-canopy oak forests. Within this habitat, the endangered species are concentrated in places with a high light availability and high soil pH. Light-demanding species characteristic of subcontinental oak forests are the best indicators of these sites, while broadly distributed shade-tolerant and nutrient-demanding species avoid them. These results support the view that the occurrence of many endangered species in the Dúbrava forest is a legacy of the long history of traditional management that kept the canopies open. Light-demanding species are now threatened by ongoing successional changes. Therefore, active conservation measures are recommended, including opening up the canopies, early thinning of young stands, control of expansive and invasive species and understorey grazing or mowing.  相似文献   

3.
Ligularia sibirica is a relict wetland perennial plant species of the Czech and Slovak Republic. Explaining variation in population growth rate and identifying the causes of that variation is important for effective protection of such an endangered species. Matrix models based on four years of data of 11 populations were used to identify the pattern of variation in the demographic vital rates of this species, and to examine the causes of the variation such as population size and habitat type. Further, the matrix model was used to determine the population growth rate, longevity and risk of extinction of each population and to identify the specific vital rates that most affect population growth rate. The results showed that population growth rates were significantly different between years and populations. Temporal variation was mostly due to variable survival of adult individuals, while spatial variation was mainly driven by fertility of one small currently expanding population. Further, most studied populations of L. sibirica are performing well and only those growing in nitrogen-rich habitats have a high extinction risk. The results also indicate that all populations have low adult mortality, long-lived individuals (61.3?years on average) and some populations also show features of remnant populations (i.e., the persistence of populations in severe conditions in spite of no reproduction). Our results imply that detailed demographic data are needed to understand the long-term prospects of these populations. These data may serve as an early warning system for this species long before an obvious decline occurs in the populations.  相似文献   

4.
Establishing new populations is essential for preventing the extinction of critically endangered plant species. However, defining the range of environmental conditions suitable for the most severely endangered species is challenging, since few wild populations remain for study. Experimental reintroductions of these species can achieve multiple conservation goals by improving our understanding of habitat and management requirements while simultaneously establishing new populations. We demonstrate this with Arenaria paludicola, a critically endangered wetland plant species now known from a single wild population in coastal California. Before transplanting, we tested salinity tolerance in the greenhouse, and found tolerance of a broader range of soils than expected based on the current distribution. We then transplanted A. paludicola in three different habitat types, with and without neighbor removal. Success of A. paludicola transplants differed dramatically between the three habitat types, indicating the importance of variation at the habitat and microhabitat level. The best practices for transplant management are context-dependent: neighbor removal may promote the growth of A. paludicola, but neighbors may also facilitate transplant establishment in unstable substrates. After one year, A. paludicola continued to thrive in habitats dominated by Oenanthe sarmentosa with open canopies and moist soil. This habitat differs from that of the remaining wild population. Our discovery of an additional habitat type suitable for A. paludicola will allow more effective selection of future transplant sites.  相似文献   

5.
1. In natural ecosystems, plants containing hosts for parasitoids are often embedded within heterogeneous plant communities. These plant communities surrounding host‐infested plants may influence the host‐finding ability of parasitoids. 2. A release‐recapture‐approach was used to examine whether the diversity and structural complexity of the community surrounding a host‐infested plant influences the aggregation behaviour of the leaf‐miner parasitoid Dacnusa sibirica Telenga and naturally occurring local leaf‐miner parasitoids. Released and locally present parasitoids were collected on potted Jacobaea vulgaris Gaertn.plants infested with the generalist leaf‐miner Chromatomyia syngenesiae Hardy. The plants were placed in experimentally established plant communities differing in plant diversity (1–9 species) and habitat complexity (bare ground, mown vegetation, and tall vegetation). Additionally, parasitoids were reared out from host mines on the trap plants. 3. Plant diversity did not influence the mean number of recaptured D. sibirica or captures of other locally present parasitoids but the number of recaptured parasitoids was influenced by habitat complexity. No D. sibirica parasitoids were recaptured in the bare ground plots or plots with mown vegetation. The mean number of recaptured D. sibirica generally increased with increasing complexity of the plant community, whereas locally present parasitoids were captured more frequently in communities with more bare ground. There was a unimodal relationship between the number of reared out parasitoids and diversity of the surrounding vegetation with the highest density of emerged parasitoids at intermediate diversity levels. 4. The present study adds to the thus far limited body of literature examining the aggregation behaviour of parasitoids in the field and suggests that the preference of parasitoids to aggregate in complex versus simple vegetation is association specific and thus depends on the parasitoid species as well as the identity of the plant community.  相似文献   

6.
I assessed the role of low vegetation (plants ca 1 yr old and ≤50 cm tall) as a biotic facilitator or barrier in the recruitment of different growth forms and species in primary forests, secondary forests, and old‐fields (abandoned pastures) in southeastern Mexico. I removed by hand all plants (≤100 cm tall, including roots) and litter from 20, 0.25 m2 plots in each habitat. For 1 yr, I counted the number of plant species (5–50 cm tall) recruited, grouped them into different growth forms, and compared them to undisturbed control plots. Prior to manipulation, the standing density of trees and lianas was highest in primary and secondary forests. Shrubs were more abundant in secondary forests, whereas herbs, epiphytes, and hemi‐epiphytes were more abundant in old‐fields. Herbaceous plants appeared as important components of the community in all habitats. The removal of low vegetation increased total plant recruitment in all habitats. Considering each growth form, the absence of vegetation increased recruitment in primary forests for herbs, in secondary forests for epiphytes and hemi‐epiphytes, in old‐fields for trees, and for lianas in primary forests and old‐fields. In vegetation removal plots, recruitment of species was greater in pastures, lower in secondary forest, and similar in primary forest with respect to control plots. Depending on habitat type, species, and growth form, the presence of low vegetation may act as a recruitment barrier or facilitator for different species, affecting plant community structure, diversity, and composition in different habitats.  相似文献   

7.
Summary In many ecosystems, increases in vegetation density and the resulting closure of forest canopies are threatening the viability of species that depend upon open, sunlight‐exposed habitats. Consequently, we need to develop management strategies that recreate open habitats while minimizing the impacts on non‐target areas. Selective logging creates canopy gaps, but may result in undesirable effects in other respects. Thus, chainsaws have not been a popular tool for conservation. We conducted a landscape‐scale experiment to test whether selective tree removal can restore patch‐level habitat quality for Australia’s most endangered snake (Hoplocephalus bungaroides) and its main prey (the lizard Oedura lesueurii). We selectively removed canopy trees surrounding 25 overgrown rock outcrops and compared the resultant habitat structure and abiotic conditions to 30 overgrown, shady outcrops and 20 open, sunny outcrops. Removing vegetation decreased canopy cover by 19% in experimental plots and increased incident radiation and thermal regimes. These changes increased the availability of suitable shelter sites for our target species by 131%. At the landscape scale, our manipulations had a trivial effect on forest habitat; by increasing the area of sun‐exposed outcrops, we decreased forest cover by <0.1%. Our results show that targeted canopy removal can increase the availability of sun‐exposed habitat patches for endangered species in biologically meaningful ways. Thus, selective tree felling may be an effective conservation tool for open‐habitat specialists threatened by vegetation overgrowth.  相似文献   

8.
Changes in traditional agricultural systems in Europe in recent decades have led to widespread abandonment and colonization of various habitats by shrubs and trees. We combined several vegetation databases to test whether patterns of changes in plant diversity after land abandonment in different habitats followed similar pathways. The impacts of land abandonment and subsequent woody colonization on vegetation composition and plant traits were studied in five semi-natural open habitats and two arable habitats in six regions of Europe. For each habitat, vegetation surveys were carried out in different stages of succession using either permanent or non-permanent plots. Consecutive stages of succession were defined on a physiognomic basis from initial open stages to late woody stages. Changes in vegetation composition, species richness, numbers of species on Red Lists, plant strategy types, Ellenberg indicator values of the vegetation, Grime CSR strategy types and seven ecological traits were assessed for each stage of the successional pathway. Abandonment of agro-pastoral land-use and subsequent woody colonization were associated with changes in floristic composition. Plant richness varied according to the different habitats and stages of succession, but semi-natural habitats differed from arable fields in several ecological traits and vegetation responses. Nevertheless, succession occurred along broadly predictable pathways. Vegetation in abandoned arable fields was characterized by a decreasing importance of R-strategists, annuals, seed plants with overwintering green leaves, insect-pollinated plants with hemi-rosette morphology and plants thriving in nutrient-rich conditions, but an increase in species considered as endangered according to the Red Lists. Conversely, changes in plant traits with succession within the initially-open semi-natural habitats showed an increase in plants thriving in nutrient-rich conditions, stress-tolerant plants and plants with sexual and vegetative reproduction, but a sharp decrease in protected species. In conclusion, our study showed a set of similarities in responses of the vegetation in plant traits after land abandonment, but we also highlighted differences between arable fields and semi-natural habitats, emphasizing the importance of land-use legacy.  相似文献   

9.
Passive management to preserve endangered plant species involves measures to avoid anthropogenic disturbance of natural populations, but this approach may not sustain plants that require disturbance-maintained habitats. Active management is often necessary to maintain existing habitats or provide new habitats for endangered species recovery. Our objective was to examine the effects of two disturbances in floodplain forests, soil flooding and light availability, on survival, stem length, stem diameter and ramet production of endangered Lindera melissifolia (Walt.) Blume. We used a water impoundment facility to control the timing and duration of flooding (0, 45 or 90 days) and shade houses to vary light availability (70, 63 or 5 % ambient light). Hydroperiod had little direct effect on steckling survival, stem length growth and stem diameter growth, supporting indications that soil flooding may be important for reduction of interspecific competition in L. melissifolia habitat. Greater ramet production by stecklings receiving no soil flooding likely resulted from longer periods of favorable soil conditions during each growing season. Positive stem length growth and stem diameter growth under all light levels demonstrates the plasticity of this species to acclimate to a range of light environments, though, greatest survival and stem length growth occurred when L. melissifolia received 37 % light, and stem diameter growth was greatest beneath 70 % light. Further, female clones produced more ramets as light availability increased. These results indicate that passive management absent natural disturbance could jeopardize sustainability of extant L. melissifolia populations, and this species would respond favorably to active management practices that create canopy openings to increase understory light availability.  相似文献   

10.
Busseola fusca (Fuller), Sesamia calamistis Hampson, Chilo partellus (Swinhoe) and Chilo orichalcociliellus (Strand) are important stem borer pests of maize and sorghum in East Africa. Persistence of these pests in crop fields is blamed on the influx of diaspore populations from the neighbouring natural habitats. In addition to pest species, natural habitats support numerous non-economic stem borer species, some not known to science. However, due to growing human populations and accompanying global change, some of the natural habitats are undergoing rapid changes, a process that may result in the evolution of “new” pest species. In this study, we investigated stem borer species diversity in four different vegetation mosaics in Kenya, with an aim of establishing the differences in species composition and distributions in both wild and cultivated habitats. We identified 33 stem borer species belonging to 14 different genera in the four families; Noctuidae, Crambidae, Pyralidae and Tortricidae from 37 plant species. In addition to the above stem borer pest species, we found three more species, Busseola segeta Bowden, Pirateolea piscator Fletcher and Eldana saccharina Walker, in the cultivated fields. Together, stem borer pests varied in distribution among vegetation mosaics, suggesting differences in ecological requirement. Despite the variations in distribution patterns, stem borer pests co-existed with non-economic species in the natural habitats, communities that are facing threats due to ongoing habitat changes. This paper discusses the likely impacts of habitat changes on both pest and non-economic species.  相似文献   

11.
Human activity and land use changes in the past decades have led to landscape homogenization and small-scale fragmentation of grassland habitats in most regions of central Europe. As a result, populations of many grassland species are small and strongly fragmented, facing extinction due to genetic depauperation and local maladaptation in remnant habitats. In this study, remaining populations of the strongly endangered grassland species Dianthus seguieri ssp. glaber (“Ragged Pink”) in Bavaria were investigated in order to evaluate the environmental factors influencing its genetic variation and performance. We first evaluated habitat, vegetation and population structure. Species performance was then studied by assessing the number of generative shoots, flowers and fertile capsules; and evaluating seed weight and seed viability. Finally, genetic variation was analyzed using molecular markers (AFLPs). Our analyses revealed that population size and land use abandonment have the strongest impact on genetic variation and species’ performance. Large and extended populations were most variable. 72 % of overall genetic variability of Dianthus seguieri ssp. glaber was found to be within populations, whereas 28 % remained between populations. Increased vegetation height and coverage, and a high proportion of gramineous species resulting from the lack of land use, reduced genetic variation, effective fruit and seed set. Our study shows that both population size and land use abandonment need to be considered to ensure the long term protection of endangered plant species. Maintaining an open habitat structure and adequate soil nutrient conditions through targeted annual mowing regime, over-storey vegetation trimming and green waste removal and the establishment of vegetation buffer strips will allow this species’ persistence and continuous recruitment.  相似文献   

12.
Habitat fragmentation is one of the most important causes for the decline of plant species. However, plants differing in phylogeny, habitat requirements and biology are likely to respond differently to habitat fragmentation. We ask whether case studies on the effects of habitat fragmentation conducted so far allow generalizations about its effects on the fitness and genetic diversity of populations of endangered plant species. We compared the characteristics of plant species endangered in Germany whose sensitivity to habitat fragmentation had been studied with those of the endangered species that had not been studied. We found strong discrepancies between the two groups with regard to their taxonomy and traits relevant to their sensitivity to habitat fragmentation. Monocots, graminoids, clonal, abiotically pollinated and self compatible species were underrepresented among the studied species, and most study species were from a few habitat types, in particular grasslands. We conclude that our current knowledge of the effects of habitat fragmentation on plant populations is not sufficient to provide widely applicable guidelines for species management. The selection of species studied so far has been biased toward species from certain habitats and species exhibiting traits that probably make them vulnerable to habitat fragmentation. Future studies should include community-wide approaches in different habitats, e.g. re-visitation studies in which the species pool is assessed at different time intervals, and population-biological studies of species from a wide range of habitats, and of different life forms and growth strategies. A more representative picture of the effects of habitat fragmentation would allow a better assessment of threats and more specific recommendations for optimally managing populations of endangered plants.  相似文献   

13.
The Palearctic forest-steppe biome is a narrow vegetation zone between the temperate forest and steppe biomes, which provides important habitats for many endangered species and represents an important hotspot of biodiversity. Although the number of studies on forest–grassland mosaics is increasing, information currently available about the general compositional and structural patterns of Eurasian forest-steppes is scarce. Our study aimed to compare the habitat structure, species composition and diversity patterns of two distant sandy forest-steppes of Eurasia. We compared 72 relevés made in the main habitat components (forest, forest edge and grassland) of sandy forest-steppes in three Hungarian and three Kazakh sites. The size of the plots was 25 m2. Species number, Shannon diversity and species evenness values were calculated for each plot. Fidelity calculations and linear mixed effects models were used for the analyses. We found that the vegetation and diversity patterns of the two forest-steppes are similar and their components play important roles in maintaining landscape-scale diversity. Despite the higher species richness in Hungary, Shannon diversity was higher in Kazakhstan. The deciduous forest edges of both areas had significantly higher species richness than the neighbouring habitats (forests and grasslands); therefore they can be considered local biodiversity hotspots. Due to the special characteristics of this vegetation complex, we emphasize the high conservation value of all landscape components as a coherent system throughout the entire range of the Eurasian forest-steppe biome.  相似文献   

14.
Community structure at local scales is a major factor controlling population and community dynamics of plant species. Dicerandra immaculata Lakela var. immaculata (Lamiaceae) is a critically endangered plant known only from a few locations in scrub habitat in Florida. Using seven sites where populations of D. immaculata were wild, introduced, and/or extirpated, we sought to answer the following questions: (1) how do habitat characteristics at locations supporting wild D. immaculata plants vary from random locations within the same habitat; (2) how do habitat characteristics differ between wild and extirpated populations; and (3) how do habitat characteristics differ between wild and introduced populations? At locations of wild D. immaculata, community structure had fewer woody stems, shorter understory vegetation, lower percent canopy coverage, and lower percent ground cover of detritus than random locations and locations with extirpated D. immaculata. In addition, bare ground decreased at extirpated locations because other plant species expanded their coverage, water saturation of the soil increased, diversity of shrubs decreased, and composition of the overstory changed compared to that of wild locations. Habitat characteristics associated with introduced plants were more similar to characteristics at randomly chosen locations than those with wild plants. However, introduced plants tended to occupy locations that had drier soil, a higher abundance of conspecifics, and a higher proportion of woody understory plants than that of random locations. Overall, gaps in the canopy and at ground level are likely essential for survival and recruitment of D. immaculata.  相似文献   

15.
LauraGough 《Ecography》2006,29(1):44-56
In relatively harsh environments such as arctic tundra, abiotic factors have traditionally been considered the primary determinants of community structure, overwhelming any effects of biotic interactions such as competition. Two common low arctic tundra types that differ in soil properties, moist acidic and moist non-acidic tussock tundra (MAT and MNT, respectively), occur in close proximity in northern Alaska. Several plant species occur in both communities with different relative abundance, while others are restricted to one. This study experimentally examined how neighboring vegetation affects germination, survival, and growth of species in these two communities that differ in soil pH, cation availability, and other characteristics. Germination of sown seeds was greater than background levels suggesting seed limitation may restrict recruitment of these clonal, perennial species. Germination of sown seeds was greater at both sites when both mosses and vascular plants had been removed compared to plots with intact vegetation. However, neighbors had almost no effect on survival and growth of adult transplants. Patterns of germination, survival and growth of several species differed depending on the community of origin and the community of destination of the seeds or transplanted adults. For example, transplants of the sedge Eriophorum vaginatum grew better if they were from MAT, and this species germinated better when sown at MNT. Although of relatively short duration (three growing seasons), this study suggests that biotic interactions may affect local species composition by restricting germination and establishment in these two communities, but have less of an effect on adult plants. Not surprisingly, site-specific abiotic conditions also exhibit control over species occurrence and relative abundance. Without disturbance to clear bare ground for recruitment of new individuals, these populations for the most part must rely on clonal growth to persist.  相似文献   

16.
Rare plant species can be divided into naturally, ‘old rare’ species and anthropogenically, ‘new rare’ species. Many recent studies explored genetic diversity of ‘new rare’ species. Less is, however, known about genetic diversity of ‘old rare’ species. We examined isozyme genetic variability of 20 populations of an ‘old rare’ plant species, Ligularia sibirica (Asteraceae) in the Czech and Slovak Republic. It is a long-lived perennial herb with mixed-mating breeding system, widely distributed from East Asia to European Russia, with few isolated relict populations in the remaining part of Europe.The results showed high genetic diversity within populations (80.8%) and a low level of genetic differentiation (FST = 0.179). Genetic distance between populations correlated significantly with geographic distance. There was also a significant positive correlation between genetic diversity and population size. This is probably caused by destruction of habitats in last centuries and subsequent decrease of population size. Patterns of genetic diversity suggest that the recent distribution is a result of stepwise postglacial migration of the species and subsequent natural fragmentation.We conclude that L. sibirica populations preserve high levels of genetic diversity and are not yet threatened by genetic factors. However, this may change if changes in habitat conditions continue.  相似文献   

17.
Invasive species frequently degrade habitats, disturb ecosystem processes, and can increase the likelihood of extinction of imperiled populations. However, novel or enhanced functions provided by invading species may reduce the impact of processes that limit populations. It is important to recognize how invasive species benefit endangered species to determine overall effects on sensitive ecosystems. For example, since the 1990s, hybrid Spartina (Spartina foliosa × alterniflora) has expanded throughout South San Francisco Bay, USA, supplanting native vegetation and invading mudflats. The endangered California clapper rail (Rallus longirostris obsoletus) uses the tall, dense hybrid Spartina for cover and nesting, but the effects of hybrid Spartina on clapper rail survival was unknown. We estimated survival rates of 108 radio-marked California clapper rails in South San Francisco Bay from January 2007 to March 2010, a period of extensive hybrid Spartina eradication, with Kaplan–Meier product limit estimators. Clapper rail survival patterns were consistent with hybrid Spartina providing increased refuge cover from predators during tidal extremes which flood native vegetation, particularly during the winter when the vegetation senesces. Model averaged annual survival rates within hybrid Spartina dominated marshes before eradication (? = 0.466) were greater than the same marshes posttreatment (? = 0.275) and a marsh dominated by native vegetation (? = 0.272). However, models with and without marsh treatment as explanatory factor for survival rates had nearly equivalent support in the observed data, lending ambiguity as to whether hybrid Spartina facilitated greater survival rates than native marshland. Conservation actions to aid in recovery of this endangered species should recognize the importance of available of high tide refugia, particularly in light of invasive species eradication programs and projections of future sea-level rise.  相似文献   

18.
Recent reviews of rare plant reintroduction success indicate that far fewer studies have been conducted with seeds than whole plants, and of these, less than 10% have established or had long‐term population persistence reported. Because seed reintroductions are relatively less expensive than plant reintroductions, determining ways to increase efficacy of using seeds to establish rare populations has conservation benefits. In laboratory trials, we examined seed germination of an endangered legume, Dalea carthagenensis var. floridana, endemic in South Florida, U.S.A. Laboratory treatments confirmed that seeds are hard seeded, remaining viable for 1,452 days even when moist; nicking, heat, and freezing triggered higher and more rapid germination than controls. Field trials begun in 2009, using pretreated (frozen) and untreated seeds within two habitats (natural and novel) revealed that freezing pretreatment increased germination in both habitats. However, plants matured, reproduced, and established seedlings only in natural habitat, not in novel habitat. By 2012, seed treatment plots in natural pine rockland had significantly greater numbers of reproductive plants and seedlings than controls. In a restoration context, using seed pretreatments to stimulate germination can improve establishment success in suitable habitats. When paired with essential vegetation management and a controlled burn, seed augmentation helped rescue the population from the brink of extinction.  相似文献   

19.
This review considers interactive management of wild and zoo populations as a stratesy to support habitat preservation, help sustain key endangered species, and hasten the evolution of zoos and aquaria as proactive conservation organizations. Interactive management supports key species' subpopulations in an integrated fashion, using their study in nature as a way to understand wildlife habitats, ecological processes and conservation threats. In the face of human increase and habitat destruction, the survival of much wildlife will depend upon the utility of fragments of habitat and the survival of relatively small populations whose habitats are reduced or altered and whose numbers are capped. Under such conditions, interactive wild-captive metapopulation strategies may increase the security of key species.  相似文献   

20.
In a study of natural populations of Senecio integrifolius in southern Sweden (1979–1983) seeds were found to disperse from mid-June to late July and most of them germinated in autumn. No soil seed bank was observed. On a heavily grazed site few seeds were produced but the percentage of estimated germination was high (c. 75%). In two moderately grazed habitats 8–10% of the estimated number of seeds produced in permanent plots germinated. In a lightly grazed habitat many seeds were produced but only a small percentage germinated (1.4%). In field experiments the average germination was 50–53% when newly harvested seeds were sown where the vegetation had been removed, and 20–33% when sown in undisturbed vegetation at a moderately grazed site. Germination was much lower in a lightly grazed habitat (3–12%). Survival of seedlings was much higher in heavily and moderately grazed habitats than in lightly grazed habitats. Mortality tended to be higher during the growing season (mid-April to early November) than during the winter, and increased markedly during a drought period in the summer of 1982. The half-life of plants established in 1980 varied from 39.3 years at the most intensively grazed site to 7.2 at the lightly grazed site. The number of flowering stems varied between years mainly according to weather. Few plants in the permanent plots flowered every year, the flowering being most frequent at heavily grazed sites. It is concluded that heavy grazing by cattle after seed dispersal is the appropriate management for maintaining S. integrifolius in Sweden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号