首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity to generate variation in ploidy and reproductive mode was compared in facultatively apomictic versus sexual maternal plants that coexist in two model populations. The population structure was studied in polyploid hybrid swarms comprised of Hieracium pilosella (usually sexual, less commonly apomictic), H. bauhini (apomictic), and their hybrids (sexual, apomictic, or sterile). Relationships among established biotypes were proposed on the basis of their DNA ploidy level/chromosome number, reproductive mode and morphology. Isozyme phenotypes and chloroplast DNA haplotypes were assayed in the population that was richer in hybrids. The reproductive origin of seed progeny was identified in both sexual and apomictic mothers, using alternative methods: the karyological, morphological and reproductive characters of the cultivated progeny were compared with those of respective mothers, or flow cytometric seed screening was used. In both populations, the progeny of sexual mothers mainly retained a rather narrow range of ploidy level/chromosome number, while the progeny of facultatively apomictic mothers was more variable. The high-polyploid hybrids, which had arisen from the fertilization of unreduced egg cells of apomicts, mainly produced aberrant non-maternal progeny (either sexually and/or via haploid parthenogenesis). Apparently, such versatile reproduction resulted in genomic instability of the recently formed high-polyploid hybrids. While the progeny produced by both true apomictic and sexual mothers mostly maintained the maternal reproductive mode, the progeny of those ‘versatile’ mothers was mainly sexual. Herein, we argue that polyploid facultative apomicts can considerably increase population diversity.  相似文献   

2.
We traced hybridization processes taking place within a mixed population of Pilosella piloselloides subsp. bauhini and P. officinarum by means of a morphometric analysis of plants sampled in the field. Our results show that hybridization is frequent between the two taxa as well as between their two stabilized hybrids (P. brachiata and P. leptophyton). Plants utilizing three different modes of reproduction (sexual, facultatively apomictic and variable) participated in these hybridizations, Pilosella brachiata being the most important player. We identified several trends in progeny morphology, which evidently reflect different reproductive pathways, namely sexuality, apomixis and haploid parthenogenesis, occurring within the population under study. Introgression into sexual P. officinarum is commonplace.  相似文献   

3.
Reproductive variation was studied in the tetraploid Pilosella aurantiaca, hexaploid P. rubra (both species with facultative autonomous apospory) and in their 2n + n hybrids, which were obtained by crossing with a sexual pollen parent (tetraploid P. officinarum). The different DNA content in P. aurantiaca and P. officinarum demonstrated the actual 2n + n origin, both spontaneous from the field and through experimental crosses, of their hexaploid hybrids. The octoploid 2n + n progeny were recovered from an experimental cross of P. rubra and P. officinarum. The reproductive pathways operating in two maternal facultatively apomictic species and in the hybrids were quantified using a flow cytometric analysis of seeds obtained from either open-pollinated or emasculated plants. Whereas both maternal species displayed a high penetrance of apomixis, the level of apomixis among the majority of 2n + n hybrids was much lower and variable. Some of the hexaploid hybrids had a reduced seed set. Compared to the respective maternal parents, the decrease in apomixis due to haploid parthenogenesis and/or n + n mating was evident in almost all unreduced hybrids, irrespective of their field/experimental origin and ploidy. Hence, the reproductive behaviour in the apomictic maternal parent was profoundly different from that of the 2n + n hybrids with a sexual parent in spite of the preservation of the complete maternal genome in the hybrids. The regulatory interactions in hybrid genomes, such as effects of modifiers, heterochrony, and epigenetic control, may be consistent with the different expressivity of apomixis observed under different genetic backgrounds.  相似文献   

4.
Hybridisation is a rare event in facultatively apomictic species. We report the recovery of two hybrids from reciprocal crosses between the facultatively apomictic species Hieracium praealtum and H. caespitosum. Both parents were tetraploid (2n=4x=36). H. caespitosum x H. praealtum (CR6) was a hexaploid (2n=6x=54) and an apomict. The increased ploidy number is evidence of a BIII hybrid origin, having arisen from the fusion of a reduced and an unreduced gamete. In contrast, the hybrid recovered from the reciprocal cross H. praealtum x H. caespitosum (RC4) was a tetraploid and therefore probably arose as a BII hybrid fi-em the fusion of two reduced gametes. Further evidence for this is the expression of sexuality in this plant. As apomixis in Hieracium is thought to be determined by a single dominant locus, a sexual plant is consistent with a model of inheritance where this represents the putative homozygous recessive phenotype. The formation of a sexual plant from the hybridisation of apomicts has potentially significant evolutionary implications. The formation of an interspecific BIII hybrid has not previously been recorded.  相似文献   

5.
Apomixis evolves from a sexual background and usually is linked to polyploidization. Pseudogamous gametophytic apomicts, which require a fertilization to initiate seed development, of various ploidy levels frequently co‐occur with their lower‐ploid sexual ancestors, but the stability of such mixed populations is affected by reproductive interferences mediated by cross‐pollination. Thereby, reproductive success of crosses depends on the difference in ploidy levels of mating partners, that is, on tolerance of deviation from the balanced ratio of maternal versus paternal genomes. Quality of pollen can further affect reproductive success in intercytotype pollinations. Cross‐fertilization, however, can be avoided by selfing which may be induced upon pollination with mixtures of self‐ and cross‐pollen (i.e., mentor effects). We tested for reproductive compatibility of naturally co‐occurring tetraploid sexuals and penta‐ to octoploid apomicts in the rosaceous species Potentilla puberula by means of controlled crosses. We estimated the role of selfing as a crossing barrier and effects of self‐ and cross‐pollen quality as well as maternal: paternal genomic ratios in the endosperm on reproductive success. Cross‐fertilization of sexuals by apomicts was not blocked by selfing, and seed set was reduced in hetero‐ compared to homoploid crosses. Thereby, seed set was negatively related to deviations from balanced parental genomic ratios in the endosperm. In contrast, seed set in the apomictic cytotypes was not reduced in hetero‐ compared to homoploid crosses. Thus, apomictic cytotypes either avoided intercytotype cross‐fertilization through selfing, tolerated intercytotype cross‐fertilizations without negative effects on reproductive success, or even benefitted from higher pollen quality in intercytotype pollinations. Our experiment provides evidence for asymmetric reproductive interference, in favor of the apomicts, with significantly reduced seed set of sexuals in cytologically mixed populations, whereas seed set in apomicts was not affected. Incompleteness of crossing barriers further indicated at least partial losses of a parental genomic endosperm balance requirement.  相似文献   

6.
Knowledge of variation in ploidy levels and reproductive behaviour in natural populations is essential in order to understand the functioning of agamic complexes. The aim of this study was to analyse the ploidy level and mode of reproduction in several wild Paspalum populations. A total of 19 populations representing five different species (P. alcalinum, P. denticulatum, P. lividum, P. nicorae, and P. rufum) were collected. Ploidy level was determined in 1,187 individuals by using flow cytometry. Among these individuals, 2x, 3x, 4x, 5x, 6x, and 7x chromosome constitutions were observed. Diploid sexual cytotypes of P. denticulatum were detected for the first time; this will allow the development of future breeding strategies for this particular species. Flow cytometry seed screen (FCSS) in bulked and single seeds revealed the reproductive diversity of these species, ranging from complete sexuality in diploids and varying levels of facultative apomixis in most tetraploids, to obligate apomixis in pentaploids and hexaploids. A fully sexual tetraploid plant was never detected. Nevertheless, most tetraploid genotypes produced both maternal (by apomixis) and non-maternal (by sexuality) progeny. This residual sexuality is very interesting from an evolutionary point of view, since it would allow the creation of new genotypic combinations in natural populations. In addition, the residual sexuality found in some apomictic tetraploid populations can be used as a source of variability for genetic improvement.  相似文献   

7.
Background and Aims Allopolyploidy and intraspecific heteroploid crosses are associated, in certain groups, with changes in the mating system. The genus Sorbus represents an appropriate model to study the relationships between ploidy and reproductive mode variations. Diploid S. aria and tetraploid apomictic S. austriaca were screened for ploidy and mating system variations within pure and sympatric populations in order to gain insights into their putative causalities.Methods Flow cytometry was used to assess genome size and ploidy level among 380 S. aria s.l. and S. austriaca individuals from Bosnia and Herzegovina, with 303 single-seed flow cytometric seed screenings being performed to identify their mating system. Pollen viability and seed set were also determined.Key Results Flow cytometry confirmed the presence of di-, tri- and tetraploid cytotype mixtures in mixed-ploidy populations of S. aria and S. austriaca. No ploidy variation was detected in single-species populations. Diploid S. aria mother plants always produced sexually originated seeds, whereas tetraploid S. austriaca as well as triploid S. aria were obligate apomicts. Tetraploid S. aria preserved sexuality in a low portion of plants. A tendency towards a balanced 2m : 1p parental genome contribution to the endosperm was shared by diploids and tetraploids, regardless of their sexual or asexual origin. In contrast, most triploids apparently tolerated endosperm imbalance.Conclusions Coexistence of apomictic tetraploids and sexual diploids drives the production of novel polyploid cytotypes with predominantly apomictic reproductive modes. The data suggest that processes governing cytotype diversity and mating system variation in Sorbus from Bosnia and Herzegovina are probably parallel to those in other diversity hotspots of this genus. The results represent a solid contribution to knowledge of the reproduction of Sorbus and will inform future investigations of the molecular and genetic mechanisms involved in triggering and regulating cytotype diversity and alteration of reproductive modes.  相似文献   

8.
Reproductive behaviour and the pathways of gene flow among ploidy levels were studied experimentally inTaraxacum sect.Ruderalia. Diploid, triploid and tetraploid individuals were sampled from mixed diploid — polyploid natural populations. 136 experimental hybridizations between the plants of different ploidy levels were performed. Seeds resulting from these crosses, those obtained from isolated anthodia as well as from open pollinated anthodia (both from cultivated and wild plants) were subjected to the flow-cytometric seed screening (FCSS) to determine ploidy levels in the progeny and to infer breeding behaviour of maternal plants. Three possible pathways of the gene flow were studied: (A) fertilization of sexuals by pollen of apomicts, (B) BIII hybrid formation, (C) facultative apomixis. Diploid maternal plants when experimentally crossed with triploid pollen donors produced diploids and polyploid progeny, while when pollinated with a mixture of the pollen of diploids and triploids or insect pollinated, no polyploids were discovered. It seems that in the mixture with the pollen of diploids, the pollen of triploids is ineffective. Tetraploids produce hybrids much easier with diploid mothers and their role in wild populations requires further study. Triploid mothers, even those with subregular pollen did not show traces of facultative apomixis. BIII hybrids were present in the progeny of both triploids and tetraploids, in tetraploids in quite high percentages (up to 50% of the progeny in some crosses).  相似文献   

9.
 Moving gene(s) responsible for the apomictic trait into crop plants that naturally reproduce through a sexual process would open up new areas in plant breeding and agricultural systems. Kentucky bluegrass (Poa pratensis L.) is one of the most important forage and turf grasses in temperate climates. It reproduces through facultative aposporous parthenogenesis, but the reproductive behaviour ranges naturally from nearly obligate apomixis to complete sexuality. In addition to apomictic reproduction, sexual hybridization may take place. Selfing may also occur, and occasionally reduced egg cells may develop through parthenogenesis generating (poly)haploids. The inheritance of parental genomes was assessed in Kentucky bluegrass progenies by employing RAPD markers in combination with flow cytometry (FCM). Nine progenies from different crosses carried out between completely sexual and highly apomictic genotypes were evaluated in order to probe the reproductive behaviour of the mother plants and to distinguish the different classes of aberrant plants. Not only were maternals and balanced BII hybrids recorded, but so were (poly)triploid BIII hybrids, selfs, and (poly)haploids. The application of these techniques demonstrated that FCM analysis accurately distinguishes the n, 2n, and 3n ploidy levels of progenies, and that RAPD markers unequivocally recognize progenies of apomictic and hybrid origin. The occurrence of aneusomaty was documented in one of the selected sexual genotypes, whose crossed progeny plants manifested two distinct classes of ploidy. The nomenclature BI was adopted to refer to hybrids with a hypodiploid nuclear condition. On the whole, the FCM analysis confirmed most of the RAPD data. The combined evaluation of DNA markers and DNA contents proved to be an efficient screening tool for scoring maternal plants, assessing the genetic origin of aberrant plants, and quantifying the inheritance of parental genomes in Kentucky bluegrass. Hybrid populations from sexual×apomictic matings that segregate for the mode of reproduction represent a valuable basis for attempting to identify molecular markers linked to the apomixis gene(s). Received: 11 November 1996/Accepted: 22 November 1996  相似文献   

10.
Negative reproductive interactions are likely to be strongest between close relatives and may be important in limiting local coexistence. In plants, interspecific pollen flow is common between co‐occurring close relatives and may serve as the key mechanism of reproductive interference. Agamic complexes, systems in which some populations reproduce through asexual seeds (apomixis), while others reproduce sexually, provide an opportunity to examine effects of reproductive interference in limiting coexistence. Apomictic populations experience little or no reproductive interference, because apomictic ovules cannot receive pollen from nearby sexuals. Oppositely, apomicts produce some viable pollen and can exert reproductive interference on sexuals by siring hybrids. In the Crepis agamic complex, sexuals co‐occur less often with other members of the complex, but apomicts appear to freely co‐occur with one another. We identified a mixed population and conducted a crossing experiment between sexual diploid C. atribarba and apomictic polyploid C. barbigera using pollen from sexual diploids and apomictic polyploids. Seed set was high for all treatments, and as predicted, diploid–diploid crosses produced all diploid offspring. Diploid–polyploid crosses, however, produced mainly polyploidy offspring, suggesting that non‐diploid hybrids can be formed when the two taxa meet. Furthermore, a small proportion of seeds produced in open‐pollinated flowers was also polyploid, indicating that polyploid hybrids are produced under natural conditions. Our results provide evidence for asymmetric reproductive interference, with pollen from polyploid apomicts contributing to reduce the recruitment of sexual diploids in subsequent generations. Existing models suggest that these mixed sexual–asexual populations are likely to be transient, eventually leading to eradication of sexual individuals from the population.  相似文献   

11.
A species’ mode of reproduction, sexual or asexual, will affect its ecology and evolution. In many species, asexuality is related to polyploidy. In Taraxacum, apomicts are triploid, and sexuals are diploid. To disentangle the effects of ploidy level and reproductive mode on life‐history traits, we compared established apomictic Taraxacum genotypes with newly synthesized apomictic genotypes, obtained from diploid–triploid crosses. Diploid–triploid crossing is probably the way that most apomictic lineages originate. New genotypes had on average a much lower seed set than established genotypes. Established genotypes differed on average from new genotypes, in particular under shaded conditions: the established genotypes had longer leaves and flowered later. The differences between new and established triploids resembled the differences that have been found between sexual diploids and established apomictic triploids. We conclude that ploidy differences alone are not directly responsible for observed differences between sexual diploid and apomictic triploid dandelions.  相似文献   

12.
Selection within progeny of a facultative apomict,Hieracium rubrum, was studied using flow cytometry of embryos in seeds (a modified method of Flow Cytometric Seed Screen) and seedlings. Flow cytometric screening of particular progeny classes was based on distinct ploidy categories, reflecting the way of their origin. The results of both estimations of progeny composition significantly differed, which makes direct comparison of proportions detected in seeds or seedling stage impossible. The results suggest that progeny originating from reduced egg cells have higher mortality during germination and the early establishment phase than that from unreduced egg cells. Within the progeny of emasculated plants, the proportion of polyhaploid progeny decreased in favor of apomictically derived plants. Within the progeny of plants pollinated byH. pilosella, the proportion of polyhaploid progeny decreased significantly in favor of apomictically derived plants and 2n + n hybrids. It is argued that at least a proportion of the sexually derived progeny of this facultatively apomictic maternal parent has a lower survival rate than apomictically derived progeny.  相似文献   

13.
Buffel grass (Cenchrus ciliaris L. syn. Pennisetum ciliare (L.) Link) is a species that is highly tolerant to drought and is used primarily as forage in drier regions throughout the subtropics and tropics. It reproduces mainly by apomixis and the acquisition of obligate sexual genotypes or facultative apomicts with high levels of sexuality is required for performing crosses and plant improvement. The aim of this study was to obtain sexual genotypes from controlled crosses using obligate apomictic cultivars and a sexual line. Twelve putative hybrid F1 plants were selected morphologically and two of them were identified as sexual genotypes by PCR using specific primers for reproductive mechanism. Cytoembryological analysis showed 65.5 and 71.3% meiotic embryo sacs in these plants and their hybrid nature was corroborated by AFLP. Both highly sexual genotypes could be used as female parents in crosses for obtaining improved cultivars of buffel grass.  相似文献   

14.
Flow cytometric analysis of ten bulked seeds is proposed to quantify particular embryo ploidy classes in Hieracium. The method is recommended 1) for the detection and quantification of residual sexuality in facultative apomicts, which can generate progeny from heteroploid crosses, 2) for the quantitative screening of pollen donors with different ploidy levels, based on the fertilization success of the maternal plant, and 3) for the screening of parents producing a high proportion of polyhaploids.  相似文献   

15.
Some angiosperms reproduce by apomixis, a natural way of cloning through seeds. Apomictic plants bypass both meiosis and egg cell fertilization, producing progeny that are genetic replicas of the mother plant. In this report, we analyze reproductive development in Tripsacum dactyloides, an apomictic relative of maize, and in experimental apomictic hybrids between maize and Tripsacum. We show that apomictic reproduction is characterized by an alteration of developmental timing of both sporogenesis and early embryo development. The absence of female meiosis in apomictic Tripsacum results from an early termination of female meiosis. Similarly, parthenogenetic development of a maternal embryo in apomicts results from precocious induction of early embryogenesis events. We also show that male meiosis in apomicts is characterized by comparable asynchronous expression of developmental stages. Apomixis thus results in an array of possible phenotypes, including wild-type sexual development. Overall, our observations suggest that apomixis in Tripsacum is a heterochronic phenotype; i.e., it relies on a deregulation of the timing of reproductive events, rather than on the alteration of a specific component of the reproductive pathway.  相似文献   

16.
Apomixis, asexual reproduction through seeds, occurs in over 40 plant families. This widespread phenomenon can lead to the fixation of successful genotypes, resulting in a fitness advantage. On the other hand, apomicts are expected to lose their fitness advantage if the environment changes because of their limited evolutionary potential, which is due to low genetic variability and the potential accumulation of deleterious somatic mutations. Nonetheless, some apomicts have been extremely successful, for example certain apomictic accessions of Hieracium pilosella L. from New Zealand, where the plant is invasive. Here, we investigate whether the success of these apomictic accessions could be due to a fitness advantage by comparing the vegetative competitiveness of apomictic H. pilosella from New Zealand with sexual accessions of H. pilosella from Europe. Sexual and apomictic plants were grown either (A) alone (no competition), (B) in competition with the other type (intra-specific competition), (C) in competition with the grass Bromus erectus (inter-specific competition), and (D) in competition with the other type and the grass B. erectus (intra- and inter-specific competition). To distinguish effects of apomixis and the region of origin, different H. pilosella lineages were compared. Furthermore, experiments were carried out to investigate effects of the ploidy level. We show that sexual plants are better inter-specific competitors than apomicts in terms of vegetative reproduction (number of stolons) and vegetative spread (stolon length), while apomicts do better than sexuals in intra-specific competition. The magnitude of the effect was in some cases dependent on the ploidy levels of the plants. Furthermore, apomicts always produced more stolons than sexuals, suggesting potential displacement of sexuals by apomicts where they co-occur.  相似文献   

17.
Sexual and apomictic development in Hieracium   总被引:2,自引:2,他引:0  
 Most members of the genus Hieracium are apomictic and set seed without fertilization, but sexual forms also exist. A cytological study was conducted on an apomictic accession of H. aurantiacum (A3.4) and also H. piloselloides (D3) to precisely define the cellular basis for apomixis. The apomictic events were compared with the sexual events in a self-incompatible isolate of H. pilosella (P4). All plants were maintained as vegetatively propagated lines each derived from a single plant. Sexual P4 exhibited characteristic events of polygonum-type embryo sac formation, showed no latent apomitic tendencies, and depended upon fertilization to set seed. In contrast, D3 and A3.4 were autonomous aposporous apomicts, forming both embryo and endosperm spontaneously inside an unreduced embryo sac. The two apomicts exhibited distinct mechanisms, but variation was also observed within each apomictic line. Seeds from apomicts often contained more than one embryo. A degree of developmental instability was also observed amongst germinated seedlings and included variation in meristem and cotyledon number, altered phyllotaxis, callus formation, and seedling fusion. In most cases abnormal seedlings developed into normal plants. Such phenomena were not observed following germination of hybrid seeds derived from crosses between sexual P4 and the apomictic plants. The three plants can now be used in inheritance studies and also to investigate the molecular mechanisms controlling apomixis. Received: 11 February 1998 / Revision accepted: 23 July 1998  相似文献   

18.
Ferns reproduce through small and usually haploid spores. The general paradigm states that whereas species produce good shaped spores, hybrids are sterile and form aborted spores. Apomictic fern species represent an unusual case, and it is believed that they produce an unbalanced spore spectrum. Until now, no comprehensive comparison of sexual and apomictic taxa using extensive spore fitness data has been published. Based on a representative data set of 109 plants from 23 fern taxa, we accomplished the first robust analysis of spore fitness using spore abortion index (SAI), the ratio of aborted to all examined spores. One thousand spores were analyzed for each plant. Focusing mainly on two major European fern taxa (Asplenium, Dryopteris), we compared this trait for different fern reproductive types (sexual/apomicts/hybrids) and ploidy levels (diploid versus polyploid). Our results confirmed the general assumption that shows higher SAI for apomictic taxa (18%) when compared to sexual taxa (3%). Furthermore, hybrids are characterized by having almost all spores aborted (99.8%) with the notable exception of pentaploid Dryopteris × critica (93.1%), the hybrid between sexual and apomictic taxa. We found no significant difference in SAI between sexual taxa of various ploidy levels or between sexual taxa of genera Dryopteris and Asplenium. Additionally, we carried out an optimization of the SAI method, outlying important guidelines for the use of this method in the future.  相似文献   

19.
The cytogenetic peculiarities of the genesis of apical meristem cells in apomicts were analyzed using some Asteraceae species as an example. It has been revealed that the frequency of aneu- and mixoploids is so high among the plants of these species (up to 30–60% of all plants studied or their progeny) that there is every reason to say that their occurrence in apomicts is regular rather than spontaneous. It has been demonstrated that microgametophyte in aposporous facultative apomict Pilosella officinarum is a relatively stable element of the seed reproduction system in terms of the ploidy level.  相似文献   

20.
Bahiagrass (Paspalum notatum Flüggé) is the predominant forage grass in the southeastern US. The commercially important bahiagrass cultivar ‘Argentine’ is preferred for genetic transformation over sexual diploid cytotypes, since it produces uniform seed progeny through apomixis. Pseudogamous apomictic seed production in Argentine bahiagrass may contribute to transgene confinement. It is characterized by embryo development which is independent of fertilization of the egg cell, but requires fertilization with compatible pollen to produce the endosperm. Pollen-mediated gene transfer from transgenic, glufosinate-resistant apomictic bahiagrass as pollen donor at close proximity (0.5–3.5 m) with non-transgenic sexual or apomictic bahiagrass cultivars as pollen receptors was evaluated under field conditions. Hybridization frequency was evaluated by glufosinate herbicide resistance in >23,300 seedlings derived from open-pollinated (OP) pollen receptor plants. Average gene transfer between transgenic apomictic, tetraploid and sexual diploid bahiagrass was 0.03%. Herbicide-resistant hybrids confirmed by immuno-chromatographic detection of the PAT protein displayed a single copy bar gene identical to the pollen parent. Hybrids resulting from diploid pollen receptors were confirmed as triploids or aneu-triploids with significantly reduced vigor and seed set as compared to the parents. Transmission of transgenes to sexual bahiagrass is severely restricted by the ploidy difference between tetraploid apomicts and diploid sexual bahiagrass. Average gene transfer between transgenic apomictic tetraploid and non-transgenic, apomictic tetraploid bahiagrass was 0.17%, confirming a very low frequency of amphimixis in apomictic bahiagrass cultivars. While not providing complete transgene containment, gene transfer between transgenic apomictic and non-transgenic bahiagrass occurs at a much lower frequency than reported for other cross-pollinating or facultative apomictic grasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号