共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification and DNA sequence of the mobilization region of the 5-nitroimidazole resistance plasmid pIP421 from Bacteroides fragilis. 总被引:1,自引:0,他引:1
下载免费PDF全文

The nucleotide sequence of the DNA mobilization region of the 5-nitroimidazole resistance plasmid pIP421, from strain BF-F239 of Bacteroides fragilis, was determined. It contains a putative origin of transfer (oriT) including three sets of inverted repeats and two sequences reminiscent of specific integration host factor binding sites. The product of the mobilization gene mob421 (42.2 kDa) is a member of the Bacteroides mobilization protein family, which includes the MobA of pBI143, NBUs, and Tn4555. Sequence similarity suggests that it has both oriT binding and nicking activities. The transfer frequency of pIP421 in a B. fragilis donor strain possessing a Tc(r) or Tc(r) Em(r)-like conjugative transposon was significantly enhanced by tetracycline. Moreover, the mobilization region of pIP421 confers the ability to be mobilized from Escherichia coli by an IncP plasmid. 相似文献
2.
3.
Bacteroides fragilis synthesizes a DNA invertase affecting both a local and a distant region
下载免费PDF全文

Roche-Hakansson H Chatzidaki-Livanis M Coyne MJ Comstock LE 《Journal of bacteriology》2007,189(5):2119-2124
The activity of a fourth conserved tyrosine site-specific recombinase (Tsr) of Bacteroides fragilis was characterized. Its gene, tsr19, is adjacent to mpi, encoding the global DNA invertase regulating capsular polysaccharide biosynthesis. Unlike the other described Tsrs of B. fragilis, Tsr19 brings about inversion of two DNA regions, one local and one located distantly. 相似文献
4.
Complete nucleotide sequence of insertion element IS4351 from Bacteroides fragilis. 总被引:4,自引:7,他引:4
下载免费PDF全文

The nucleotide sequence and genetic analyses of one of the directly repeated sequences flanking the macrolide-lincosamide-streptogramin B drug resistance determinant, ermF, from the Bacteroides fragilis R plasmid, pBF4, suggested that this region is an insertion sequence (IS) element. This 1,155-base-pair element contained partially matched (20 of 25 base pairs) terminal-inverted repeats, overlapping, anti-parallel open reading frames, and nine promoterlike sequences, including three that were oriented outward. Analysis of this sequence revealed no significant nucleotide homology to 13 other known IS elements. Inasmuch as Southern blot hybridization analysis detected homologous sequences in chromosomal DNA and its G+C content (42 mol%) was similar to that of B. fragilis, the data suggested that this element is of Bacteroides origin. Transposition promoted by this element was demonstrated in recA E. coli. Recombinants were recovered by selecting for the activation of a promoterless chloramphenicol resistance gene on the plasmid pDH5110 and were characterized by restriction endonuclease mapping and Southern blot hybridization. We propose that this IS element be designated IS4351. 相似文献
5.
Edson R. Rocha Simon C. Andrews Jeffrey N. Keen Jeremy H. Brock 《FEMS microbiology letters》1992,95(2-3):207-212
A ferritin was isolated from the obligate anaerobe Bacteroides fragilis. Estimated molecular masses were 400 kDa for the holomer and 16.7 kDa for the subunits. A 30-residue N-terminal amino acid sequence was determined and found to resemble the sequences of other ferritins (human H-chain ferritin, 43% identity; Escherichia coli gen-165 product, 37% identity) and to a lesser degree, bacterioferritins (E. coli bacterioferritin, 20% identity). The protein stained positively for iron, and incorporated 59Fe when B. fragilis was grown in the presence of [59Fe]citrate. However, the isolated protein contained only about three iron atoms per molecule, and contained no detectable haem. This represents the first isolation of a ferritin protein from bacteria. It may alleviate iron toxicity in the presence of oxygen. 相似文献
6.
Characterization of proteases formed by Bacteroides fragilis 总被引:5,自引:0,他引:5
Bacteroides fragilis NCDO 2217 produced three major proteases, P1, P2 and P3 of estimated molecular masses 73, 52 and 34 kDa respectively. Protease P1 weakly hydrolysed azocasein but strongly hydrolysed valyl-alanine p-nitroanilide (VAPNA), glycyl-proline p-nitroanilide (GPRPNA), and to a lesser extent leucine p-nitroanilide (LPNA), indicating it to be an exopeptidase. Proteases P2 and P3 hydrolysed only azocasein and LPNA. The high protease:arylamidase ratios of these enzymes indicated that they were probably endopeptidases. Experiments with protease inhibitors suggested that P1 and P2 had characteristics of serine and metalloproteases respectively and that P3 was a cysteine protease. The proteolytic activity of whole cells was stimulated by divalent metal ions such as Mn2+, Ca2+ and Mg2+, but was strongly inhibited (about 95%) by Cu2+ and Zn2+. The temperature optimum for protein hydrolysis was 43 degrees C. Proteolysis was temperature sensitive, however (90% reduction at 60 degrees C) and was maximal at alkaline pH, with two broad peaks at pH 7.9 and pH 8.8. Cell fractionation showed that P1 was located intracellularly and in the periplasm, whereas P2 and P3 were largely associated with the outer membrane. Release of the membrane-bound proteases by treatment with 1 M-NaCl suggested that ionic interactions were involved in the association of these enzymes with the membranes. 相似文献
7.
8.
Characterization of the mobilization region of a Bacteroides insertion element (NBU1) that is excised and transferred by Bacteroides conjugative transposons. 总被引:1,自引:8,他引:1
下载免费PDF全文

Many Bacteroides clinical isolates carry large conjugative transposons that, in addition to transferring themselves, excise, circularize, and transfer smaller, unlinked chromosomal DNA segments called NBUs (nonreplicating Bacteroides units). We report the localization and DNA sequence of a region of one of the NBUs, NBU1, that was necessary and sufficient for mobilization by Bacteroides conjugative transposons and by IncP plasmids. The fact that the mobilization region was internal to NBU1 indicates that the circular form of NBU1 is the form that is mobilized. The NBU1 mobilization region contained a single large (1.4-kbp) open reading frame (ORF1), which was designated mob. The oriT was located within a 220-bp region upstream of mob. The deduced amino acid sequence of the mob product had no significant similarity to those of mobilization proteins of well-characterized Escherichia coli group plasmids such as RK2 or of either of the two mobilization proteins of Bacteroides plasmid pBFTM10. There was, however, a high level of similarity between the deduced amino acid sequence of the mob product and that of the product of a Bacteroides vulgatus cryptic open reading frame closely linked to a cefoxitin resistance gene (cfxA). 相似文献
9.
Isolation and Characterization of BTF-37: Chromosomal DNA Captured from Bacteroides fragilis That Confers Self-Transferability and Expresses a Pilus-Like Structure in Bacteroides spp. and Escherichia coli
下载免费PDF全文

We report the isolation and preliminary characterization of BTF-37, a new 52-kb transfer factor isolated from Bacteroides fragilis clinical isolate LV23. BTF-37 was obtained by the capture of new DNA in the nonmobilizable Bacteroides-Escherichia coli shuttle vector pGAT400DeltaBglII using a functional assay. BTF-37 is self-transferable within and from Bacteroides and also self-transfers in E. coli. Partial DNA sequencing, colony hybridization, and PCR revealed the presence of Tet element-specific sequences in BTF-37. In addition, Tn5520, a small mobilizable transposon that we described previously (G. Vedantam, T. J. Novicki, and D. W. Hecht, J. Bacteriol. 181:2564-2571, 1999), was also coisolated within BTF-37. Scanning and transmission electron microscopy of Tet element-containing Bacteroides spp. and BTF-37-harboring Bacteroides and E. coli strains revealed the presence of pilus-like cell surface structures. These structures were visualized in Bacteroides spp. only when BTF-37 and Tet element strains were induced with subinhibitory concentrations of tetracycline and resembled those encoded by E. coli broad-host-range plasmids. We conclude that we have captured a new, self-transferable transfer factor from B. fragilis LV23 and that this new factor encodes a tetracycline-inducible Bacteroides sp. conjugation apparatus. 相似文献
10.
Sijbrandi R Den Blaauwen T Tame JR Oudega B Luirink J Otto BR 《Microbes and infection / Institut Pasteur》2005,7(1):9-18
This study describes the identification, cloning and molecular characterization of the alpha-enolase P46 of Bacteroides fragilis. The gram-negative anaerobic bacterium B. fragilis is a member of the commensal flora of the human intestine but is also frequently found in severe intra-abdominal infections. Several virulence factors have been described that may be involved in the development of these infections. Many of these virulence factors are upregulated under conditions of iron- or heme-starvation. We found a major protein of 46 kDa (P46) that is upregulated under iron-depleted conditions. This protein was identified as an alpha-enolase. Alpha-enolases in several gram-positive bacteria and eukaryotic cells are located at the cell surface and function as plasminogen-binding proteins. Localization studies demonstrated that P46 is mainly located in the cytoplasm and partly associated with the inner membrane (IM). Under iron-restricted conditions, however, P46 is localized primarily in the IM fraction. Plasminogen-binding to B. fragilis cells did occur but was not P46 dependent. A 60-kDa protein was identified as a putative plasminogen-binding protein in B. fragilis. 相似文献
11.
A high-molecular-weight (250 000) bile salt hydrolase (cholylglycine hydrolase, EC 3.5.-.-) was isolated and purified 128-fold from the "spheroplast lysate" fraction prepared from Bacteroids fragilis subsp. fragilis ATCC 25285. The intact enzyme had a molecular weight of approx. 250 000 as determined by gel infiltration chromatography. One major protein band, corresponding to a molecular weight of 32 500, was observed on 7% sodium dodecyl sulfate polyacrylamide gel electrophoresis of pooled fractions from DEAE-cellulose column chromatography (128-fold purified). The pH optimum for the 64-fold purified enzyme isolated from Bio-Gel A 1.5 M chromatography was 4.2 and bile salt hydrolase activity measured in intact cell suspensions had a pH optimum of 4.5. Substrate specificity studies indicated that taurine and glycine conjugates of cholic acid, chenodeoxycholic acid and deoxycholic acid were readily hydrolyzed; however, lithocholic acid conjugates were not hydrolyzed. Substrate saturation kinetics were biphasic with an intermediate plateau (0.2--0.3 mM) and a complete loss of enzymatic activity was observed at high concentration for certain substrates. The presence or absence of 7-alpha-hydroxysteroid dehydrogenase was absolutely correlated with that of bile salt hydrolase activity in six to ten strains and subspecies of B. fragilis. 相似文献
12.
Polyethylene glycol-facilitated transformation of Bacteroides fragilis with plasmid DNA. 总被引:2,自引:5,他引:2
下载免费PDF全文

C J Smith 《Journal of bacteriology》1985,164(1):466-469
A method for the transformation of Bacteroides fragilis with plasmid DNA was developed by using the clindamycin resistance plasmid pBFTM10 as the source of transforming DNA. The method was technically simple to perform and resulted in an average of 4.2 X 10(3) transformants per microgram of pBFTM10 added. A method for the preparation of frozen competent cells is also described. 相似文献
13.
Studies of three reference strains of Bacteroides fragilis subsp. fragilis showed that they grow well in a minimal defined medium containing glucose, hemin, vitamin B12, minerals, bicarbonate-carbon dioxide buffer, NH4Cl, and sulfide. The vitamin B12 requirement of 0.1 ng/ml was replaced with 7.5 μg of methionine. Cysteine or sulfide was an excellent source of sulfur, thioglycolate was a poor source, and thiosulfate, methionine, β-mercaptoethanol, dithiothreitol, sulfate, or sulfite did not serve as sole sources of sulfur. Neither single amino acids, nitrate, urea, nor a complex mixture of L-amino acids or peptides effectively replaced ammonia as the nitrogen source. Comparative studies with a few strains of other subspecies of B. fragilis including B. fragilis subsp. vulgatus, B. fragilis subsp. thetaiotaomicron, and B. fragilis subsp. distasonis indicate that they exhibit similar growth responses in the minimal medium. A single strain of B. fragilis subsp. ovatus required other materials. The results indicate the great biosynthetic ability of these organisms and suggest that, in their ecological niche within the large intestine, many nutrients such as amino acids are in very low supply, whereas materials such as ammonia, heme, and vitamin B12, or related compounds, must be available during much of the time. 相似文献
14.
The catalytic mechanism of metallo-beta-lactamase from Bacteroides fragilis, a dinuclear Zn(II)-containing enzyme responsible for multiple antibiotic resistance, has been investigated by using nitrocefin as a substrate. Rapid-scanning and single-wavelength stopped-flow studies revealed the accumulation during turnover of an enzyme-bound intermediate with intense absorbance at 665 nm (epsilon = 30 000 M(-1) cm(-1)). The proposed minimum kinetic mechanism for the B. fragilis metallo-beta-lactamase-catalyzed nitrocefin hydrolysis [Wang, Z., and Benkovic, S. J. (1998) J. Biol. Chem. 273, 22402-22408] was confirmed, and more accurate kinetic parameters were obtained from computer simulations and fitting. The intermediate was shown to be a novel anionic species bound to the enzyme through a Zn-acyl linkage and contains a negatively charged nitrogen leaving group. This is the first time such an intermediate was observed in the catalytic cycle of a Zn(II)-containing hydrolase and is evidence for a unique beta-lactam hydrolysis mechanism in which the amine can leave as an anion; prior protonation is not required. The electrostatic interaction between the negatively charged intermediate and the positively charged dinuclear Zn(II) center of the enzyme is important for stabilization of the intermediate. The catalytic reaction was accelerated in the presence of exogenous nucleophiles or anions, and neither the product nor the enzyme was modified during turnover, indicating that a Zn-bound hydroxide (rather than Asp-103) is the active site nucleophile. On the basis of all the information on hand, a catalytic mechanism of the B. fragilis metallo-beta-lactamase is proposed. 相似文献
15.
A sialidase from Bacteroides fragilis SBT3182 was purified 2,240-fold to apparent homogeneity by ammonium sulfate precipitation and sequential chromatographies on DEAE-Toyopearl 650M, Hydroxyapatite, MonoS and Superose6 columns. The N-terminal amino acid sequence of this sialidase, Ala-Asp-X-Ile-Phe-Val-Arg-Glu-Thr-Arg-Ile-Pro-, was determined. Substrate specificity of this enzyme using a variety of sialoglycoconjugates showed a 1.5- and 2.2-fold preference for sialyl alpha 2-8 linkages when compared with alpha 2-3 and alpha 2-6 bound sialic acids, respectively. The native sialidase had a molecular weight of 165kDa, as determined by Superose6 gel filtration chromatography and consisted of three subunits each of 55kDa by SDS-polyacrylamide gel electrophoresis. This enzyme had optimal activity at pH6.1 with colominic acid as substrate. 相似文献
16.
17.
Isolation and characterization of an endo-beta-galactosidase from Bacteroides fragilis. 总被引:5,自引:3,他引:5
下载免费PDF全文

Six strains of Bacteroides fragilis were examined and all found to produce endo-beta-galactosidase, an enzyme that hydrolyses internal beta-galactosidic linkages of oligosaccharides belonging to the poly-N-acetyl-lactosamine series, with the common structure GlcNAc beta 1 leads to 3Gal beta 1 leads to 4GlcNAc/Glc. The enzyme was produced without the addition of an inducer such as keratan sulphate. It was purified 7000-fold from the culture supernatant and obtained with a yield 4-10-fold greater than from sources described previously. The specificity of the enzyme towards bovine corneal keratan sulphate, milk oligosaccharides and the glycolipids lacto-N-neotetraosylceramide and lacto-N-tetraosylceramide closely resembled that of the endo-beta-galactosidase isolated from Escherichia freundii. A novel observation was that both enzymes hydrolysed the type 2 sequence, Gal beta 1 leads to 4GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc, at about twice the rate of the type 1 isomer, Gal beta 1 leads to 3GlcNAc beta 1 leads to 3Gal beta 1 leads to 4Glc. Because of the ease of purification of the enzyme and high yield in the absence of contaminating glycosidases and proteinases, Bacteroides fragilis is a valuable source of endo-beta-galactosidase for the structural analysis of carbohydrate chains. 相似文献
18.
Shawn A Hawkins Alice C Layton Steven Ripp Dan Williams Gary S Sayler 《Virology journal》2008,5(1):1-5
Background
Co-circulation of multiple dengue virus serotypes has been reported from many parts of the world including India, however concurrent infection with more than one serotype of dengue viruses in the same individual is rarely documented. An outbreak of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) occurred in and around Delhi in 2006. This is the first report from India with high percentage of concurrent infections with different dengue virus serotypes circulating during one outbreak.Results
Acute phase sera from patients were tested for the presence of dengue virus RNA by RT-PCR assay. Of the 69 samples tested for dengue virus RNA, 48 (69.5%) were found to be positive. All the four dengue virus serotypes were found to be co-circulating in this outbreak with DENV-3 being the predominant serotype. In addition in 9 of 48 (19%) dengue virus positive samples, concurrent infection with more than one dengue virus serotype were identified.Conclusion
This is the first report in which concurrent infections with different dengue virus serotypes is being reported during an outbreak from India. Delhi is now truly hyperendemic for dengue. 相似文献19.
Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis. 总被引:1,自引:2,他引:1
下载免费PDF全文

A single catalase enzyme was produced by the anaerobic bacterium Bacteroides fragilis when cultures at late log phase were shifted to aerobic conditions. In anaerobic conditions, catalase activity was detected in stationary-phase cultures, indicating that not only oxygen exposure but also starvation may affect the production of this antioxidant enzyme. The purified enzyme showed a peroxidatic activity when pyrogallol was used as an electron donor. It is a hemoprotein containing one heme molecule per holomer and has an estimated molecular weight of 124,000 to 130,000. The catalase gene was cloned by screening a B. fragilis library for complementation of catalase activity in an Escherichia coli catalase mutant (katE katG) strain. The cloned gene, designated katB, encoded a catalase enzyme with electrophoretic mobility identical to that of the purified protein from the B. fragilis parental strain. The nucleotide sequence of katB revealed a 1,461-bp open reading frame for a protein with 486 amino acids and a predicted molecular weight of 55,905. This result was very close to the 60,000 Da determined by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified catalase and indicates that the native enzyme is composed of two identical subunits. The N-terminal amino acid sequence of the purified catalase obtained by Edman degradation confirmed that it is a product of katB. The amino acid sequence of KatB showed high similarity to Haemophilus influenzae HktE (71.6% identity, 66% nucleotide identity), as well as to gram-positive bacterial and mammalian catalases. No similarities to bacterial catalase-peroxidase-type enzymes were found. The active-site residues, proximal and distal hemebinding ligands, and NADPH-binding residues of the bovine liver catalase-type enzyme were highly conserved in B. fragilis KatB. 相似文献
20.
J G Lindner J H Marcelis N M de Vos J A Hoogkamp-Korstanje 《Journal of general microbiology》1979,111(1):93-99
Formation of iodophilic polysaccharide (IPS) from glucose was demonstrated in 27 strains of Bacteroides fragilis. Synthesis was dependent on the glucose concentration of the medium, the pH and the growth phase. When glucose was in short supply the cellular polysaccharide was degraded rapidly at pH 4.5 to 6.5 and fatty acids accumulated in the medium. Storage of IPS was not responsible for the low carbon recoveries observed in fermentation balance studies. In electron micrographs of thin sections, the IPS was observed as cytoplasmic granules dispersed throughout the whole cell. After extraction and purification the IPS was characterized as a glycogen. 相似文献