首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many Bacteroides transfer factors are mobilizable in Escherichia coli when coresident with the IncP conjugative plasmid RP4, but not F. To begin characterization and potential interaction between Bacteroides mobilizable transfer factors and the RP4 mating channel, both mutants and deletions of the DNA processing (dtr), mating pair formation (mpf) and traG coupling genes of RP4 were tested for mobilization of Bacteroides plasmid pLV22a. All 10 mpf but none of the four dtr genes were required for mobilization of pLV22a. The RP4 TraG coupling protein (CP) was also required for mobilization of pLV22a, but could be substituted by a C-terminal deletion mutant of the F TraD CP. Potential interactions of the TraG CP with relaxase protein(s) and transfer DNA of both RP4 and pLV22a were assessed. Overlay assays identified productive interactions between TraG and the relaxase proteins of both MbpB and TraI from pLV22a and RP4 respectively. The Agrobacterium Transfer-ImmunoPrecipitation (TrIP) assay also identified an interaction between TraG and both RP4 and pLV22a transfer DNA. Thus, mobilization of the Bacteroides pLV22a in E. coli utilizes both RP4 Mpf and CP functions including an interaction between the relaxosome and the RP4 CP similar to that of cognate RP4 plasmid.  相似文献   

2.
The broad-host-range IncP beta plasmid R751 can mobilize itself from Escherichia coli to Bacteroides spp, but it is not maintained in Bacteroides spp. If R751 carries the Bacteroides transposon Tn4351, it can be integrated into the Bacteroides chromosome. Previously we showed that R751, integrated in the chromosome of Bacteroides uniformis, cannot mobilize itself out of B. uniformis into E. coli or isogenic B. uniformis strains. In this report, we showed that if the Bacteroides conjugative tetracycline resistance element Tcr ERL was coresident with the R751 insertion in B. uniformis, derivatives of R751 were transferred to E. coli, where they were recovered as plasmids. The most common derivatives were R751::Tn4351 and R751::IS4351, but some strains transferred R751 derivatives, containing additional DNA segments ranging in size from 10 to 23 kilobases. These DNA inserts cross-hybridized with chromosomal DNA from B. uniformis which did not carry the Tcr ERL element. Therefore, the inserts appeared to be segments of the wild-type B. uniformis chromosome and were not associated with the Tcr ERL element. The transfer of integrated R751 from B. uniformis was independent of the RecA phenotype of the E. coli recipients and did not appear to be due to transfer of B. uniformis chromosomal DNA, followed by RecA-dependent recombination between homologous IS4351 sequences to form the resultant R751 plasmid derivatives. Consistent with this, no transfer of Tn4351 (associated with the cointegrated R751) from B. uniformis donors to isogenic B. uniformis recipients was detected (< 10(-8)). Our data support the hypothesis that R751 excises from the B. uniformis chromosome by recombination involving flanking Tn4351 or IS4351 sequences and forms nonreplicating circles. The mobilization of these circular forms out of B. uniformis to E.coli is then facilitated by the Tcr ERL element.  相似文献   

3.
Transferable plasmids play an important role in the dissemination of clindamycin-erythromycin resistance in Bacteroides fragilis. We previously described the isolation and properties of pBFTM10, a 14.9-kb ClnR transfer factor from B. fragilis TMP10. We also reported the isolation of a transfer-deficient deletion derivative of pBFTM10 contained in the B. fragilis-Escherichia coli shuttle vector pGAT400. In the present study we used pGAT400 and a similar shuttle vector, pGAT550, to characterize and sequence a region of pBFTM10 required for its transfer from B. fragilis to B. fragilis or E. coli recipients and for its mobilization by the broad-host-range plasmid R751 from E. coli donors to E. coli recipients. Deletion of certain BglII restriction fragments from pBFTM10 resulted in partial or complete loss of transfer ability. Tn1000 insertions into this same region also resulted in altered transfer properties. We used the sites of Tn1000 insertions to determine the DNA sequence of the transfer region. Two potential open reading frames encoding proteins of 23.2 and 33.8 kDa, corresponding to two genes, btgA or btgB, were identified in the sequence. Tn1000 insertions within btgA or btgB or deletion of all or portions of btgA or btgB resulted in either a transfer deficiency or greatly reduced transfer from B. fragilis donors and alterations in mobilization by R751 in E. coli. A potential oriT sequence showing similarity in organization to the oriT regions of the IncP plasmids was also detected. Thus, pBFTM10 encodes and requires at least two proteins necessary for efficient transfer from B. fragilis. These same functions are expressed in E. coli and are required for mobilization by R751.  相似文献   

4.
Horizontal DNA transfer contributes significantly to the dissemination of antibiotic resistance genes in Bacteroides fragilis. To further our understanding of DNA transfer in B. fragilis, we isolated and characterized a new transfer factor, cLV25. cLV25 was isolated from B. fragilis LV25 by its capture on the nonmobilizable Escherichia coli-Bacteroides shuttle vector pGAT400DeltaBglII. Similar to other Bacteroides sp. transfer factors, cLV25 was mobilized in E. coli by the conjugative plasmid R751. Using Tn1000 mutagenesis and deletion analysis of cLV25, two mobilization genes, bmgA and bmgB, were identified, whose predicted proteins have similarity to DNA relaxases and mobilization proteins, respectively. In particular, BmgA and BmgB were homologous to MocA and MocB, respectively, the two mobilization proteins of the B. fragilis mobilizable transposon Tn4399. A cis-acting origin of transfer (oriT) was localized to a 353-bp region that included nearly all of the intergenic region between bmgB and orf22 and overlapped with the 3' end of orf22. This oriT contained a putative nic site sequence but showed no significant similarity to the oriT regions of other transfer factors, including Tn4399. Despite the lack of sequence similarity between the oriTs of cLV25 and Tn4399, a mutation in the cLV25 putative DNA relaxase, bmgA, was partially complemented by Tn4399. In addition to the functional cross-reaction with Tn4399, a second distinguishing feature of cLV25 is that predicted proteins have similarity to proteins encoded not only by Tn4399 but by several Bacteroides sp. transfer factors, including NBU1, NBU2, CTnDOT, Tn4555, and Tn5520.  相似文献   

5.
In previous studies we identified an 18-kb region of the Bacteroides conjugative transposon CTnDOT that was sufficient for mobilization of coresident plasmids and unlinked integrated elements, as well as self-transfer from Bacteroides to Escherichia coli. When this 18-kb region was cloned on a plasmid (pLYL72), the plasmid transferred itself constitutively in the absence of a coresident conjugative transposon. However, when this plasmid was present in a Bacteroides strain containing a coresident conjugative transposon, conjugal transfer was repressed in the absence of tetracycline and enhanced in the presence of tetracycline. These results suggested that a negative and a positive regulator of conjugal transfer were encoded outside the transfer region of the CTnDOT element. In this work, a minimal and inducible transfer system was constructed and used in transfer and Western blot analyses to identify the differentially regulated genes from CTnDOT responsible for the enhancement and repression of pLYL72 conjugal transfer. Both of these regulatory functions have been localized to a region of the CTnDOT element that is essential for CTn excision. In the presence of tetracycline, the regulatory protein RteC activates the expression of a putative topoisomerase gene, exc, which in turn results in an increase in transfer protein expression and a concomitant 100- to 1,000-fold increase in the frequency of pLYL72 transfer. Our results also suggest that since exc alone cannot result in enhancement of transfer, other factors encoded upstream of exc are also required. Conversely, in the absence of tetracycline, a gene located near the 3' end of exc is responsible for the repression of transfer protein expression and also results in a 100- to 1,000-fold decrease in the frequency of pLYL72 transfer.  相似文献   

6.
The gene for resistance to erythromycin and clindamycin, which is carried on the conjugative Bacteroides plasmid, pBF4, has been shown previously to be part of an element (Tn4351) that transposes in Escherichia coli. We have now introduced Tn4351 into Bacteroides uniformis 0061 on the following two suicide vectors: (i) the broad-host-range IncP plasmid R751 (R751::Tn4351) and (ii) pSS-2, a chimeric plasmid which contains 33 kilobases of pBF4 (including Tn4351) cloned into the IncQ plasmid RSF1010 and which is mobilized by R751. When E. coli HB101, carrying either R751::Tn4351 or R751 and pSS-2, was mated with B. uniformis under aerobic conditions, Emr transconjugants were detected at a frequency of 10(-6) to 10(-5) (R751::Tn4351) or 10(-8) to 10(-6) (R751 and pSS-2). In matings involving pSS-2, all Emr transconjugants contained simple insertions of Tn4351 in the chromosome, whereas in matings involving R751::Tn4351, about half of the Emr transconjugants had R751 cointegrated with Tn4351 in the chromosome. Of the Emr transconjugants, 13% were auxotrophs. Bacteroides spp. which had R751 cointegrated with Tn4351 in the chromosome did not transfer R751 or Tn4351 to E. coli HB101 or to isogenic B. uniformis, nor did the intergrated R751 mobilize pE5-2, an E. coli-Bacteroides shuttle vector that contains a transfer origin that is recognized by R751.  相似文献   

7.
We constructed a shuttle vector, pE5-2, which can replicate in both Bacteroides spp. and Escherichia coli. pE5-2 contains a cryptic Bacteroides plasmid (pB8-51), a 3.8-kilobase (kb) EcoRI-D fragment from the 41-kb Bacteroides fragilis plasmid pBF4, and RSF1010, an IncQ E. coli plasmid. pE5-2 was mobilized by R751, an IncP E. coli plasmid, between E. coli strains with a frequency of 5 X 10(-2) to 3.8 X 10(-1) transconjugants per recipient. R751 also mobilized pE5-2 from E. coli donors to Bacteroides uniformis 0061RT and Bacteroides thetaiotaomicron 5482 with a frequency of 0.9 X 10(-6) to 2.5 X 10(-6). The Bacteroides transconjugants contained only pE5-2 and were resistant to clindamycin and erythromycin. Thus, the gene for clindamycin and erythromycin resistance must be located within the Eco RI-D fragment of BF4. A second recombinant plasmid, pSS-2, which contained 33 kb of pBF4 (including the EcoRI-D fragment and contiguous regions) could also be mobilized by R751 between E. coli strains. In some transconjugants, a 5.5-kb (+/- 0.3 kb) segment of the pBF4 portion of pSS2 was inserted into one of several sites on R751. In some other transconjugants this same 5.5-kb segment was integrated into the E. coli chromosome. This segment could transfer a second time onto R751. Transfer was RecA independent. The transferred segment included the entire EcoRI-D fragment, and thus the clindamycin-erythromycin resistance determinant, from pBF4.  相似文献   

8.
Replicons that contain Tn4399, a conjugal mobilizing transposon isolated from Bacteroides fragilis, can be mobilized in the presence of broad-host-range IncP plasmids RP4 and R751 in Escherichia coli to B. fragilis or E. coli recipients (C. G. Murphy and M. H. Malamy, J. Bacteriol. 175:5814-5823, 1993). To identify the initial DNA processing events involved in Tn4399-mediated mobilization in E. coli, plasmid DNA from pCGM328 (a pUC7 vector that contains the mobilization region of Tn4399) was isolated from donor cells following the release of plasmid DNA from the relaxation complex. Site- and strand-specific cleavage within the oriT region of Tn4399 was detected by denaturing gel electrophoresis and Southern hybridization analysis of this DNA in the presence or absence of IncP plasmids. Mutations in either mocA or mocB, two genes which are encoded by Tn4399 and are required for mobilization, significantly decrease the amount of specifically nicked DNA detected. These results suggest roles for the MocA and MocB gene products in specific processing of Tn4399-containing plasmid DNA prior to mobilization. By isolation of the nicked strand and primer extension of this template, we mapped the precise 5' end of the single-stranded cleavage reaction. The nucleotide position of nicTn4399 is adjacent to two sets of inverted repeats, a genetic arrangement similar to those of previously characterized oriT regions. Two site-directed mutations which remove nicTn4399 (oriT delta 1 and oriT delta 2) cannot be mobilized to recipients when they are present in trans along with functional MocA and MocB proteins and an IncP mobilizing plasmid; they are cis-dominant loss-of-function mutations.  相似文献   

9.
The IncP-1beta plasmid pB8, which confers resistance to amoxicillin, spectinomycin, streptomycin, and sulfonamides, was previously isolated from a sewage treatment plant. It was found to possess abnormal conjugative transfer properties, i.e., transfer to Escherichia coli by conjugation or electroporation could not be detected. We showed in this study that plasmid pB8 is transferable to E. coli by conjugation, but only at low frequencies and under specific experimental conditions, a phenomenon that is very unusual for IncP-1 plasmids. Determination of the complete 57,198bp pB8 nucleotide sequence revealed that the backbone of the plasmid consists of a complete set of IncP-1beta-specific genes for replication initiation, conjugative plasmid transfer, stable inheritance, and plasmid control with an organisation identical to that of the prototype IncP-1beta plasmid R751. All of the minor differences in the pB8 backbone sequence compared to that of R751 were also found in other IncP-1beta plasmids known to transfer to and replicate in E. coli. Plasmids pB8 and R751 can be distinguished with respect to their accessory genetic elements. First, the pB8 region downstream of the replication initiation gene trfA contains two transposable elements one of which is similar to Tn5501. The latter transposon encodes a putative post-segregational-killing system and the small multidrug resistance (SMR) protein QacF, mediating quaternary ammonium compound resistance. The accessory genes in this region are not responsible for the poor plasmid transfer to E. coli since a pB8 deletion derivative devoid of all genes in that region showed the same conjugative transfer properties as pB8. A Tn5090/Tn402 derivative carrying a class 1 integron is located between the conjugative transfer modules. The Tn5090/Tn402 integration-sites are exactly identical on pB8 and R751 but in contrast to R751 the pB8 element carries the resistance gene cassettes oxa-2 for amoxicillin resistance and aadA4 for streptomycin/spectinomycin resistance, the integron-specific conserved segment consisting of the genes qacEDelta1, sul1, and orf5, and a truncated tni transposition module (tniAB). Although future work will have to determine the molecular basis for the poor transfer of pB8 to E. coli, our findings demonstrate that the host-range of typical IncP-1 plasmids may be less broad than expected.  相似文献   

10.
A chromosomal copy of the transposon Tn551 and a copy coresident on a gentamicin-resistant conjugative plasmid of Staphylococcus aureus resulted in the mobilization of chromosomal genes during filter mating. Gene mobilization was recA dependent and was not restricted to any specific region of the chromosome. Both essential and nonessential genes were transferred.  相似文献   

11.
S Trinh  A Haggoud    G Reysset 《Journal of bacteriology》1996,178(23):6671-6676
Three small 5-nitroimidazole (5-Ni) resistance plasmids (pIP417, pIP419, and pIP421) from Bacteroides clinical isolates are transferable by a conjugative process during homologous or heterologous matings. The mobilization properties of pIP417 originated from strain BV-17 of Bacteroides vulgatus were studied. The plasmid was successfully introduced by in vitro conjugation into different strains of Bacteroides and Prevotella species and could be transferred back from these various strains to a plasmid-free 5-Ni-sensitive Bacteroides fragilis strain, indicating that in vivo spread of the resistance gene may occur. The transfer of plasmid pIP417 harbored by the Tc(r) strain BF-2 of B. fragilis was stimulated by low concentrations of tetracycline or chlorotetracycline. This suggests a possible role for coresident conjugative transposons in the dissemination of 5-Ni resistance among gram-negative anaerobes. The nucleotide sequence of the 2.1-kb DNA mobilization region was determined. It contains a putative origin of transfer (oriT) in an A+T-rich-region, including three inverted repeats, and two integration host factor binding sites. The two identified mobilization genes (mobA and mobB) are organized in one operon and were both required for efficient transfer. Southern blotting indicated that the mobilization region of plasmid pIP417 is closely related to that of both the erythromycin resistance plasmid pBFTM1O and the 5-Ni resistance plasmid pIP419 but not to that of the 5-Ni resistance plasmid pIP421.  相似文献   

12.
Bacteroides conjugative transposons can act in trans to excise, circularize, and transfer unlinked integrated elements called NBUs (for nonreplicating Bacteroides units). Previously, we localized and sequenced the mobilization region of one NBU, NBU1, and showed that this mobilization region was recognized by the IncP plasmids RP4 and R751, as well as by the Bacteroides conjugative transposons. We report here that the single mobilization protein carried by NBU1 appears to be a bifunctional protein that binds to the oriT region and catalyzes the nicking reaction that initiates the transfer process. We have also localized and sequenced the mobilization region of a second NBU, NBU2. The NBU2 mobilization region was 86 to 90% identical at the DNA sequence to the oriT-mob region of NBU1. The high sequence similarity between NBU1 and NBU2 ended abruptly after the stop codon of the mob gene and about 1 kbp upstream of the oriT region, indicating that the oriT-mob regions of NBU1 and NBU2 may be on some sort of cassette. A region on NBU1 and NBU2 which lies immediately upstream of the oriT region had 66% sequence identity to a region upstream of the oriT region on a mobilizable transposon, Tn4399, an element that had previously appeared to be completely unrelated to the NBUs.  相似文献   

13.
Localization of symbiotic mutations in Rhizobium meliloti   总被引:23,自引:18,他引:5       下载免费PDF全文
A total of 5 Nod- and 57 Fix- symbiotic mutants of Rhizobium meliloti strain 41 have been isolated after either nitrosoguanidine or Tn5 transposition mutagenesis. Chromosomal locations of mutations in 1 Nod- and 11 Fix- derivatives were ascertained by transferring the chromosome (mobilized by plasmid R68.45), in eight fragments, into symbiotically effective recipients and testing the recombinants for symbiotic phenotype. Alternatively, the kanamycin resistance marker of Tn5 was mapped. In five mutants the fix alleles were localized on different chromosomal regions, but six other fix mutations and one nod mutation tested did not map onto the chromosome. It was shown that the chromosome-mobilizing ability (Cma+) of R68.45 was not involved in the mobilization of genes located extrachromosomally. Moreover, Cma- derivatives of R68.45 could mobilize regions of the indigenous plasmid pRme41b but not chromosomal genes. Thus, mobilization of a marker by Cma- R68.45 indicates its extrachromosomal location. With a 32P-labeled DNA fragment carrying Tn5 as a hybridization probe, it was shown that in five extrachromosomally located Tn5-induced fix mutants and one nod mutant Tn5 was localized on plasmid pRme41b. This is in agreement with the genetic mapping data.  相似文献   

14.
The IncHI2 plasmid R478 specifies resistance to potassium tellurite (Te(r)), to some bacteriophages (Phi), and to pore-forming colicins (PacB). The genes encoding the three phenotypes are linked, and an 8.4-kb fragment of R478 DNA encoding them cannot be subcloned unless cocloned with a second section of the plasmid. Subclone pKFW4A contains a 5.9-kb BamHI-EcoRI fragment which caused some toxicity when present in Escherichia coli cells. Bacterial cells containing freshly transformed pKFW4A, examined by light microscopy and electron microscopy, had a filamentous morphology consistent with a block in septation. Insertion of transposon Tn1000 into terZ, -A, -B, and -C genes of pKFW4A resulted in the loss of the filamentation phenotype. Deletion of several regions of the clone confirmed that these latter components are involved in the filamentation phenotype. The region specifying protection from toxicity caused by the larger 8.4-kb fragment (encompassing this cluster and the entire 5.9-kb section of pKFW4A) was sequenced and analyzed by T7 polymerase expression and Tn1000 mutagenesis. Three open reading frames, terW, terY, and terX, were identified in a 2.6-kb region. Two polypeptides with approximate molecular masses of 18 and 28 kDa were expressed in CSRDE3 cells and were consistent with TerW (17.1 kDa; 155 amino acids [aa]) and TerY (26.9 kDa; 248 aa), whereas a protein of 213 aa deduced from terX was not observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The terX gene product shows strong identity with the previously identified TerE, TerD, and TerZ polypeptides, and there is a conserved motif of 13 residues, GDN(R/L)TG(E/A)GDGDDE, within this group of polypeptides. Complementation analysis indicated that terW, located approximately 6.0 kb upstream of terZ, brings about protection of cells from toxic effects of components of the Te(r), Phi, and PacB cluster.  相似文献   

15.
Plasmid pBS221 was physically mapped for restriction endonucleases EcoRI, BamHI, BglII, HindIII. The regions essential for the plasmid existence and participating in replication (oriV trfA*) and mobilization (mob) were cloned. The tet determinant and oriV trfA* regions were localized on the physical map of the plasmid. A DNA sequence homologous to genes of Tn501 mer operon was detected in this plasmid. The studies on homology of plasmids RP4 (IncP alpha), R751 (IncP beta) and pBS221 plasmid suggest that the latter belongs to the IncP beta subgroup.  相似文献   

16.
M Rella  A Mercenier  D Haas 《Gene》1985,33(3):293-303
For insertional mutagenesis of Pseudomonas aeruginosa, a derivative of the kanamycin-resistance (KmR) transposon Tn5 was constructed (Tn5-751) that carried the trimethoprim-resistance (TpR) determinant from plasmid R751 as an additional marker. Double selection for KmR and TpR avoided the isolation of spontaneous aminoglycoside-resistant mutants which occur at high frequencies in P. aeruginosa. As a delivery system for the recombinant transposon, plasmid pME305, a derivative of the broad-host-range plasma RP1, proved effective; pME305 is temperature-sensitive at 43 degrees C for maintenance in Escherichia coli and P. aeruginosa and deleted for IS21 and the KmR and primase genes. In matings with an E. coli donor carrying pME9(= pME305::Tn5-751), transposon insertion mutants of P. aeruginosa PAO were recovered at approx. 5 X 10(-7)/donor at 43 degrees C. Among Tn5-751 insertional mutants 0.9% were auxotrophs. A thr::Tn5-751 mutation near the recA-like locus rec-102 is useful for the construction of recombination-deficient strains. Several arc::Tn5-751 mutants could be isolated that were defective in anaerobic utilization of arginine as an energy source. From three of these mutants the arc gene region was cloned into an E. coli vector plasmid. Since Tn5-751 has a single EcoRI site between the TpR and KmR genes, EcoRI-generated fragments carrying either resistance determinant plus adjacent chromosomal DNA could be selected separately in E. coli. Thus, a restriction map of the arc region was constructed and verified by hybridization experiments. The arc genes were tightly clustered, confirming earlier genetic evidence.  相似文献   

17.
Genetic analysis of Porphyromonas gingivalis, an obligately anaerobic gram-negative bacterium, has been hindered by the apparent lack of naturally occurring bacteriophages, transposable elements, and plasmids. Plasmid R751::*omega 4 has previously been used as a suicide vector to demonstrate transposition of Tn4351 in B. uniformis. The erythromycin resistance gene on Tn4351 functions in Bacteroides and Porphyromonas. Erythromycin-resistant transconjugants were obtained at a mean frequency of 1.6 x 10(-7) from matings between Escherichia coli HB101 containing R751::*omega 4 and P. gingivalis 33277. Southern blot hybridization analysis indicated that about half of the erythromycin-resistant P. gingivalis transconjugants contained simple insertions of Tn4351 and half contained both Tn4351 and R751 sequences. The presence of R751 sequences in some P. gingivalis transconjugants most likely occurred from Tn4351-mediated cointegration of R751, since we were unable to detect autonomous plasmid in these P. gingivalis transconjugants. The P. gingivalis-Tn4351 DNA junction fragments from different transconjugants varied in size. These results are consistent with transposition of Tn4351 and with insertion at several different locations in the P. gingivalis chromosome. Tn4351 may be useful as a mutagen to isolate well-defined mutants of P. gingivalis.  相似文献   

18.
The conjugative transfer (tra) genes of a 52-kilobase (kb) staphylococcal plasmid, pGO1, were localized by deletion analysis and transposon insertional inactivation. All transfer-defective (Tra-) deletions and Tn551 or Tn917 transposon insertions occurred within a 14.5-kb BglII fragment. Deletions and insertions outside this fragment all left the plasmid transfer proficient (Tra+). The tra region was found to be flanked by directly repeated DNA sequences, approximately 900 base pairs in length, at either end. Clones containing the 14.5-kb BglII fragment (pGO200) and subclones from this fragment were constructed in Escherichia coli on shuttle plasmids and introduced into Staphylococcus aureus protoplasts. Protoplasts could not be transformed with pGO200E (pGO200 on the staphylococcal replicon, pE194) or subclones containing DNA at one end of the tra fragment unless pGO1 or specific cloned tra DNA fragments were present in the recipient cell. However, once stabilized by sequences present on a second replicon, each tra fragment could be successfully introduced alone into other plasmid-free S. aureus recipients by conjugative mobilization or transduction. In this manner, two clones containing overlapping fragments comprising the entire 14.5-kb BglII fragment were shown to complement each other. The low-frequency transfer resulted in transconjugants containing one clone intact, deletions of that clone, and recombinants of the two clones. The resulting recombinant plasmid (pGO220), which regenerated the tra region intact on a single replicon, transferred at frequencies comparable to those of pGO1. Thus, all the genes necessary and sufficient for conjugative transfer of pGO1 are contained within a 14.5-kb region of DNA.  相似文献   

19.
Using the broad host-range vector R751 to provide transfer functions, plasmid pVAL-1 and transposon Tn4351 were conjugally mobilized from Escherichia coli into Porphyromonas gingivalis. Transfer frequencies for both elements varied between 10(-6) and 10(-11), depending upon the recipient. The behavior of pVAL-1 and Tn4351 in P. gingivalis was essentially as described previously in Bacteroides spp. These data indicate that plasmid and transposon DNA can be conjugally transferred into P. gingivalis and that these elements can be used to genetically manipulate the organism in examining putative virulence determinants that may participate in the induction or exacerbation of periodontal disease.  相似文献   

20.
Abstract: A 12.4-kb plasmid, pTF-FC2, that was isolated from Thiobacillus ferrooxidans and which is capable of replication in a wide range of Gram-negative bacteria, has been sequenced. The extent of the regions involved in both replication and mobilization have been delineated. The site of initiation of replication ( oriV ) has been localized on a 185-bp fragment and the origin of transfer ( oriT ) on a 138-bp fragment. Three proteins that were essential for replication and four that were essential for mobilization have been identified. The origin of replication was clearly similar to that of the IncQ plasmids although no complementation or incompatibility between pTF-FC2 and the IncQ plasmid, R300B, was detected. There was a clear similarity in the size,location and amino acid sequence of the proteins of the pTF-FC2 mobilization region with those of the TraI region of the IncP plasmids, RP4 and R751.Two inverted repeated sequences which had 37/38-bp and 38/38-bp sequence identity with the Tn 21 transposon were identified. The C-terminal part of a transposase and the N-terminal portion of a resolvase were located between the inverted repeats. These open reading frames are most likely the remnants of a defective transposon. A protein with homology to a mercury- resistance regulator was also present within the transposon-like element although no gene encoding for mercury reductase could be indentified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号