首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kawahara M  Wu Q  Ferguson-Smith AC  Kono T 《FEBS letters》2007,581(27):5178-5184
Recently, we reported that the restored regulation of imprinted gene expression from two regions -H19 differentially methylated region (H19-DMR) and intergenic germline-derived DMR (IG-DMR) - is sufficient for accomplishing full-term development in mice. In the present study, we determined the developmental ability of the bi-maternal embryos (BMEs) containing the non-growing oocyte genome with the IG-DMR deletion (ng(Deltach12)) and fully-grown (fg) oocyte genome. Foetuses derived from ng(Deltach12)/fg BMEs were alive at E19.5 but could not survive further. Comparison with BMEs derived from Igf2+/- ng/fg genomes suggests that bi-allelic H19 expression might be involved in foetal development.  相似文献   

2.
3.
4.
5.
6.
We define ESS (Evolutionary Stable Strategy) conditions for the evolution of genomic imprinting at an X-linked locus. The system analysed is designed for mammalian imprinting in which X-linked genes typically undergo random X-inactivation and lack Y-linked homologues. We consider two models that map cellular gene expression to fitness in females subject to random X-inactivation. In the first model, female fitness is simply a function of the average gene expression across all cells. In the second model, each cell contributes independently to fitness, and female fitness is assessed as the average of these contributions across all cells. In both models, imprinting readily evolves when sexual selection favours different levels of gene expression in the two sexes. Imprinting is beneficial as it improves adaptation in both sexes. There are limits to the improvement in adaptation when sexual selection is strong and favours greater gene expression in males (the heterogametic sex). We also consider the consequences of an active Y-linked homologue on the evolution of imprinting. Our analysis suggests that restrictive conditions apply for the evolution of polymorphic ESSs at an X-linked imprinted loci.  相似文献   

7.
A subset of imprinted genes in the mouse have been reported to show imprinted expression that is restricted to the placenta, a short-lived extra-embryonic organ. Notably, these so-called “placental-specific” imprinted genes are expressed from both parental alleles in embryo and adult tissues. The placenta is an embryonic-derived organ that is closely associated with maternal tissue, and as a consequence, maternal contamination can be mistaken for maternal-specific imprinted expression. The complexity of the placenta, which arises from multiple embryonic lineages, poses additional problems in accurately assessing allele-specific repressive epigenetic modifications in genes that also show lineage-specific silencing in this organ. These problems require that extra evidence be obtained to support the imprinted status of genes whose imprinted expression is restricted to the placenta. We show here that the extra-embryonic visceral yolk sac (VYS), a nutritive membrane surrounding the developing embryo, shows a similar “extra-embryonic–lineage-specific” pattern of imprinted expression. We present an improved enzymatic technique for separating the bilaminar VYS and show that this pattern of imprinted expression is restricted to the endoderm layer. Finally, we show that VYS “extra-embryonic–lineage-specific” imprinted expression is regulated by DNA methylation in a similar manner as shown for genes showing multi-lineage imprinted expression in extra-embryonic, embryonic, and adult tissues. These results show that the VYS is an improved model for studying the epigenetic mechanisms regulating extra-embryonic–lineage-specific imprinted expression.  相似文献   

8.
9.
Genomic imprinting is widely conserved amongst placental mammals. Imprinted expression of IGF2R, however, differs between mice and humans. In mice, Igf2r imprinted expression is seen in all fetal and adult tissues. In humans, adult tissues lack IGF2R imprinted expression, but it is found in fetal tissues and Wilms' tumors where it is polymorphic and only seen in a small proportion of tested samples. Mouse Igf2r imprinted expression is controlled by the Air (Airn) ncRNA whose promoter lies in an intronic maternally-methylated CpG island. The human IGF2R gene carries a homologous intronic maternally-methylated CpG island of unknown function. Here, we use transfection and transgenic studies to show that the human IGF2R intronic CpG island is a ncRNA promoter. We also identify the same ncRNA at the endogenous human locus in 16–40% of Wilms' tumors. Thus, the human IGF2R gene shows evolutionary conservation of key features that control imprinted expression in the mouse.  相似文献   

10.
11.
Chlamydia trachomatis is an obligate intracellular bacterium that exhibits a unique biphasic developmental cycle that can be disrupted by growth in the presence of IFN-γ and β-lactams, giving rise to an abnormal growth state termed persistence. Here we have examined the expression of a family of non-coding RNAs (ncRNAs) that are differentially expressed during the developmental cycle and the induction of persistence and reactivation. ncRNAs were initially identified using an intergenic tiling microarray and were confirmed by northern blotting. ncRNAs were mapped, characterized and compared with the previously described chlamydial ncRNAs. The 5'- and 3'-ends of the ncRNAs were determined using an RNA circularization procedure. Promoter predictions indicated that all ncRNAs were expressed from σ(66) promoters and eight ncRNAs contained non-templated 3'-poly-A or poly-AG additions. Expression of ncRNAs was studied by northern blotting during (i) the normal developmental cycle, (ii) IFN-γ-induced persistence and (iii) carbenicillin-induced persistence. Differential temporal expression during the developmental cycle was seen for all ncRNAs and distinct differences in expression were seen during IFN-γ and carbenicillin-induced persistence and reactivation. A heterologous co-expression system was used to demonstrate that one of the identified ncRNAs regulated the expression of FtsI by inducing degradation of ftsI mRNA.  相似文献   

12.
《Epigenetics》2013,8(1):75-80
Non-coding RNAs and epigenetics are remarkable mechanisms of cellular control. In this review we underline the processes by which non-coding RNAs (ncRNAs), shown to be involved in various diseases, are capable of modifying and being modified by the epigenetic machinery, emphasizing the clinical importance of this network in cancer. Many ncRNAs have been described that play important roles in the establishment and maintenance of the epigenome. However, only a few studies deeply take into account the role of ncRNAs from a clinicopathological standpoint. The wide range of interactions between the non-coding RNome and the epigenome, and the roles of these networks in the pathogenesis, prognosis and early diagnosis of many diseases, present new challenges and opportunities for future studies regarding therapeutic strategies in oncology.  相似文献   

13.
14.
Ribosomal RNA genes originating from one parent are often suppressed in interspecific hybrids. We show that treatments during germination with the cytosine analogue 5-azacytidine stably reactivate the expression of the suppressed rRNA genes of rye origin in the wheat x rye amphiploid, triticale, by preventing methylation of sites in the rye rDNA. When 5-azacytidine is applied to embryos of triticale and wheat x rye F1 hybrids nine, or more, days after fertilization, rye rRNA gene expression is stably reactivated in the resulting seedling. Earlier treatments have no effect on rye rRNA gene expression, indicating that undermethylation of DNA early in embryo development is reversible. After 9 days, the methylation status of rRNA genes in maintained throughout development. Since the change in expression follows a methylation change at particular restriction-enzyme sites, the data establish a clear correlation between gene activity and methylation in plants.  相似文献   

15.
Exposure of female mice to estrogenic substances during the neonatal period induces developmental defects in the reproductive tract such as estrogen-independent persistent proliferation of the vaginal epithelium, which often leads to carcinogenesis in adulthood. In this study, several estrogen-regulated genes have been identified in the neonatal mouse vagina by DNA microarray hybridization analysis. Among the genes up-regulated in the developing vagina by a high dose of estrogen, trefoil factor 1 (TFF1), a mucin-associated gastrointestinal growth factor, showed a unique expression pattern in accordance with the irreversible changes induced by neonatal estrogenization in the vagina. Vaginal expression of TFF1 mRNA was markedly increased by estrogen in neonatal mice but not in adults, and pronouncedly intensified expression of the gastrointestinal gene was observed in the vagina of neonatally estrogenized mice even at adulthood. The specific localization of TFF1 protein in the epithelium of neonatally estrogenized vagina was confirmed by immunohistochemistry. Moreover, without any obvious alteration in the expression of gel-forming mucin genes, the lumen of the neonatally estrogenized vagina became filled with periodic-acid-Schiff-stained mucinous gel, which was possibly caused by the overexpression of TFF1. Thus, estrogen acts directly on the developing vagina in the permanent induction of TFF1 gene expression, and the gene induction does not appear to be related to hypermethylation of the cis-promoter of the TFF1 gene. TFF1 may be a useful marker for developmental estrogenization syndrome of the mouse vagina. This work was supported by a Grant-in-Aid for Encouragement of Young Scientists from the Ministry of Education, Science, Sports, and Culture, Japan, and grants from the University of Tsukuba to M. M.  相似文献   

16.
17.
18.
The insulin-like growth factor 2 (Igf2) gene encodes a potent growth factor that is expressed in multiple tissues during embryonic development. Expression at this locus is mediated by genomic imprinting. In the developing endodermal tissues, imprinting of Igf2 is mediated by the interaction of a set of enhancers downstream of the linked H19 gene with a differentially methylated domain (DMD) that lies approximately 2-4 kb upstream of H19 that has a boundary or insulator function in the hypomethylated state. In the remainder of tissues that express Igf2 and H19, the cis elements that drive their correct expression and imprinting are not well understood. In addition, enhancers driving expression of Igf2 in the choroid plexus and leptomeninges, tissues where the gene is thought not to be imprinted, have not been isolated. Here we show that biallelic (non-imprinted) expression within the choroid plexus is restricted to the epithelium, and we provide evidence that a conserved intergenic region functions as an enhancer for Igf2 both in tissues where the gene is imprinted, and where Igf2 is biallelically expressed. The presence of an enhancer for imprinted tissues in the intergenic region argues for the existence of imprinting controls distinct from the DMD, which may be provided by differential methylation at sites proximal to Igf2.  相似文献   

19.
20.
Non-equivalent expression of alleles at a locus results in genomic imprinting. In this article, a statistical framework for genome-wide scanning and testing of imprinted quantitative trait loci (iQTL) underlying complex traits is developed based on experimental crosses of inbred line species in backcross populations. The joint likelihood function is composed of four component likelihood functions with each of them derived from one of four backcross families. The proposed approach models genomic imprinting effect as a probability measure with which one can test the degree of imprinting. Simulation results show that the model is robust for identifying iQTL with various degree of imprinting ranging from no imprinting, partial imprinting to complete imprinting. Under various simulation scenarios, the proposed model shows consistent parameter estimation with reasonable precision and high power in testing iQTL. When a QTL shows Mendelian effect, the proposed model also outperforms traditional Mendelian model. Extension to incorporate maternal effect is also given. The developed model, built within the maximum likelihood framework and implemented with the EM algorithm, provides a quantitative framework for testing and estimating iQTL involved in the genetic control of complex traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号