首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plankton communities in eight lakes of different trophic status near Yangtze, China were charac‐terized by using denatured gradient gel electrophoresis (DGGE). Various water quality parameters were also measured at each collection site. Following extraction of DNA from plankton communi‐ties, 16S rRNA and 18S rRNA genes were amplified with specific primers for prokaryotes and eu‐karyotes, respectively; DNA profiles were developed by DGGE. The plankton community of each lake had its own distinct DNA profile. The total number of bands identified at 34 sampling stations ranged from 37 to 111. Both prokaryotes and eukaryotes displayed complex fingerprints composed of a large number of bands: 16 to 59 bands were obtained with the prokaryotic primer set; 21 to 52 bands for the eukaryotic primer set. The DGGE‐patterns were analyzed in relation to water quality parameters by canonical correspondence analysis (CCA). Temperature, pH, alkalinity, and the con‐centration of COD, TP and TN were strongly correlated with the DGGE patterns. The parameters that demonstrated a strong correlation to the DGGE fingerprints of the plankton community differed among lakes, suggesting that differences in the DGGE fingerprints were due mainly to lake trophic status. Results of the present study suggest that PCR‐DGGE fingerprinting is an effective and precise method of identifying changes to plankton community composition, and therefore could be a useful ecological tool for monitoring the response of aquatic ecosystems to environmental perturbations. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Wang J  Yang D  Zhang Y  Shen J  van der Gast C  Hahn MW  Wu Q 《PloS one》2011,6(11):e27597
It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns.  相似文献   

3.
The bacterioplankton assemblages of eight maritime Antarctic lakes with a wide range of trophic status and geographic span (six lakes from Hope Bay, Antarctic Peninsula and two from Potter Peninsula, King George Island) were described using denaturing gradient gel electrophoresis and band sequencing during two consecutive austral summers (2003–2004). Analyses of the gels identified a total of 230 bands spread across 57 different positions. Among those bands, 14 were shared between lakes from Hope Bay and Potter Peninsula, 17 were observed only in particular lakes, and 17 were registered both years in the same lake. We successfully reamplified and sequenced 43 bands located in 36 different positions belonging to Bacteroidetes, Actinobacteria, Betaproteobacteria and Cyanobacteria. The closest matches for 63% of the sequenced bands were from Antarctic or from other cold environment clones and sequences already in the databases, suggesting the widespread dominance of microbial communities adapted to cold habitats. The results of the multivariate analyses (Cluster Analysis and CCA) indicated that the nutrient status of the lake influences the bacterioplankton assemblages. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Community structure of sediment bacteria in the Everglades freshwater marsh, fringing mangrove forest, and Florida Bay seagrass meadows were described based on polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) patterns of 16S rRNA gene fragments and by sequencing analysis of DGGE bands. The DGGE patterns were correlated with the environmental variables by means of canonical correspondence analysis. There was no significant trend in the Shannon–Weiner index among the sediment samples along the salinity gradient. However, cluster analysis based on DGGE patterns revealed that the bacterial community structure differed according to sites. Not only were these salinity/vegetation regions distinct but the sediment bacteria communities were consistently different along the gradient from freshwater marsh, mangrove forest, eastern-central Florida Bay, and western Florida Bay. Actinobacteria- and Bacteroidetes/Chlorobi-like DNA sequences were amplified throughout all sampling sites. More Chloroflexi and members of candidate division WS3 were found in freshwater marsh and mangrove forest sites than in seagrass sites. The appearance of candidate division OP8-like DNA sequences in mangrove sites distinguished these communities from those of freshwater marsh. The seagrass sites were characterized by reduced presence of bands belonging to Chloroflexi with increased presence of those bands related to Cyanobacteria, γ-Proteobacteria, Spirochetes, and Planctomycetes. This included the sulfate-reducing bacteria, which are prevalent in marine environments. Clearly, bacterial communities in the sediment were different along the gradient, which can be explained mainly by the differences in salinity and total phosphorus.  相似文献   

5.
In this study, PCR-denaturing gradient gel electrophoresis (DGGE) was applied to analyze the microbial communities in lake sediments from Lake Xuanwu, Lake Mochou in Nanjing and Lake Taihu in Wuxi. Sediment samples from seven locations in three lakes were collected and their genomic DNAs were extracted. The DNA yields of the sediments of Lake Xuanwu and Lake Mochou were high (10 μg/g), while that of sediments in Lake Taihu was relatively low. After DNA purification, the 16S rDNA genes (V3 to V5 region) were amplified and the amplified DNA fragments were separated by parallel DGGE. The DGGE profiles showed that there were five common bands in all the lake sediment samples indicating that there were similarities among the populations of microorganisms in all the lake sediments. The DGGE profiles of Lake Xuanwu and Lake Mochou were similar and about 20 types of microorganisms were identified in the sediment samples of both lakes. These results suggest that the sediment samples of these two city lakes (Xuanwu, Mochou) have similar microbial communities. However, the DGGE profiles of sediment samples in Lake Taihu were significantly different from these two lakes. Furthermore, the DGGE profiles of sediment samples in different locations in Lake Taihu were also different, suggesting that the microbial communities in Lake Taihu are more diversified than those in Lake Xuanwu and Lake Mochou. The differences in microbial diversity may be caused by the different environmental conditions, such as redox potential, pH, and the concentrations of organic matters. Seven major bands of 16S rDNA genes fragments from the DGGE profiles of sediment samples were further re-amplified and sequenced. The results of sequencing analysis indicate that five sequences shared 99%–100% homology with known sequences (Bacillus and Brevibacillus, uncultured bacteria), while the other two sequences shared 93%–96% homology with known sequences (Acinetobacter, and Bacillus). The study shows that the PCR-DGGE technique combined with sequence analysis is a feasible and efficient method for the determination of microbial communities in sediment samples. __________ Translated from Acta Ecologica Sinica, 2006, 26(11): 3610–3616 [译自: 生态学报]  相似文献   

6.
Aims:  To explore the association of microbial community structure with the development of eutrophication in a large shallow freshwater lake, Lake Taihu.
Methods and Results:  The bacterial and archaeal assemblages in sediments of different lake areas were analysed using denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA fragments. The bacterial DGGE profiles showed that eutrophied sites, grass-bottom areas and relatively clean sites with a eutrophic (albeit dredged) site are three respective clusters. Fifty-one dominant bacterial DGGE bands were detected and 92 corresponding clones were sequenced, most of which were affiliated with bacterial phylotypes commonly found in freshwater ecosystems. Actinobacteria were detected in the centre of the lake and not at eutrophied sites whereas the opposite was found with respect to Verrucomicrobiales . Twenty-five dominant archaeal DGGE bands were detected and 31 corresponding clones were sequenced, most of which were affiliated with freshwater archaeal phylotypes.
Conclusions:  The bacterial community structures in the sediments of different areas with similar water quality and situation tend to be similar in Taihu Lake.
Significance and Impact of the Study:  This study may expand our knowledge on the relationship between the overall microbial assemblages and the development of eutrophication in the shallow freshwater lake.  相似文献   

7.
1. In October 2004, plankton samples were collected from six permanent lakes located between 4960 and 5440 m a.s.l. in the Mount Everest region (Nepal) to assess how spatial and local environmental factors affect natural bacterial community composition. Fingerprinting analysis of the bacterial 16S rRNA gene fragment was done by denaturing gradient gel electrophoresis (DGGE).
2. The number of DGGE bands (range: 12–23) was not correlated with lake area or remoteness, but there was a strong negative correlation with the ratio of catchment to lake area ( r  = −0.826, P  <   0.05), suggesting that hydraulic retention time affects the establishment of the bacterial community in these seepage lakes.
3. Most dominant sequences belonged to Betaproteobacteria except in two lakes where members of Bacteroidetes made the largest relative contribution. Up to 81% of the phylotypes had high similarity (>98 to 100%) in partial 16S rRNA gene sequence to those reported from other alpine lakes and glaciers around the world, suggesting the presence of 'cosmopolitan' bacteria.
4. An analysis based on dissimilarity matrices and the Mantel test revealed the existence of dissimilarities in bacterial community composition related to geographical distance over a small spatial scale (<6 km), but determined by local environmental constraints.
5. Our results suggest that several bacterial phylotypes are ubiquitous in the freshwater aquatic realm, but taxon sorting by local environmental constraints is important.  相似文献   

8.
Viruses that infect phytoplankton are an important component of aquatic ecosystems, yet in lakes they remain largely unstudied. In order to investigate viruses (Phycodnaviridae) infecting eukaryotic phytoplankton in lakes and to estimate the number of potential host species, samples were collected from four lakes at the Experimental Lakes Area in Ontario, Canada, during the ice-free period (mid-May to mid-October) of 2004. From each lake, Phycodnaviridae DNA polymerase (pol) gene fragments were amplified using algal-virus-specific primers and separated by denaturing gradient gel electrophoresis; 20 bands were extracted from the gels and sequenced. Phylogenetic analysis indicated that freshwater environmental phycodnavirus sequences belong to distinct phylogenetic groups. An analysis of the genetic distances “within” and “between” monophyletic groups of phycodnavirus isolates indicated that DNA pol sequences that differed by more than 7% at the inferred amino acid level were from viruses that infect different host species. Application of this threshold to phylogenies of environmental sequences indicated that the DNA pol sequences from these lakes came from viruses that infect at least nine different phytoplankton species. A multivariate statistical analysis suggested that potential freshwater hosts included Mallomonas sp., Monoraphidium sp., and Cyclotella sp. This approach should help to unravel the relationships between viruses in the environment and the phytoplankton hosts they infect.  相似文献   

9.
PCR-based denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments was used to identify the cyanobacterial phylotypes in sediments and plankton of saline–alkaline and freshwater lakes of Kenya. The detection of the aminotransferase domain located on modules mcyE and ndaF using specific molecular markers confirmed the presence of potential toxin-producing cyanobacteria. The eight nucleotide sequences obtained from DGGE bands were placed in three divergent cyanobacterial clusters. Five nucleotide sequences were close to members of the genera Anabaenopsis and Umezakia ( Nostocales ), two sequences fell in the cluster with Arthrospira sp. ( Oscillatoriales ) and one sequence was related to Chroococcidiopsis sp. ( Pleurocapsales ). The presence of the latter taxon was demonstrated de novo in the investigated lakes. All nine attained nucleotide sequences of the aminotransferase region belonged to the mcyE module. Five sequences of the aminotransferase domain were included in the cluster having the nucleotide sequence of Anabaena sp. but showed a separate lineage. Other four aminotransferases were placed in the cluster represented by nucleotide sequence of Microcystis aeruginosa . To our knowledge, this is the first report on molecular detection of cyanobacterial phylotypes in sediments of African lakes and aminotransferase domains for cyanotoxin production from sediment samples in general.  相似文献   

10.
A total of 88 bacterial strains were isolated from six Andean lakes situated at altitudes ranging from 3,400 to 4,600 m above sea level: L. Aparejos (4,200 m), L. Negra (4,400 m), L. Verde (4,460 m), L. Azul (4,400 m), L. Vilama (4,600 m), and Salina Grande (3,400 m). Salinity ranged from 0.4 to 117 ppm. General diversity was determined by denaturing gradient gel electrophoresis (DGGE) analysis. From the excised DGGE bands, 182 bacterial sequences of good quality were obtained. Gammaproteobacteria and Cytophaga/Flavobacterium/Bacteroides (CFB) were the most abundant phylogenetic groups with 42% and 18% of identified bands, respectively. The isolated strains were identified by sequence analysis. Isolated bacteria were subjected to five different UV-B exposure times: 0.5, 3, 6, 12, and 24 h. Afterwards, growth of each isolate was monitored and resistance was classified according to the growth pattern. A wide interspecific variation among the 88 isolates was observed. Medium and highly resistant strains accounted for 43.2% and 28.4% of the isolates, respectively, and only 28.4% was sensitive. Resistance to solar radiation was equally distributed among the isolates from the different lakes regardless of the salinity of the lakes and pigmentation of isolates. Of the highly resistant isolates, 44.5% belonged to gammaproteobacteria, 33.3% to betaproteobacteria, 40% to alphaproteobacteria, 50% to CFB, and among gram-positive organisms, 33.3% were HGC and 44.5% were Firmicutes. Most resistant strains belonged to genera like Exiguobaceterium sp., Acinetobacter sp., Bacillus sp., Micrococcus sp., Pseudomonas sp., Sphyngomonas sp., Staphylococcus sp., and Stenotrophomonas sp. The current study provides further evidence that gammaproteobacteria are the most abundant and the most UV-B-resistant phylogenetic group in Andean lakes and that UV resistance in bacteria isolated from these environments do not depend on pigmentation and tolerance to salinity.  相似文献   

11.
Bacterial communities associated with sheaths of Thioploca spp. from two freshwater lakes (Lake Biwa, Japan, and Lake Constance, Germany) and one brackish lake (Lake Ogawara, Japan) were analyzed with denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. The comparison between the DGGE band patterns of bulk sediment and Thioploca filaments of Lake Biwa suggested the presence of specific bacterial communities associated with Thioploca sheaths. As members of sheath-associated communities, bacteria belonging to Bacteroidetes were detected from the samples of both freshwater lakes. A DGGE band from Thioploca of Lake Biwa, belonging to candidate division OP8, was quite closely related to another DGGE band detected from that of Lake Constance. In contrast to the case of freshwater lakes, no bacterium of Bacteroidetes or OP8 was detected from Thioploca of Lake Ogawara. However, two DGGE bands from Lake Ogawara, belonging to Chloroflexi, were quite closely related to a DGGE band from Lake Constance. Two DGGE bands obtained from Lake Biwa were closely related to phylogenetically distant dissimilatory Fe(III)-reducing bacteria. Cloning analyses for a dissimilatory sulfite reductase gene were performed on the same samples used for DGGE analysis. The results of the analyses suggest that sheaths of freshwater/brackish Thioploca have little ecological significance for the majority of sulfate reducers.  相似文献   

12.
Specific amplification of 16S rRNA gene fragments in combination with denaturing gradient gel electrophoresis (DGGE) was used to generate fingerprints of Chromatiaceae, green sulfur bacteria, Desulfovibrionaceae, and β-Proteobacteria. Sequencing of the gene fragments confirmed that each primer pair was highly specific for the respective phylogenetic group. Applying the new primer sets, the bacterial diversity in the chemoclines of a eutrophic freshwater lake, a saline meromictic lake, and a laminated marine sediment was investigated. Compared to a conventional bacterial primer pair, a higher number of discrete DGGE bands was generated using our specific primer pairs. With one exception, all 15 bands tested yielded reliable 16S rRNA gene sequences. The highest diversity was found within the chemocline microbial community of the eutrophic freshwater lake. Sequence comparison revealed that the six sequences of Chromatiaceae and green sulfur bacteria detected in this habitat all represent distinct and previously unknown phylotypes. The lowest diversity of phylotypes was detected in the chemocline of the meromictic saline lake, which yielded only one sequence each of the Chromatiaceae, β-2-Proteobacteria, and Desulfovibrionaceae, and no sequences of green sulfur bacteria. The newly developed primer sets are useful for the detection of previously unknown phylotypes, for the comparison of the microbial diversity between different natural habitats, and especially for the rapid monitoring of enrichments of unknown bacterial species. Received: 22 January 1999 / Accepted: 28 April 1999  相似文献   

13.
The influence of altitude and salinity on bacterioplankton community composition (BCC) in 16 high-mountain lakes located at altitudes of 2,817 to 5,134 m on the Eastern Qinghai-Xizang (Tibetan) Plateau, China, spanning a salinity gradient from 0.02% (freshwater) to 22.3% (hypersaline), was investigated. Three different methods, fluorescent in situ hybridization, denaturing gradient gel electrophoresis (DGGE) with subsequent band sequencing, and reverse line blot hybridization (RLB) with probes targeting 17 freshwater bacterial groups, were used for analysis of BCC. Furthermore, the salt tolerances of 47 strains affiliated with groups detected in or isolated from the Tibetan habitats were investigated. Altitude was not found to influence BCC significantly within the investigated range. Several groups of typical freshwater bacteria, e.g., the ACK-M1 cluster and the Polynucleobacter group, were detected in habitats located above 4,400 m. Salinity was found to be the dominating environmental factor controlling BCC in the investigated lakes, resulting in only small overlaps in the BCCs of freshwater and hypersaline lakes. The relative abundances of different classes of Proteobacteria showed a sharp succession along the salinity gradient. Both DGGE and RLB demonstrated that a few freshwater bacterial groups, e.g., GKS98 and LD2, appeared over wide salinity ranges. Six freshwater isolates affiliated with the GKS98 cluster grew in ecophysiological experiments at maximum salinities of 0.3% to 0.7% (oligosaline), while this group was detected in habitats with salinities up to 6.7% (hypersaline). This observation indicated ecologically significant differences in ecophysiological adaptations among members of this narrow phylogenetic group and suggested ecological significance of microdiversity.  相似文献   

14.
The phylogenetic diversity of green nonsulfur bacteria in nine stratified freshwater lakes was investigated. A set of oligonucleotide primers was developed that permitted the selective amplification of 16S rRNA gene sequences of this group. Subsequently, amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced, which yielded a total of 19 novel sequence types. Ten of the sequences were related to those of different cultivated members of the C hloroflexus assemblage, whereas nine fell into the T78 group of environmental clones. For the latter subgroup of the green nonsulfur bacteria, no molecular isolate from freshwater plankton has been reported so far. Several of the sequence types occurred in more than one lake, indicating that not only relatives of the C hloroflexus assemblage, but also bacteria of the clone T78 group represent indigenous bacteria of nonthermal stratified freshwater ecosystems. Our results indicate that the natural diversity in the phylum of the green nonsulfur bacteria has been significantly underestimated in the past.  相似文献   

15.
Here we describe the diversity and activity of sulfate reducing bacteria along a salinity gradient in four different soda lakes from the Kulunda Steppe (South East Siberia, Russia). For this purpose, a combination of culture-dependent and independent techniques was applied. The general bacterial and SRB diversity were analyzed by denaturing gradient gel electrophoresis (DGGE) targeting the 16S rDNA gene. DNA was used to detect the microbial populations that were present in the soda lake sediments, whereas ribosomal RNA was used as a template to obtain information on those that were active. Individual DGGE bands were sequenced and a phylogenetic analysis was performed. In addition, the overall activity of SRB was obtained by measuring the sulfate reduction rates (SRR) and their abundance was estimated by serial dilution. Our results showed the presence of minor, but highly active microbial populations, mostly represented by members of the Proteobacteria. Remarkably high SRR were measured at hypersaline conditions (200 g L−1). A relatively high viable count indicated that sulfate reducing bacteria could be highly active in hypersaline soda lakes. Furthermore, the increase of sodium carbonate/bicarbonate seemed to affect the composition of the microbial community in soda lakes, but not the rate of sulfate reduction.  相似文献   

16.
The spatial (i.e. microhabitat) and temporal (i.e. seasonal) characteristics of diatom assemblages in adjacent High Arctic lakes were studied intensively June–August 2004. These baseline data are used to improve understanding of modern diatom community dynamics, as well to inform paleoenvironmental reconstructions. Diatoms were collected approximately weekly through the melt season from each principal benthic substrate (moss/macrophyte, rock scrapes, littoral sediment), plankton, and sediment traps, and were compared to the uppermost 0.5 cm of a surface core obtained from the deepest part of the lake where sediment cores are routinely collected. Water samples were collected concurrently with diatom samples to investigate species–environment relationships. The lakes share approximately half of their common taxa, the most abundant overall in both lakes being small Cyclotella species. Results of detrended correspondence analysis (DCA) indicate that the largest gradient in species turnover existed between benthic and planktonic communities in both lakes, and that sediment trap and the surface core top samples most closely resemble the planktonic assemblage, with an additional contribution from the lotic environment. Our results indicate clear micro-spatial controls on species assemblages and a degree of disconnection between the benthos and deep lake sediments that manifests as an under-representation of benthic taxa in deep lake surface sediments. These findings are particularly relevant in the context of interpreting the paleoenvironmental record and assessing ecosystem sensitivity to continued climate change.  相似文献   

17.
Planktonic picocyanobacteria abundance and diversity were investigated in nine lakes on the East Tibetan Plateau spanning a salinity gradient of 0.4–22.6 g l−1. The investigation was conducted using epifluorescence microscopy (EFM) and terminal restriction fragment polymorphism analysis of 16S–23S rRNA internal transcribed spacer (ITS) PCR amplicons followed by sequence analyses of large ITS clone libraries of seven selected samples. EFM showed that picocyanobacteria comprised 7–19% of the total prokaryotic cells found in surface water. Most of the clones were classified into six clusters and grouped within the “picocyanobacterial clade”, which consists exclusively of freshwater Synechococcus. Four new phylogenetic clusters and one new subcluster of Synechococcus spp. were found, none of which are members of any known picocyanobacterial clusters. The new clusters and subcluster were the most abundant picocyanobacteria (about 96% of the sequences) in the samples collected. Sequence analyses indicated that members of the four new Synechococcus groups were only found in freshwater lakes (<1.0 g l−1 of total dissolved solid), while members of the new subcluster were found in all the investigated Tibetan lakes, over a large salinity gradient of 0.4–22.6 g l 1. This suggests that there is ecologically significant microdiversity within the observed Synechococcus group as defined by ITS sequences. Collectively our study demonstrated abundant and potentially novel Synechococcus in East Tibetan lakes that are likely the result of evolutionary adaptations to regional conditions.  相似文献   

18.
The microbial assemblages of Lake Cisó and Lake Vilar (Banyoles, northeast Spain) were analyzed in space and time by microscopy and by performing PCR-denaturing gradient gel electrophoresis (DGGE) and sequence analysis of 16S rRNA gene fragments. Samples obtained from different water depths and at two different times of the year (in the winter during holomixis and in the early spring during a phytoplankton bloom) were analyzed. Although the lakes have the same climatic conditions and the same water source, the limnological parameters were different, as were most of the morphologically distinguishable photosynthetic bacteria enumerated by microscopy. The phylogenetic affiliations of the predominant DGGE bands were inferred by performing a comparative 16S rRNA sequence analysis. Sequences obtained from Lake Cisó samples were related to gram-positive bacteria and to members of the division Proteobacteria. Sequences obtained from Lake Vilar samples were related to members of the Cytophaga-Flavobacterium-Bacteroides phylum and to cyanobacteria. Thus, we found that like the previously reported differences between morphologically distinct inhabitants of the two lakes, there were also differences among the community members whose morphologies did not differ conspicuously. The changes in the species composition from winter to spring were also marked. The two lakes both contained sequences belonging to phototrophic green sulfur bacteria, which is consistent with microscopic observations, but these sequences were different from the sequences of cultured strains previously isolated from the lakes. Euryarchaeal sequences (i.e., methanogen- and thermoplasma-related sequences) also were present in both lakes. These euryarchaeal group sequences dominated the archaeal sequences in Lake Cisó but not in Lake Vilar. In Lake Vilar, a new planktonic population related to the crenarchaeota produced the dominant archaeal band. The phylogenetic analysis indicated that new bacterial and archaeal lineages were present and that the microbial diversity of these assemblages was greater than previously known. We evaluated the correspondence between the abundances of several morphotypes and DGGE bands by comparing microscopy and sequencing results. Our data provide evidence that the sequences obtained from the DGGE fingerprints correspond to the microorganisms that are actually present at higher concentrations in the natural system.  相似文献   

19.
The microbial assemblages of Lake Cisó and Lake Vilar (Banyoles, northeast Spain) were analyzed in space and time by microscopy and by performing PCR-denaturing gradient gel electrophoresis (DGGE) and sequence analysis of 16S rRNA gene fragments. Samples obtained from different water depths and at two different times of the year (in the winter during holomixis and in the early spring during a phytoplankton bloom) were analyzed. Although the lakes have the same climatic conditions and the same water source, the limnological parameters were different, as were most of the morphologically distinguishable photosynthetic bacteria enumerated by microscopy. The phylogenetic affiliations of the predominant DGGE bands were inferred by performing a comparative 16S rRNA sequence analysis. Sequences obtained from Lake Cisó samples were related to gram-positive bacteria and to members of the division Proteobacteria. Sequences obtained from Lake Vilar samples were related to members of the Cytophaga-Flavobacterium-Bacteroides phylum and to cyanobacteria. Thus, we found that like the previously reported differences between morphologically distinct inhabitants of the two lakes, there were also differences among the community members whose morphologies did not differ conspicuously. The changes in the species composition from winter to spring were also marked. The two lakes both contained sequences belonging to phototrophic green sulfur bacteria, which is consistent with microscopic observations, but these sequences were different from the sequences of cultured strains previously isolated from the lakes. Euryarchaeal sequences (i.e., methanogen- and thermoplasma-related sequences) also were present in both lakes. These euryarchaeal group sequences dominated the archaeal sequences in Lake Cisó but not in Lake Vilar. In Lake Vilar, a new planktonic population related to the crenarchaeota produced the dominant archaeal band. The phylogenetic analysis indicated that new bacterial and archaeal lineages were present and that the microbial diversity of these assemblages was greater than previously known. We evaluated the correspondence between the abundances of several morphotypes and DGGE bands by comparing microscopy and sequencing results. Our data provide evidence that the sequences obtained from the DGGE fingerprints correspond to the microorganisms that are actually present at higher concentrations in the natural system.  相似文献   

20.
Bos  D. G.  Cumming  B. F.  Smol  J. P. 《Hydrobiologia》1999,392(2):129-141
Cladoceran and anostracan species assemblages were identified from the surface sediments of 33 closed–basin lakes from the southern Interior Plateau of B.C. in order to explore their effectiveness as quantitative indicators of lakewater salinity and ionic composition. These lakes were chosen to maximize the range of lakewater salinity concentrations (freshwater through hypersaline) as well as brine composition (sulphate and carbonate dominated systems). The distribution of the anostracans and cladocerans were strongly correlated with lakewater salinity, ionic composition and lake depth. Based on these strong relationships significant predictive models were developed, using weighted-averaging techniques, to infer lakewater salinity based on the species composition of anostracans and cladocerans in surface sediments. Furthermore, models were developed to infer lake depth that are superior to previously used techniques based on the ratio of planktonic/littoral Cladocera. Given that the species composition of anostracans and cladocerans can be used to infer changes in salinity and lake level, and that their remains can be identified from sedimentary profiles, there is considerable potential in using their assemblages as paleolimnological indicators of past climatic conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号