共查询到20条相似文献,搜索用时 15 毫秒
1.
Imbert I Guillemot JC Bourhis JM Bussetta C Coutard B Egloff MP Ferron F Gorbalenya AE Canard B 《The EMBO journal》2006,25(20):4933-4942
2.
3.
4.
Mechanism of RNA recombination in carmo- and tombusviruses: evidence for template switching by the RNA-dependent RNA polymerase in vitro 下载免费PDF全文
RNA recombination occurs frequently during replication of tombusviruses and carmoviruses, which are related small plus-sense RNA viruses of plants. The most common recombinants generated by these viruses are either defective interfering (DI) RNAs or chimeric satellite RNAs, which are thought to be generated by template switching of the viral RNA-dependent RNA polymerase (RdRp) during the viral replication process. To test if RNA recombination is mediated by the viral RdRp, we used either a purified recombinant RdRp of Turnip crinkle carmovirus or a partially purified RdRp preparation of Cucumber necrosis tombusvirus. We demonstrated that these RdRp preparations generated RNA recombinants in vitro. The RdRp-driven template switching events occurred between either identical templates or two different RNA templates. The template containing a replication enhancer recombined more efficiently than templates containing artificial sequences. We also observed that AU-rich sequences promote recombination more efficiently than GC-rich sequences. Cloning and sequencing of the generated recombinants revealed that the junction sites were located frequently at the ends of the templates (end-to-end template switching). We also found several recombinants that were generated by template switching involving internal positions in the RNA templates. In contrast, RNA ligation-based RNA recombination was not detected in vitro. Demonstration of the ability of carmo- and tombusvirus RdRps to switch RNA templates in vitro supports the copy-choice models of RNA recombination and DI RNA formation for these viruses. 相似文献
5.
Tellez AB Wang J Tanner EJ Spagnolo JF Kirkegaard K Bullitt E 《Journal of molecular biology》2011,412(4):737-750
Catalytic activities can be facilitated by ordered enzymatic arrays that co-localize and orient enzymes and their substrates. The purified RNA-dependent RNA polymerase from poliovirus self-assembles to form two-dimensional lattices, possibly facilitating the assembly of viral RNA replication complexes on the cytoplasmic face of intracellular membranes. Creation of a two-dimensional lattice requires at least two different molecular contacts between polymerase molecules. One set of polymerase contacts, between the “thumb” domain of one polymerase and the back of the “palm” domain of another, has been previously defined. To identify the second interface needed for lattice formation and to test its function in viral RNA synthesis, we used a hybrid approach of electron microscopic and biochemical evaluation of both wild-type and mutant viral polymerases to evaluate computationally generated models of this second interface. A unique solution satisfied all constraints and predicted a two-dimensional structure formed from antiparallel arrays of polymerase fibers that use contacts from the flexible amino-terminal region of the protein. Enzymes that contained mutations in this newly defined interface did not form lattices and altered the structure of wild-type lattices. When reconstructed into virus, mutations that disrupt lattice assembly exhibited growth defects, synthetic lethality or both, supporting the function of the oligomeric lattice in infected cells. Understanding the structure of polymerase lattices within the multimeric RNA-dependent RNA polymerase complex should facilitate antiviral drug design and provide a precedent for other positive-strand RNA viruses. 相似文献
6.
Sun XL Johnson RB Hockman MA Wang QM 《Biochemical and biophysical research communications》2000,268(3):798-803
The 65 kDa RNA-dependent RNA polymerase (NS5B), encoded by the hepatitis C virus (HCV) genome, is a key component involved in viral replication. Here we provide the direct evidence that purified HCV polymerase catalyzed de novo RNA synthesis in a primer-independent manner using homopolymers and HCV RNA as templates. The enzyme could utilize both polyC and polyU as templates for de novo RNA synthesis, suggesting that NS5B specifically recognized pyrimidine bases for initiation. More importantly, NS5B also catalyzed de novo RNA synthesis with an HCV RNA template; the resulting nascent RNA products, smaller than the template used, contained ATP as the first nucleotide. These results indicate that the newly synthesized RNAs did not result from template self-priming and suggest that a replication initiation site in the HCV RNA genome is a uridylate. 相似文献
7.
8.
Lyle JM Clewell A Richmond K Richards OC Hope DA Schultz SC Kirkegaard K 《The Journal of biological chemistry》2002,277(18):16324-16331
Protein primers are used to initiate genomic synthesis of several RNA and DNA viruses, although the structural details of the primer-polymerase interactions are not yet known. Poliovirus polymerase binds with high affinity to the membrane-bound viral protein 3AB but uridylylates only the smaller peptide 3B in vitro. Mutational analysis of the polymerase identified four surface residues on the three-dimensional structure of poliovirus polymerase whose wild-type identity is required for 3AB binding. These mutants also decreased 3B uridylylation, arguing that the binding sites for the membrane tether and the protein primer overlap. Mutation of flanking residues between the 3AB binding site and the polymerase active site specifically decreased 3B uridylylation, likely affecting steps subsequent to binding. The physical overlap of sites for protein priming and membrane association should facilitate replication initiation in the membrane-associated complex. 相似文献
9.
To replicate its segmented, double-stranded RNA (dsRNA) genome, the rotavirus RNA-dependent RNA polymerase, VP1, must recognize viral plus-strand RNAs (+RNAs) and guide them into the catalytic center. VP1 binds to the conserved 3' end of rotavirus +RNAs via both sequence-dependent and sequence-independent contacts. Sequence-dependent contacts permit recognition of viral +RNAs and specify an autoinhibited positioning of the template within the catalytic site. However, the contributions to dsRNA synthesis of sequence-dependent and sequence-independent VP1-RNA interactions remain unclear. To analyze the importance of VP1 residues that interact with +RNA on genome replication, we engineered mutant VP1 proteins and assayed their capacity to synthesize dsRNA in vitro. Our results showed that, individually, mutation of residues that interact specifically with RNA bases did not diminish replication levels. However, simultaneous mutations led to significantly lower levels of dsRNA product, presumably due to impaired recruitment of +RNA templates. In contrast, point mutations of sequence-independent RNA contact residues led to severely diminished replication, likely as a result of improper positioning of templates at the catalytic site. A noteworthy exception was a K419A mutation that enhanced the initiation capacity and product elongation rate of VP1. The specific chemistry of Lys419 and its position at a narrow region of the template entry tunnel appear to contribute to its capacity to moderate replication. Together, our findings suggest that distinct classes of VP1 residues interact with +RNA to mediate template recognition and dsRNA synthesis yet function in concert to promote viral RNA replication at appropriate times and rates. 相似文献
10.
11.
Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. 总被引:18,自引:0,他引:18
Yukihiro Shirota Hong Luo Weiping Qin Shuichi Kaneko Tatsuya Yamashita Kenichi Kobayashi Seishi Murakami 《The Journal of biological chemistry》2002,277(13):11149-11155
Hepatitis C virus (HCV) NS5B is RNA-dependent RNA polymerase (RdRP), the essential catalytic enzyme for HCV replication. Recently, NS5A has been reported to be important for the establishment of HCV replication in vitro by the adaptive mutations, although its role in viral replication remains uncertain. Here we report that purified bacterial recombinant NS5A and NS5B directly interact with each other in vitro, detected by glutathione S-transferase (GST) pull-down assay. Furthermore, complex formation of these proteins transiently coexpressed in mammalian cells was detected by coprecipitation. Using terminally and internally truncated NS5A, two discontinuous regions of NS5A (amino acids 105-162 and 277-334) outside of the adaptive mutations were identified to be independently essential for the binding both in vivo and in vitro (Yamashita, T., Kaneko, S., Shirota, Y., Qin, W., Nomura, T., Kobayashi, K., and Mkyrakami, S. (1998) J. Biol. Chem. 273, 15479-15486). We previously examined the effect of His-NS5A on RdRP activity of the soluble recombinant NS5Bt in vitro (see Yamashita et al. above). Wild NS5A weakly stimulated at first (when less than 0.1 molar ratio to NS5B) and then inhibited the NS5Bt RdRP activity in a dose-dependent manner. The internal deletion mutants defective in NS5B binding exhibited no inhibitory effect, indicating that the NS5B binding is necessary for the inhibition. Taken together, our results support the idea that NS5A modulates HCV replication as a component of replication complex. 相似文献
12.
Template requirements for RNA synthesis by a recombinant hepatitis C virus RNA-dependent RNA polymerase 下载免费PDF全文
The RNA-dependent RNA polymerase (RdRp) from hepatitis C virus (HCV), nonstructural protein 5B (NS5B), has recently been shown to direct de novo initiation using a number of complex RNA templates. In this study, we analyzed the features in simple RNA templates that are required to direct de novo initiation of RNA synthesis by HCV NS5B. NS5B was found to protect RNA fragments of 8 to 10 nucleotides (nt) from RNase digestion. However, NS5B could not direct RNA synthesis unless the template contained a stable secondary structure and a single-stranded sequence that contained at least one 3' cytidylate. The structure of a 25-nt template, named SLD3, was determined by nuclear magnetic resonance spectroscopy to contain an 8-bp stem and a 6-nt single-stranded sequence. Systematic analysis of changes in SLD3 revealed which features in the stem, loop, and 3' single-stranded sequence were required for efficient RNA synthesis. Also, chimeric molecules composed of DNA and RNA demonstrated that a DNA molecule containing a 3'-terminal ribocytidylate was able to direct RNA synthesis as efficiently as a sequence composed entirely of RNA. These results define the template sequence and structure sufficient to direct the de novo initiation of RNA synthesis by HCV RdRp. 相似文献
13.
Richards OC Spagnolo JF Lyle JM Vleck SE Kuchta RD Kirkegaard K 《Journal of virology》2006,80(15):7405-7415
The 22-amino-acid protein VPg can be uridylylated in solution by purified poliovirus 3D polymerase in a template-dependent reaction thought to mimic primer formation during RNA amplification in infected cells. In the cell, the template used for the reaction is a hairpin RNA termed 2C-cre and, possibly, the poly(A) at the 3' end of the viral genome. Here, we identify several additional substrates for uridylylation by poliovirus 3D polymerase. In the presence of a 15-nucleotide (nt) RNA template, the poliovirus polymerase uridylylates other polymerase molecules in an intermolecular reaction that occurs in a single step, as judged by the chirality of the resulting phosphodiester linkage. Phosphate chirality experiments also showed that VPg uridylylation can occur by a single step; therefore, there is no obligatory uridylylated intermediate in the formation of uridylylated VPg. Other poliovirus proteins that could be uridylylated by 3D polymerase in solution were viral 3CD and 3AB proteins. Strong effects of both RNA and protein ligands on the efficiency and the specificity of the uridylylation reaction were observed: uridylylation of 3D polymerase and 3CD protein was stimulated by the addition of viral protein 3AB, and, when the template was poly(A) instead of the 15-nt RNA, the uridylylation of 3D polymerase itself became intramolecular instead of intermolecular. Finally, an antiuridine antibody identified uridylylated viral 3D polymerase and 3CD protein, as well as a 65- to 70-kDa host protein, in lysates of virus-infected human cells. 相似文献
14.
Viruses commonly use host cell survival mechanisms to their own advantage. We show that Akt, an important signaling kinase involved in cell survival, phosphorylates the RNA-dependent RNA polymerase (RdRp) from norovirus, the major cause of gastroenteritis outbreaks worldwide. The Akt phosphorylation of RdRp appears to be a feature unique to the more prevalent norovirus genotypes such as GII.4 and GII.b. This phosphorylation event occurs at a residue (Thr33) located at the interface where the RdRp finger and thumb domains interact and decreases de novo activity of the polymerase. This finding provides fresh insights into virus-host cell interactions. 相似文献
15.
Salgado PS Makeyev EV Butcher SJ Bamford DH Stuart DI Grimes JM 《Structure (London, England : 1993)》2004,12(2):307-316
The RNA-dependent RNA polymerase of bacteriophage phi6 transcribes mRNA from the three segments of the dsRNA viral genome. We have cocrystallized RNA oligonucleotides with the polymerase, revealing the mode of binding of RNA templates. This binding is somewhat different from that previously seen for DNA oligomers, leading to additional RNA-protein hydrogen bonds, consistent with a preference for RNA. Activation of the RNA/polymerase complex by the addition of substrate and Mg2+ initiates a single round of reaction within the crystal to form a dead-end complex that partially collapses within the enzyme active site. By replacing Mg2+ with Ca2+, we have been able to capture the inhibited complex which shows distortion that explains the structural basis for the inhibition of such polymerases by Ca2+. 相似文献
16.
De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide,primer, and template parameters 下载免费PDF全文
Nomaguchi M Ackermann M Yon C You S Padmanabhan R Padmanbhan R 《Journal of virology》2003,77(16):8831-8842
By using a purified dengue virus RNA-dependent RNA polymerase and a subgenomic 770-nucleotide RNA template, it was shown previously that the ratio of the de novo synthesis product to hairpin product formed was inversely proportional to increments of assay temperatures (20 to 40 degrees C). In this study, the components of the de novo preinitiation complex are defined as ATP, a high concentration of GTP (500 micro M), the polymerase, and the template RNA. Even when the 3'-terminal sequence of template RNA was mutated from -GGUUCU-3' to -GGUUUU-3', a high GTP concentration was required for de novo initiation, suggesting that high GTP concentration plays a conformational role. Furthermore, utilization of synthetic primers by the polymerase indicated that AGAA is the optimal primer whereas AG, AGA, and AGAACC were inefficient primers. Moreover, mutational analysis of the highly conserved 3'-terminal dinucleotide CU of the template RNA indicated that change of the 3'-terminal nucleotide from U to C reduced the efficiency about fivefold. The order of preference for the 3'-terminal nucleotide, from highest to lowest, is U, A - G, and C. However, change of the penultimate nucleotide from C to U did not affect the template activity. A model consistent with these results is that the active site of the polymerase switches from a "closed" form, catalyzing de novo initiation through synthesis of short primers, to an "open" form for elongation of a double-stranded template-primer. 相似文献
17.
Robert T. Hendricks Stacey R. Spencer James F. Blake Jay B. Fell John P. Fischer Peter J. Stengel Vincent J.P. Leveque Sophie LePogam Sonal Rajyaguru Isabel Najera John A. Josey Steven Swallow 《Bioorganic & medicinal chemistry letters》2009,19(2):410-414
Isoquinoline-based non-nucleoside inhibitors of HCV NS5b RNA-dependent RNA-polymerase are described. The synthesis and structure–activity relationships are detailed, along with enzyme and cellular activity. 相似文献
18.
De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase 总被引:1,自引:0,他引:1 下载免费PDF全文
Beerens N Selisko B Ricagno S Imbert I van der Zanden L Snijder EJ Canard B 《Journal of virology》2007,81(16):8384-8395
19.
Current assays for the activity of viral RNA-dependent RNA polymerases (RdRps) are inherently end-point measurements, often requiring the use of radiolabeled or chemically modified nucleotides to detect reaction products. In an effort to improve the characterization of polymerases that are essential to the life cycle of RNA viruses and develop antiviral therapies that target these enzymes, a continuous nonradioactive assay was developed to monitor the activity of RdRps by measuring the release of pyrophosphate (PP(i)) generated during nascent strand synthesis. A coupled-enzyme assay method based on the chemiluminescent detection of PP(i), using ATP sulfurylase and firefly luciferase, was adapted to monitor poliovirus 3D polymerase (3D(pol)) and the hepatitis C virus nonstructural protein 5B (NS5B) RdRp reactions. Light production was dependent on RdRp and sensitive to the concentration of oligonucleotide primer directing RNA synthesis. The assay system was found to be amenable to sensitive kinetic studies of RdRps, requiring only 6nM 3D(pol) to obtain a reliable estimate of the initial velocity in as little as 4 min. The assay can immediately accommodate the use of both homopolymer and heteropolymer RNA templates lacking uridylates and can be adapted to RNA templates containing uridine by substituting alpha-thio ATP for ATP. The low background signal produced by other NTPs can be corrected from no enzyme (RdRp) controls. The effect of RdRp/RNA template preincubation was assessed using NS5B and a homopolymer RNA template and a time-dependent increase of RdRp activity was observed. Progress curves for a chain terminator (3(')-deoxyguanosine 5(')-triphosphate) and an allosteric NS5B inhibitor demonstrated the predicted time- and dose-dependent reductions in signal. This assay should facilitate detailed kinetic studies of RdRps and their potential inhibitors using either standard or single-nucleotide approaches. 相似文献
20.
Characterization of an RNA-dependent RNA polymerase activity associated with measles virus 下载免费PDF全文
An RNA-dependent RNA polymerase activity has been found copurifying with measles virus infectivity and complement-fixing antigen in three Vero cell-grown variants of measles virus: the attenuated Edmonston B strain, the natural non-attenuated Edmonston strain, and a subacute sclerosing panencephalitis isolate, IP-3. Incubation of purified measles virions with immunoglobulin G derived from sera of monkeys hyperimmunized against measles specifically removes activity sedimenting in the density region of measles virions. The requirements of the reaction, which is RNase sensitive, are similar to those reported for other paramyxovirus-associated activities, including detergent, divalent cation, ribonucleoside triphosphates, and a reducing agent. The size classes of RNA synthesized correspond to those found in measles-infected cells, including 50, 35, and 16 to 20S. The product RNA of the Edmonston B virus-stimulated reaction was rendered RNase resistant by annealing with RNA extracted from purified Edmonston B virions. RNA from uninfected Vero cells was ineffective in the annealing reaction. 相似文献