首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The location and frequency of RNA crosslinks induced by photoreaction of hydroxymethyltrimethylpsoralen with 30 S Escherichia coli ribosomal subunits have been determined by electron microscopy. At least seven distinct crosslinks between regions distant in the 16 S rRNA primary structure are seen in the inactive conformation of the 30 S particle. All correspond to crosslinked features seen when the free 16 S rRNA is treated with hydroxymethyltrimethylpsoralen. The most frequently observed crosslink occurs between residues near one end of the molecule and residues about 600 nucleotides away to generate a loop of 570 bases. The size and orientation of this feature indicate it corresponds to the crosslinked feature located at the 3′ end of free 16 S rRNA.When active 30 S particles are crosslinked in 5 mm-Mg2+, six of the seven features seen in the inactive 30 S particle can still be detected. However, the frequency of several of the features, and particularly the 570-base loop feature, is dramatically decreased. This suggests that the long-range contacts that lead to these crosslinks are either absent or inaccessible in the active conformation. Crosslinking results in some loss of functional activities of the 30 S particle. This is consistent with the notion that the presence of the crosslink that generates the 570-base loop traps the subunit in an inactive form, which cannot associate with 50 S particles.The arrangement of the interacting regions crosslinked by hydroxymethyltrimethylpsoralen suggests that the RNA may be organized into three general domains. A striking feature of the Crosslinking pattern is that three of the seven products involve regions near the 3′ end of the 16 S rRNA. These serve to tie together large sections of rRNA. Thus structural changes at the 3′ end could, in principle, be felt through the entire 30 S particle.  相似文献   

2.
Partially denatured 16S and 23S rRNAs from the thermophile Bacillus stearothermophilus show characteristic loop patterns when observed by electron microscopy. The patterns are very similar to those seen in rRNAs from Escherichia coli. At least 2 of 4 most stable interactions in 16S rRNA and 8 of 12 interactions in 23S rRNA are in common for the two species. These interactions correspond well to features of secondary structure in models inferred for rRNA from phylogenetic sequence comparisons and chemical modification studies. However, two additional large loops, enclosing large portions of the 23S rRNA, have been detected in B. stearothermophilus for the first time, and even though other loops are similar, their relative frequencies vary in the two species. Much of the variation is consistent with relative delta G degree values for putative base-paired stems at the base of different loops; but the 5'-terminal loops in 23S rRNA, for example, are unaccountably far less stable in B. stearothermophilus. Also, in general, structural features are not differentially stabilized in B. stearothermophilus; the relative stability of secondary structure in its ribosomes at elevated growth temperatures must involve interactions with ribosomal proteins or other cellular components.  相似文献   

3.
The secondary structure of 16 S and 23 s rRNA sequences in 30 S preribosomal RNA of Escherichia coli was analyzed by electron microscopy after partial denaturation and compared to mature 16 S and 23 S rRNA examined under the same conditions. The sequences in the pre-rRNA notably lack the specific loops that dominate the 5'-terminal regions of mature 16 S and 23 S rRNA. In other respects, the sizes and locations of loops in the 23 S rRNA sequence are qualitatively very similar in mature and pre-rRNA. Eleven of 12 loops outside of the 5'-terminal domain correspond, with the most frequent features in the 3'-half of the molecule. In contrast, the sizes and locations of loops in the 16 S rRNA sequence differ between precursor and mature forms. In the pre-rRNA, instead of the 370-nucleotide 5'-terminal loop of mature rRNA, some 1000-nucleotide terminal loops are observed. The pre-rRNA also shows a frequent 610-nucleotide central loop and a large 1240-nucleotide loop not seen in the mature rRNA. Also, in the 3'-region of the sequence, the largest loops in pre-rRNA are 120 nucleotides shorter than in mature rRNA. We suggest that the structure of pre-rRNA may promote some alternate conformational features, and that these could be important during ribosome formation or function.  相似文献   

4.
Abstract

E. coli 30S ribosomes in the inactive conformation were irradiated at 390 nm in the presence of 4′ -aminomethyl-4,5′,8-trimethylpsoralen (AMT). This produces monoadducts in which AMT is attached to only one strand of an RNA duplex region. After unbound AMT was removed, some ribosomes were activated and then subjected to 360 nm irradiation; others were reirradiated without activation. Electron microscopic examination of 16S rRNA extracted from these two samples showed covalent rRNA loops indicative of rRNA crosslinks. The general pattern of loops closely matched that seen previously after direct psoralen crosslinking of 30S particles. However, the frequency of occurrence of one major class of loops formed by crosslinks between residues near position 500 and the 3′ end was substantially lower for the activated samples, implying that the structure of the 16S rRNA in active and inactive 30S particles is different.  相似文献   

5.
6.
7.
Intramolecular crosslinks have been introduced into Escherichia coli 16 S ribosomal RNA in aqueous solution by irradiation in the presence of hydroxymethyl-trimethylpsoralen. When the crosslinked RNA is denatured and examined in the electron microscope the most striking features are a variety of large open loops. In addition, because the crosslinked molecules are shortened compared to non-crosslinked molecules, there are likely to be small hairpins not resolved by the present technique. The sizes and positions of 11 loop classes have been determined and oriented on the molecule. The frequency of occurrence of the different classes of loops depends on the crosslinking conditions. When the crosslinking is done in solutions containing Mg2+, at least four of the loop classes appear with greater frequency than they do in 3.5 mm-NaCl. The loops presumably arise because complementary sequences separated by long intervening regions are being crosslinked. These base-pairing interactions between residues distant in the primary structure appear to be prominent features of the secondary structure of rRNA in solution.  相似文献   

8.
A fine mapping study of the ribosomal RNA region of HeLa cell mitochondrial DNA has been carried out by using as an approach the protection by hybridized 12 S and 16 S rRNA of the complementary sequences in DNA against digestion with the single strand-specific Aspergillus nuclease S1 or Escherichia coli exonuclease VII. No inserts have been detected in the main body of the 12 S and 16 S rRNA cistrons, in contrast to the situation described in the large mitochondrial ribosomal RNA gene of some strains of yeast and of Neurospora crassa. Furthermore, it has been possible to assign more precisely than previously the positions of the 5′ and 3′-ends of the 12 S rRNA and 16 S rRNA genes in the HpaII restriction map of HeLa cell mitochondrial DNA.  相似文献   

9.
10.
mRNA analogues-derivatives of oligoribonucleotides consisting of two different codons and bearing an aryl azide group at the 5'-phosphates-were crosslinked to human 80S ribosomes by UV-irradiation of the various model complexes obtained in the presence of the cognate tRNAs. Three sequences, namely pUUUGUU (coding for Phe and Val), pUUCUAAA (first triplet coding for Phe and second being stop-codon), and pGUGUUU (coding for Val and Phe), have been used. Sequences of 18S rRNA containing nucleotides crosslinked to the mRNA analogues were examined by hydrolysis with RNase H in the presence of various cDNA probes. Crosslinked nucleotides were identified by primer extension. In all cases, only nucleotide G-1207 (equivalent to G-926 in Escherichia coli 16S rRNA) has been detected as crosslinked. Crosslinking of the mRNA analogues to the large ribosomal subunit was negligible.  相似文献   

11.
Secondary structure mapping in the electron microscope was applied to ribosomal RNA and precusor ribosomal RNA molecules isolated from nucleoli and the cytoplasm of mouse L-cells. Highly reproducible loop patterns were observed in these molecules. The polarity of L-cell rRNA was determined by partial digestion with 3′-exonuclease. The 28 S region is located at the 5′-end of the 45 S rRNA precursor. Together with earlier experiments on labeling kinetics, these observations established a processing pathway for L-cell rRNA. The 45 S rRNA precursor is cleaved at the 3′-end of the 18 S RNA sequence to produce a 41 S molecule and a spacer-containing fragment (24 S RNA). The 41 S rRNA is cleaved forming mature 18 S rRNA and a 36 S molecule. The 36 S molecule is processed through a 32 S intermediate to the mature 28 S rRNA. This pathway is similar to that found in HeLa cells, except that in L-cells a 36 S molecule occurs in the major pathway and no 20 S precusor to 18 S RNA is found. The processing pathway and its intermediates in L-cells are analogous to those in Xenopus laevis, except for a considerable size difference in all rRNAs except 18 S rRNA.The arrangement of gene and transcribed spacer regions and of secondary structure loops, as well as the shape of the major loops were compared in L-cells, HeLa cell and Xenopus rRNA. The over-all arrangement of regions and loop patterns is very similar in the RNA from these three organisms. The shapes of loops in mature 28 S RNA are also highly conserved in evolution, but the shapes of loops in the transcribed spacer regions vary greatly. These observations suggest that the sequence complementarity that gives rise to this highly conserved secondary structure pattern may have some functional importance.  相似文献   

12.
The arrangement of the template sequence 3′ of the A-site codon on the 80S ribosome was studied using mRNA analogs containing Phe codon UUU at the 5′ end and a photoreactive perfluoroarylazido group linked to C5 of U or N7 of G. The analogs were positioned on the ribosome with the use of tRNAPhe, which directed the UUU codon to the P site, bringing a modified nucleotide to position +9 or +12 relative to the first nucleotide of the P-site codon. Upon mild UV irradiation of ribosome complexes, the analogs of both types crosslinked to the 18S rRNA and proteins of the 40S subunit. Comparisons were made with the crosslinking patterns of complexes in which an mRNA analog contained a modified nucleotide in position +7 (the crosslinking to 18S rRNA in such complexes has been studied previously). The efficiency of crosslinking to ribosomal components depended on the nature of the modified nucleotide of an mRNA analog and its position on the ribosome. The extent of crosslinking to the 18S rRNA drastically decreased as the modified nucleotide was transferred from position +7 to position +12. The 18S rRNA nucleotides involved in crosslinking were identified. A modified nucleotide in position +9 crosslinked to the invariant dinucleotide A1824/A1825 and variable A1823 in the 3′ minidomain of the 18S rRNA and to S15. The same ribosomal components have earlier been shown to crosslink to modified nucleotides in positions +4 to +7. In addition, all mRNA analogs crosslinked to invariant C1698 in the 3′ minidomain and to conserved region 605–620, which closes helix 18 in the 5′ domain.  相似文献   

13.
14.
E. coli 30S ribosomes in the inactive conformation were irradiated at 390 nm in the presence of 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT). This produces monoadducts in which AMT is attached to only one strand of an RNA duplex region. After unbound AMT was removed, some ribosomes were activated and then subjected to 360 nm irradiation; others were reirradiated without activation. Electron microscopic examination of 16S rRNA extracted from these two samples showed covalent rRNA loops indicative of rRNA crosslinks. The general pattern of loops closely matched that seen previously after direct psoralen crosslinking of 30S particles. However, the frequency of occurrence of one major class of loops formed by crosslinks between residues near position 500 and the 3' end was substantially lower for the activated samples, implying that the structure of the 16S rRNA in active and inactive 30S particles is different.  相似文献   

15.
16.
Irradiation with ultraviolet light was used to create two nonlinear RNA molecules. Circular potato spindle tuber viroid (PSTV) RNA was crosslinked at a single site to generate a figure eight-shaped molecule; 5S rRNA from HeLa cells was transformed into an alpha-shaped molecule with a small circular element and two arms (1). Crosslinked RNA's could be separated from their untreated counterparts by electrophoresis in polyacrylamide gels containing urea. The gel mobility of crosslinked PSTV was not altered by boiling, treatment with E. coli RNase III or glyoxalation. However, mild nuclease digestion ("nicking") produced derivatives which migrated more slowly than the starting material in gels of certain polyacrylamide concentrations, but not in others. Limited nuclease digestion of crosslinked 5S rRNA did not generate any detectable products with reduced mobility in the gels tested. Thus, the ability of the "nicking assay" to reveal circular elements within nonlinear RNA's can vary depending upon the composition of the gel chosen for analysis and on the size of the circular element relative to the rest of the molecule.  相似文献   

17.
We have developed a gel electrophoresis technique for separating crosslinked RNA molecules into a series of discrete fractions. The gel used is polyacrylamide made in formamide and low salt designed to denature the RNA during electrophoresis. The mobility depends upon the position of crosslinking within each molecule, as demonstrated by electron microscopy of RNA eluted from the gel. In general, molecules with large loops electrophorese more slowly than molecules with small loops or uncrosslinked molecules. We have used this technique to re-examine the psoralen crosslinking pattern of Escherichia coli 16 S ribosomal RNA in inactivated 30 S ribosomal subunits. To determine the correct orientation of each type of crosslink, we have covalently attached DNA restriction fragments to the RNA so that the polarity of the RNA in the microscope would be known. Our previous major conclusions are confirmed: the predominant long-distance crosslink detected by gel electrophoresis involves a residue close to the 3′ end and a residue approximately 600 nucleotides away: the formamide/polyacrylamide gel is able to separate two closely spaced 1100-nucleotide interactions beginning close to the 3′ end, which were reported as one interaction before: and an interaction joining the ends is detected as before. However, one low-frequency crosslinked interaction, between positions 950 and 1400, and possibly another low-frequency interaction, between positions 550 and 870, are determined to be in the opposite polarity to that described previously.  相似文献   

18.
7 S RNA accumulates at non-permissive temperatures in an RNAase E strain containing the recombinant plasmid pJR3Δ which carries a single 5 S rRNA gene and expression sequences. 7 S RNA is a processing intermediate that contains the complete sequence of 5 S rRNA as well as a stem-and-loop structure encoded by the terminator of rrnD. 7 S RNA can be processed in vitro by RNAase E. Structural analysis of the products (5 S rRNA and the stem) of in vitro processing of 7 S RNA revealed that the cleavage site of RNAase E in 7 S RNA is 3 nucleotides downstream from the 3′ end of the mature 5 S rRNA. The cleavage generates 3′-hydroxyl and 5′-phosphate termini.  相似文献   

19.
20.
The complete nucleotide sequence of a 16S ribosomal RNA gene from tobacco chloroplasts has been determined. This nucleotide sequence has 96% homology with that of maize chloroplast 16S rRNA gene and 74% homology with that of Escherichia coli16S gene.The 3′ terminal region of this gene contains the sequence ACCTCC which is complementary to sequences found at the 5′ termini of prokaryotic mRNAs.The large stem and loop structure can be constructed from the sequences surrounding the 5′ and 3′ ends of the 16S gene. These observations demonstrate the prokaryotic nature of chloroplast 16S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号