首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
Ten blue triggerfish,Balistes fuscus, were tested individually for 3 days each in Ichthyotron electronic shuttleboxes to measure their thermoregulatory behavior. The modal thermal preferendum, a species-specific measure of temperature preference which is independent of prior thermal acclimation, was 25 °C. The triggerfish voluntarily occupied a 16–27 °C range of temperature, out of a potentially available range of 0–50 °C. There was no significant difference in preferred temperature between night and day, indicating lack of a thermoregulatory rhythm in this species. The preferred temperature range of this tropical marine reef species is similar to that of cool temperate freshwater and marine fishes; many warm temperate species prefer higher temperatures.  相似文献   

2.
McLachlan  J.  Bird  C. J. 《Helgoland Marine Research》1984,38(3-4):319-334
Tolerance and growth at temperatures from 0° to 36°C were investigated using 15 species and strains ofGracilaria Grev. isolated from tropical and temperate coasts of the Atlantic and eastern Pacific Oceans. All survived a minimum of 15°C and, with two exceptions, a maximum of 28°C. Only two species tolerated 34°C and none 36°C which was rapidly lethal. Isolates intolerant of temperatures less than 15°C were generally species known only from tropical waters, whereas species isolated from temperate waters tended to be eurythermal, and most seemed not to be restricted to cooler waters. Maximum growth of warm-water isolates tended to occur over a broad range of warmer temperatures, 20°C and higher, and usually extended to the upper limits of thermal tolerance. Isolates from temperate waters showed maximum growth at 20° or 15°C, and there was no appreciable growth of any of the isolates below 10°C. These experimental results are in accord with known distributional patterns ofGracilaria. There is a correlation between temperature and number of species, with most species reported from warm-water areas where the mean water temperature is 25°C or more. Where the 3-month mean minimum temperature is less than 20°C, there is a rapid decline in number of species. In the eastern Atlantic, the relationship is less obvious as few species have been reported from the warm-water region. This is quite likely the result of other environmental factors.NRCC No. 23817Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April 1984 at the Department of Marine Biology, Rijksuniversiteit Groningen (The Netherlands). Convenor: C. van den Hoek.  相似文献   

3.
Summary Two flesh fly species from the tropical lowlands (Peckia abnormis and Sarcodexia sternodontis) were more susceptible to both cold-shock and heatshock injury than temperate flies (Sarcophaga crassipalpis and S. bullata) and a fly from a tropical high altitude (Blaesoxipha plinthopyga). A brief (2-h) exposure to 0°C elicits a protective response against subsequent cold injury at–10°C in the temperate flies and in B. plinthopyga but no such response was found in the flies from the tropical lowlands. However, both tropical and temperate flies could be protected against heat injury (45°C) by first exposing them to a mild heat shock (2 h at 40°C). The supercooling point is not a good indicator of cold tolerance: supercooling points of pupae were similar in all species, ranging from–18.9 to–23.0°C, and no differences were found between the tropical and temperate species. Among the temperate species, glycerol, the major cryoprotectant, can be elevated by short-term exposure to 0°C, but glycerol could not be detected in the tropical flies. Low-temperature (0°C) exposure also increased hemolymph osmolality of the temperate species, but no such increase was observed in the tropical lowland species. Adaptations to temperature stress thus differ in tropical and temperate flesh flies: while flies from both geographic areas share a mechanism for rapidly increasing heat tolerance, only the temperate flies appear capable of responding rapidly to cold stress. The presence of a heat shock response in species that lack the ability to rapidly respond to cold stress indicates that the biochemical and physiological bases for these two responses are likely to differ.  相似文献   

4.
Summary The contractile properties of swimming muscles have been investigated in marine teleosts from Antarctic (Trematomus lepidorhinus, Pseudochaenichthys georgianus), temperate (Pollachius virens, Limanda limanda, Agonis cataphractus, Callionymus lyra), and tropical (Abudefduf abdominalis, Thalassoma duperreyi) latitudes. Small bundles of fast twitch fibres were isolated from anterior myotomes and/or the pectoral fin adductor profundis muscle (m. add. p). Live fibre preparations were viable for several days at in vivo temperatures, but became progressively inexcitable at higher or lower temperatures. The stimulation frequency required to produce fused isometric tetani increased from 50 Hz in Antarctic species at 0°C to around 400 Hz in tropical species at 25°C. Maximum isometric tension (Po) was produced at the normal body temperature (NBT) of each species (Antarctic, 0–2°C; North Sea and Atlantic, 8–10°C; Indo-West Pacific, 23–25°C). P0 values at physiological temperatures (200–300 kN·m–2) were similar for Antarctic, temperate, and tropical species. A temperature induced tension hysteresis was observed in muscle fibres from some species. Exposure to <0°C in Antarctic and <2°C in temperate fish resulted in the temporary depression of tension over the whole experimental range, an effect reversed by incubation at higher temperatures. At normal body temperatures the half-times for activation and relaxation of twitch and tetanic tension increased in the order Antarctic>temperate>tropical species. Relaxation was generally much slower at temperatures <10°C in fibres from tropical than temperate fish. Q10 values for these parameters at NBTs were 1.3 2.1 for tropical species, 1.7–2.6 for temperate species, and 1.6–3.5 for Antarctic species. The forcevelocity (P-V) relationship was studied in selected species using iso-velocity releases and the data below 0.8 P0 iteratively fitted to Hill's equation. The P-V relation at NBT was found to be significantly less curved in Antarctic than temperate species. The unloaded contraction velocity (Vmax) of fibres was positively correlated with NBT increasing from about 1 muscle fibre length·s–;1 in an Antarctic fish (Trematomus lepidorhinus) at 1°C to around 16 muscle fibre lengths·s–1 in a tropical species (Thalassoma duperreyi) at 24°C. It is concluded that although muscle contraction in Antarctic fish shows adaptations for low temperature function, the degree of compensation achieved in shortening speed and twitch kinetics is relatively modest.Abbreviations ET environmental temperature - m. add. p major adductor profundis - m. add. s. major adductor superficialis - NBT normal body temperature - P 0 maximum isometric tension - P-V force velocity - SR sarcoplasmic reticulum - T 1/2 a half activation time - T 1/2 r half relaxation time - V max unloaded contraction  相似文献   

5.
Several North American broad-leaved tree species range from the northern United States at 47°N to moist tropical montane forests in Mexico and Central America at 15–20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from –10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.  相似文献   

6.
The formation of mixed-species social groups, whereby heterospecifics form and maintain either transient or stable groups with each other, can confer substantial fitness benefits to individuals. Such benefits may arise via multiple mechanisms associated with both predation avoidance and foraging efficiency. In fishes, mixed-species shoaling reportedly occurs where displaced tropical species (known as “vagrants”) interact with resident temperate species, although little is known about the nature and frequency of such interactions. To investigate this phenomenon, we used displaced tropical Indo-pacific Sergeant Abudefduf vaigiensis settling in temperate south-eastern Australia as a model system. Underwater visual surveys revealed shoal composition and size differed significantly between open-water and reef habitats, with shoals in open habitats being larger and more speciose. Shoals containing A. vaigiensis were mainly mixed-species, and larger and more speciose in open habitats than nearer to reef. Since both foraging efficiency (via access to plankton) and predation threat likely increase with increasing distance from reef habitat, we suggest that mixed-species shoaling mitigates predation risk whilst allowing increased foraging opportunities for A. vaigiensis in open areas. These findings provide support for the importance of mixed-species shoaling to the persistence of tropical reef fishes in temperate regions.  相似文献   

7.
The temperature responses for growth and survival have been experimentally tested for 6 species of the green algal genusCladophora (Chlorophyceae; Cladophorales) (all isolated from Roscoff, Brittany, France, one also from Connecticut, USA), selected from 4 distribution groups, in order to determine which phase in the annual temperature regime might prevent the spread of a species beyond its present latitudinal range on the N. Atlantic coasts. For five species geographic limits could be specifically defined as due to a growth limit in the growing season or to a lethal limit in the adverse season. These species were: (1)C. coelothrix (Amphiatlantic tropical to warm temperate), with a northern boundary on the European coasts formed by a summer growth limit near the 12°C August isotherm. On the American coasts sea temperatures should allow its occurrence further north. (2)C. vagabunda (Amphiatlantic tropical to temperate), with a northern boundary formed by a summer growth limit near the 15°C August isotherm on both sides of the Atlantic. (3)C. dalmatica, as forC. vagabunda. (4)C. hutchinsiae (Mediterranean-Atlantic warm temperate), with a northern boundary formed by a summer growth limit near the 12°C August isotherm, and possibly also a winter lethal limit near the 6°C February isotherm; and a southern boundary formed by a southern lethal limit near the 26°C August isotherm. It is absent from the warm temperate American coast because its lethal limits, 5° and 30°C, are regularly reached there. (5) Preliminary data forC. rupestris (Amphiatlantic temperate), suggest the southeastern boundary on the African coast to be a summer lethal limit near the 26°C August isotherm; the southwestern boundary on the American coast lies on the 20°C August isotherm. For one species,C. albida, the experimental growth and survival range was wider than expected from its geographic distribution, and reasons to account for this are suggested.Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April, 1984 at the Department of Marine Biology, University of Groningen (The Netherlands). Convenor: C. van den Hoek.  相似文献   

8.
Oxygen consumption was measured for three tropical fishes,Exodon paradoxus, Leporinus fasciatus andLabeo erythrurus in relation to swimming speed and temperature. For each species the logarithm of oxygen consumption (mg 02 · g–1 · h–1) increased linearly with relative swimming speed (1 · s–1) with the value of the regression coefficients varying inversely with temperature. Active metabolism and critical swimming speed ofE. paradoxus andL. fasciatus increased with temperature to a maximum at 30 and 35° C respectively. Basal metabolic rates ofE. paradoxus andL. fasciatus increased with temperature. Metabolic rates and critical swimming speed of the three fishes studied were consistent with values for polar, temperate and other tropical species over their respective thermal ranges of tolerance. Tropical fishes have lowered their metabolism and swimming performance from that expected for many temperate species at the same temperature.  相似文献   

9.
The relationship between distributional boundaries and temperature responses of some Northeast American and West European endemic and amphiatlantic rhodophytes was experimentally determined under varying regimes of temperature, light, and daylength. Potentially critical temperatures, derived from open ocean surface summer and winter isotherms, were inferred from distributional data for each of these algae. On the basis of the distributional data the algae fall within the limits of three phytogeographic groups: (1) the Northeast American tropical-to-temperate group; (2) the warm-temperate Mediterranean Atlantic group; and (3) the amphiatlantic tropical-to-warm temperate group. Experimental evidence suggests that the species belonging to the northeast American tropical-to-temperate group(Grinnellia americana, Lomentaria baileyana, andAgardhiella subulata) have their northern boundaries determined by a minimum summer temperature high enough for sufficient growth and/or reproduction. The possible restriction of 2 species (G. americana andL. baileyana) to the tropical margins may be caused by summer lethal temperatures (between 30 and 35 °C) or because the gradual disintegration of the upright thalli at high temperatures (>30 °C) promotes an ephemeral existence of these algae towards their southern boundaries. Each of the species have a rapid growth and reproductive potential between 15–30 °C with a broad optimum between 20–30 °C. The lower limit of survival of each species was at least 0 °C (tested in short days only). Growth and reproduction data imply that the restrictive distribution of these algae to the Americas may be due to the fact that for adequate growth and/or reproduction water temperatures must exceed 20 °C. At temperatures 15 °C reproduction and growth are limited, and the amphiatlantic distribution through Iceland would not be permitted. On the basis of experimental evidence, the species belonging to the warm-temperate Mediterranean Atlantic group(Halurus equisetifolius), Callophyllis laciniata, andHypoglossum woodwardii), have their northern boundaries determined by winter lethal temperatures. Growth ofH. equisetifolius proceeded from 10–25 °C, that ofC. laciniata andH. woodwardii from 5–25 °C, in each case with a narrow range for optimal growth at ca. 15 °C. Tetrasporelings ofH. woodwardii showed limited survival at 0 °C for up to 4 d. For all members of the group tetrasporangia occurred from 10–20 °C. The southern boundary ofH. equisetifolius andC. laciniata is a summer lethal temperature whereas that ofH. woodwardii possibly is a winter growth and reproduction limit. Since each member of this group has a rather narrow growth and survival potential at temperatures <5 °C and >20 °C, their occurrence in northeast America is unlikely. The (irregular) distribution ofSolieria tenera (amphiatlantic tropical-to-warm temperate) cannot be entirely explained by the experimental data (possibly as a result of taxonomic uncertainties).Paper presented at the Seaweed Biogeography Workshop of the International Working Group on Seaweed Biogeography, held from 3–7 April, 1984 at the Department of Marine Biology, University of Groningen (The Netherlands). Convenor: C. van den Hoek.  相似文献   

10.
The southeast coast of Australia is a global hotspot for increasing ocean temperatures due to climate change. The temperate incursion of the East Australian Current (EAC) is increasing, affording increased connectivity with the Great Barrier Reef. The survival of tropically sourced juveniles over the winter is a significant stumbling block to poleward range shifts of marine organisms in this region. Here we examine the dependence of overwintering on winter severity and prewinter recruitment for eight species of juvenile coral reef fishes which are carried into temperate SE Australia (30–37 °S) by the EAC during the austral summer. The probability of persistence was most strongly influenced by average winter temperature and there was no effect of recruitment strength. Long‐term (138 years) data indicate that winter water temperatures throughout this region are increasing at a rate above the global average and predictions indicate a further warming of >2 °C by the end of the century. Rising ocean temperatures are resulting in a higher frequency of winter temperatures above survival thresholds. Current warming trajectories predict 100% of winters will be survivable by at least five of the study species as far south as Sydney (34 °S) by 2080. The implications for range expansions of these and other species of coral reef fish are discussed.  相似文献   

11.
High temperature tolerance experiments performed on Pocillopora damicornis, a major reef-building coral in the tropical eastern Pacific, resulted in loss of zooxanthellae, histopathological abnormalities, and mortality similar to that observed during the severe 1982–83 El Niño-Southern Oscillation (ENSO) event. Coral vitality declined significantly at 30–32°C during a 10-week period, but remained high at normal temperatures (26–28°C). Laboratory time courses to coral morbidity and death were similar to those observed in the field. Experimental high temperatures had a greater negative effect on corals from the Gulf of Panama, which experiences seasonally cool upwellings, than on corals from the nonupwelling Gulf of Chiriqui. The condition of obligate symbiotic crustaceans (Trapezia, Alpheus) associated with experimental corals declined with their host's declining condition. All Gulf of Panama corals subjected to 32°C were dead after 5 weeks, and all of their associated crustacean symbionts were dead after 9 weeks. Gulf of Chiriqui corals at 30°C survived for 9 weeks and 42% of their crustacean symbionts were still alive after 10 weeks. Coral mortality in the Gulf of Panama was significantly higher (68.5%) after El Niño warming than after subsequent episodes of unusually intense cool upwellings (10.4%). Low temperature stress (cool currents and upwelling) has been generally suggested as the critical limiting condition that prevents extensive coral reef development in the eastern Pacific. Our results suggest that infrequent but severe ENSO sea warming events also may limit reef development in this region.  相似文献   

12.
D. S. Coxson 《Oecologia》1987,73(3):447-453
Summary The response of net photosynthesis (NP) and dark respiration to periods of high insolation exposure was examined in the tropical basidiomycete lichen Cora pavonia. Photoinhibition of NP proved quite dependant on temperature. Rates of light saturated NP were severely impaired immediately after pretreatment high light exposure at temperatures of 10, 20 and 40°C, while similar exposure at 30°C resulted in only minimal photoinhibition. Apparent quantum yield proved an even more sensitive indicator of photoinhibition, reduced in all temperature treatments, although inhibition was again greatest at low and high temperatures. Concurrent exposure to reduced O2 tensions during high light exposure mitigated some of the deleterious effects of high light exposure at 10 and 20°C, suggesting an interaction of O2 with the inactivation of photosynthetic function. This represents the first reported instance of light dependant chilling stress in lichens, and may be an important limitation on the distribution of this and other tropical lichen species. This narrow range of temperatures within which thalli of C. pavonia can withstand periods of high insolation exposure coincides with that faced by hydrated thalli during rare periods of high insolation exposure within the cloud/shroud zone on La Soufrière, and points to the necessity of considering periods of atypical or unusual climatic events when interpreting patterns of net photosynthetic response, both in tropical and in north temperate lichen species.  相似文献   

13.
Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008–2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources.  相似文献   

14.
Tropical reef corals are expanding on Japanese temperate coasts in response to rising sea surface temperatures, and many tropical fish juveniles have been observed routinely in these coral habitats. The present study explored how offshore tropical fish larvae locate coral habitat on the temperate coasts of Japan. Settlement-stage larvae were sampled between July and October 2009–2011 with light traps anchored on coral-replete and coral-free habitats (rocky habitats) at two-level distance (distance between each habitat type was 6 km and 500 m, respectively). Larval abundance was significantly higher on the coral-dominated habitat than that on the rocky habitat at both short and long distance sites, suggesting that coral habitats attract offshore tropical fish larvae. In underwater visual survey, Chaetodontidae and Pomacentridae juveniles were more abundant in coral habitats than in rocky habitats at both the sites, and a laboratory habitat choice experiment demonstrated that these larvae showed a preference for corals rather than rocks. In contrast, densities of juvenile Mullidae did not differ between the coral and rocky habitats, and the larvae did not show a substrate preference in the habitat choice experiment. These observations suggest that habitat choice at settlement possibly accounts for the differences in settlement patterns of tropical fishes between the two habitats. Taken together, our results showed that most tropical fish larvae colonize their settlement coast at a scale of ~0.5 km, and that they may locate coral habitats after reaching a reef. Moreover, the results suggest that coral habitat expansion on temperate coasts will lead to an increase in coral-associated tropical fishes and will change assemblage structures of fishes on temperate coasts.  相似文献   

15.
Hummingbird incubation: Female attentiveness and egg temperature   总被引:2,自引:0,他引:2  
Summary Incubating hummingbirds adjust nest attentiveness patterns in different habitats to permit both regulation of egg temperatures for embryonic development and foraging of the adult for positive energy balance. Anna's (Calype anna) and Black-chinned (Archilochus alexandri) Hummingbirds nesting in California chaparral left the nest six to nine times during each daylight hour. Eggs usually cooled only 3–6°C during absences but sometimes cooled up to 20°C during long absences. One Anna's Hummingbird became torpid for 4.5 h at night following a rainy day; the eggs survived cooling to 11°C and hatched two days later. A Costa's Hummingbird (Calypte costae) nesting in the California desert also left the nest several times per hour in early morning and late afternoon, but shaded the eggs almost continuously during the middle of the day. A Purple-crowned Fairy (Heliothryx barroti) in the warm lowland tropics of Panama left her eggs unattended for a few relatively long periods each day rather than many short periods as do temperate zone species. This pattern is typical of other tropical hummingbirds as well probably because equable ambient temperatures mean thermoregulation of eggs is not as critical a problem as it is in other habitats. In the temperate zone, hummingbirds exhibit behavioral adaptations (timing of reproduction, segmented foraging pattern) and physiological adaptations (torpor and hypothermia) for successful incubation. Embryonic development is successful even when egg temperatures fluctuate widely.  相似文献   

16.
The fish species Cyprinidon artifrons, Floridichthys carpio, and Gambusia yucatana inhabit shallow mangrove ponds off the coast of Belize. Portions of these ponds experience a diurnal temperature change from 26 °C at night to 40 °C and above during midday. Repeated field observations indicate Cyprinidon prefer the warmer (and much larger) portions of the ponds whereas the other two species stay in the cooler areas.The hypothesis that temperature is serving as a cue for partitioning within the ponds was supported by laboratory thermal gradient tests in which Cyprinidon preferred temperatures clearly higher than the other two species.The critical thermal maximum (CTM) was determined for the three species using members that had been acclimated to either a daily cycling temperature similar to that for the ponds, or to the mean of the 24-hour cycle (30 °C). Cyprinidon acclimated to the cycling temperature had a CTM of 45.5 °C, which apparently sets a new record for fish CTM. Acclimation to a constant 30 °C lowered the CTM to 43.7 °C. Floridichthys and Gambusia acclimated to the cycled temperature had CTMs of 43.9 and 43.3 °C respectively, and 42.5 and 42.6 °C for those acclimated to 30 °C.All three species appear to have the ability to tolerate the high temperatures throughout the ponds but only Cyprinidon utilize the whole pond during the day. This may help to explain the large populations of Cyprinodon found in these mangrove ponds compared to the other species.  相似文献   

17.
Beck  H. J.  Feary  D. A.  Nakamura  Y.  Booth  D. J. 《Coral reefs (Online)》2017,36(2):639-651

Warming waters and changing ocean currents are increasing the supply of tropical fish larvae to temperature regions where they are exposed to novel habitats, namely temperate macroalgae and barren reefs. Here, we use underwater surveys on the temperate reefs of south-eastern (SE) Australia and western Japan (~33.5°N and S, respectively) to investigate how temperate macroalgal and non-macroalgal habitats influence recruitment success of a range of tropical fishes. We show that temperate macroalgae strongly affected recruitment of many tropical fish species in both regions and across three recruitment seasons in SE Australia. Densities and richness of recruiting tropical fishes, primarily planktivores and herbivores, were over seven times greater in non-macroalgal than macroalgal reef habitat. Species and trophic diversity (K-dominance) were also greater in non-macroalgal habitat. Temperate macroalgal cover was a stronger predictor of tropical fish assemblages than temperate fish assemblages, reef rugosities or wave exposure. Tropical fish richness, diversity and density were greater on barren reef than on reef dominated by turfing algae. One common species, the neon damselfish (Pomacentrus coelestis), chose non-macroalgal habitat over temperate macroalgae for settlement in an aquarium experiment. This study highlights that temperate macroalgae may partly account for spatial variation in recruitment success of many tropical fishes into higher latitudes. Hence, habitat composition of temperate reefs may need to be considered to accurately predict the geographic responses of many tropical fishes to climate change.

  相似文献   

18.
Summary The kinetic properties of a trypsin-like protease — based on cleavage of an artificial substrate — were investigated in several crustacean species from the Weddell Sea and compared to those obtained from species from tropical, temperate and subarctic regions. Decisive steps of thermal acclimation occurred in the lower temperature range, resulting in pronounced cold adaptation of the Antarctic benthic species; this becomes evident from lowered activation energies of the trypsin-like proteases and in comparatively high enzymic activities at 0°C. In contrast, species living at high ambient temperatures are more favoured by thermostability at higher temperatures rather than by a change of activation energy.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

19.
Ten Canthigaster, jactator, tropical marine puffers from Hawaii, were tested individually for 3-day periods in electronic shuttle-boxes (Ichthyotrons) to determine their ability to thermoregulate behaviorally. These fish thermoregulated with a degree of precision comparable to that of temperate freshwater fishes: range 23–31°C, S.D. 1.8–2.4°C, S.E. 0.3–0.5° C. The modal final thermal preferendum was 27°C, comparable to temperate warmwater fishes. The mean preferred temperature did not differ significantly between night (26.5°C) and day (26.9°C); the 24-hr mean was 26.7°C. Apparently at least some tropical marine fishes are capable of thermoregulatory behavior similar to that of temperate freshwater fishes.  相似文献   

20.
A series of cold fronts passing over the western Arabian Gulf from December 1988 to March 1989 produced the longest period of sustained low water temperatures ever recorded in a coral reef area. Sea water temperatures recorded on two reefs during this period provide new estimates of lower thermal limits for reef coral survival. Severe mortality of the corals Acropora pharaonis and Platygyra daedalea occurred at the northern site where minimum temperatures fell below 11.5°C on four consecutive days and mean daily temperatures were 13°C or less for more than 30 days. However, Porites compressa, the principal reef-former in this area, and various faviid corals initially showed only sub-lethal effects and appeared normal after six months. Corals were not damaged at the southern site, where minimum water temperature fell below 12.5°C for two consecutive days, but mean temperatures were 14°C or less for only 5 non-consecutive days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号