首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Phospholamban(PLB) ablation is associated with enhanced sarcoplasmic reticulum (SR)Ca2+ uptake and attenuation of thecardiac contractile responses to -adrenergic agonists. In thepresent study, we compared the effects of isoproterenol (Iso) on theCa2+ currents(ICa) ofventricular myocytes isolated from wild-type (WT) and PLB knockout(PLB-KO) mice. Current density and voltage dependence ofICa were similarbetween WT and PLB-KO cells. However, ICa recorded fromPLB-KO myocytes had significantly faster decay kinetics. Iso increasedICa amplitude inboth groups in a dose-dependent manner (50% effective concentration,57.1 nM). Iso did not alter the rate ofICa inactivationin WT cells but significantly prolonged the rate of inactivation inPLB-KO cells. When Ba2+ was usedas the charge carrier, Iso slowed the decay of the current in both WTand PLB-KO cells. Depletion of SRCa2+ by ryanodine also slowed therate of inactivation ofICa, and subsequent application of Iso further reduced the inactivation rate ofboth groups. These results suggest that enhancedCa2+ release from the SR offsetsthe slowing effects of -adrenergic receptor stimulation on the rateof inactivation ofICa.

  相似文献   

2.
Decoding of fast cytosolic Ca2+ concentration ([Ca2+]i) transients by mitochondria was studied in permeabilized cat ventricular myocytes. Mitochondrial [Ca2+] ([Ca2+]m) was measured with fluo-3 trapped inside mitochondria after removal of cytosolic indicator by plasma membrane permeabilization with digitonin. Elevation of extramitochondrial [Ca2+] ([Ca2+]em) to >0.5 µM resulted in a [Ca2+]em-dependent increase in the rate of mitochondrial Ca2+ accumulation ([Ca2+]em resulting in half-maximal rate of Ca2+ accumulation = 4.4 µM) via Ca2+ uniporter. Ca2+ uptake was sensitive to the Ca2+ uniporter blocker ruthenium red and the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone and depended on inorganic phosphate concentration. The rates of [Ca2+]m increase and recovery were dependent on the extramitochondrial [Na+] ([Na+]em) due to Ca2+ extrusion via mitochondrial Na+/Ca2+ exchanger. The maximal rate of Ca2+ extrusion was observed with [Na+]em in the range of 20–40 mM. Rapid switching (0.25–1 Hz) of [Ca2+]em between 0 and 100 µM simulated rapid beat-to-beat changes in [Ca2+]i (with [Ca2+]i transient duration of 100–500 ms). No [Ca2+]m oscillations were observed, either under conditions of maximal rate of Ca2+ uptake (100 µM [Ca2+]em, 0 [Na+]em) or with maximal rate of Ca2+ removal (0 [Ca2+]em, 40 mM [Na+]em). The slow frequency-dependent increase of [Ca2+]m argues against a rapid transmission of Ca2+ signals between cytosol and mitochondria on a beat-to-beat basis in the heart. [Ca2+]m changes elicited by continuous or pulsatile exposure to elevated [Ca2+]em showed no difference in mitochondrial Ca2+ uptake. Thus in cardiac myocytes fast [Ca2+]i transients are integrated by mitochondrial Ca2+ transport systems, resulting in a frequency-dependent net mitochondrial Ca2+ accumulation. mitochondrial Ca2+; excitation-contraction coupling; cardiomyocytes  相似文献   

3.
Pancreatitis is an inflammatory disease of pancreatic acinar cells whereby intracellular calcium concentration ([Ca2+]i) signaling and enzyme secretion are impaired. Increased oxidative stress has been suggested to mediate the associated cell injury. The present study tested the effects of the oxidant, hydrogen peroxide, on [Ca2+]i signaling in rat pancreatic acinar cells by simultaneously imaging fura-2, to measure [Ca2+]i, and dichlorofluorescein, to measure oxidative stress. Millimolar concentrations of hydrogen peroxide increased cellular oxidative stress and irreversibly increased [Ca2+]i, which was sensitive to antioxidants and removal of external Ca2+, and ultimately led to cell lysis. Responses were also abolished by pretreatment with (sarco)endoplasmic reticulum Ca2+-ATPase inhibitors, unless cells were prestimulated with cholecystokinin to promote mitochondrial Ca2+ uptake. This suggests that hydrogen peroxide promotes Ca2+ release from the endoplasmic reticulum and the mitochondria and that it promotes Ca2+ influx. Lower concentrations of hydrogen peroxide (10–100 µM) increased [Ca2+]i and altered cholecystokinin-evoked [Ca2+]i oscillations with marked heterogeneity, the severity of which was directly related to oxidative stress, suggesting differences in cellular antioxidant capacity. These changes in [Ca2+]i also upregulated the activity of the plasma membrane Ca2+-ATPase in a Ca2+-dependent manner, whereas higher concentrations (0.1–1 mM) inactivated the plasma membrane Ca2+-ATPase. This may be important in facilitating "Ca2+ overload," resulting in cell injury associated with pancreatitis. oxidant stress; pancreatitis; calcium pump  相似文献   

4.
We previously showed that plasma membrane Ca2+-ATPase (PMCA) activity accounted for 25–30% of relaxation in bladder smooth muscle (8). Among the four PMCA isoforms only PMCA1 and PMCA4 are expressed in smooth muscle. To address the role of these isoforms, we measured cytosolic Ca2+ ([Ca2+]i) using fura-PE3 and simultaneously measured contractility in bladder smooth muscle from wild-type (WT), Pmca1+/–, Pmca4+/–, Pmca4–/–, and Pmca1+/–Pmca4–/– mice. There were no differences in basal [Ca2+]i values between bladder preparations. KCl (80 mM) elicited both larger forces (150–190%) and increases in [Ca2+]i (130–180%) in smooth muscle from Pmca1+/– and Pmca1+/–Pmca4–/– bladders than those in WT or Pmca4–/–. The responses to carbachol (CCh: 10 µM) were also greater in Pmca1+/– (120–150%) than in WT bladders. In contrast, the responses in Pmca4–/– and Pmca1+/–Pmca4–/– bladders to CCh were significantly smaller (40–50%) than WT. The rise in half-times of force and [Ca2+]i increases in response to KCl and CCh, and the concomitant half-times of their decrease upon washout of agonist were prolonged in Pmca4–/– (130–190%) and Pmca1+/–Pmca4–/– (120–250%) bladders, but not in Pmca1+/– bladders with respect to WT. Our evidence indicates distinct isoform functions with the PMCA1 isoform involved in overall Ca2+ clearance, while PMCA4 is essential for the [Ca2+]i increase and contractile response to the CCh receptor-mediated signal transduction pathway. PMCA; bladder smooth muscle; gene-altered mice  相似文献   

5.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

6.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

7.
Hypotonicswelling increases the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). The source of this Ca2+ is not clear. To study thesource of increase in [Ca2+]i in response tohypotonic swelling, we measured [Ca2+]i infura 2-loaded cultured VSMC (A7r5 cells). Hypotonic swelling produced a40.7-nM increase in [Ca2+]i that was notinhibited by EGTA but was inhibited by 1 µM thapsigargin. Priordepletion of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores with vasopressin did not inhibit the increasein [Ca2+]i in response to hypotonic swelling.Exposure of 45Ca2+-loaded intracellular storesto hypotonic swelling in permeabilized VSMC produced an increase in45Ca2+ efflux, which was inhibited by 1 µMthapsigargin but not by 50 µg/ml heparin, 50 µM ruthenium red, or25 µM thio-NADP. Thus hypotonic swelling of VSMC causes a release ofCa2+ from the intracellular stores from a novel sitedistinct from the IP3-, ryanodine-, and nicotinic acidadenine dinucleotide phosphate-sensitive stores.

  相似文献   

8.
The subcellular spatial and temporal organization ofagonist-induced Ca2+ signals wasinvestigated in single cultured vascular endothelial cells.Extracellular application of ATP initiated a rapid increase ofintracellular Ca2+ concentration([Ca2+]i)in peripheral cytoplasmic processes from where activation propagated asa[Ca2+]iwave toward the central regions of the cell. The average propagation velocity of the[Ca2+]iwave in the peripheral processes was 20-60 µm/s, whereas in thecentral region the wave propagated at <10 µm/s. The time course ofthe recovery of[Ca2+]idepended on the cell geometry. In the peripheral processes (i.e.,regions with a high surface-to-volume ratio)[Ca2+]ideclined monotonically, whereas in the central region[Ca2+]idecreased in an oscillatory fashion. Propagating[Ca2+]iwaves were preceded by small, highly localized[Ca2+]itransients originating from 1- to 3-µm-wide regions. The average amplitude of these elementary events ofCa2+ release was 23 nM, and theunderlying flux of Ca2+ amountedto ~1-2 × 1018mol/s or ~0.3 pA, consistent with aCa2+ flux through a single orsmall number of endoplasmic reticulum Ca2+-release channels.

  相似文献   

9.
Mitochondria show extensive movement along neuronal processes, but the mechanisms and function of this movement are not clearly understood. We have used high-resolution confocal microscopy to simultaneously monitor movement of mitochondria and changes in intracellular [Ca2+] ([Ca2+]i) in rat cortical neurons. A significant percentage (27%) of the total mitochondria in cortical neuronal processes showed movement over distances of >2 µM. The average velocity was 0.52 µm/s. The velocity, direction, and pattern of mitochondrial movement were not affected by transient increases in [Ca2+]i associated with spontaneous firing of action potentials. Stimulation of Ca2+ transients with forskolin (10 µM) or bicuculline (10 µM), or sustained elevations of [Ca2+]i evoked by glutamate (10 µM) also had no effect on mitochondrial transit. Neither removal of extracellular Ca2+, depletion of intracellular Ca2+ stores with thapsigargin, or inhibition of synaptic activity with TTX (1 µM) or a cocktail of CNQX (10 µM) and MK801 (10 µM) affected mitochondrial movement. These results indicate that movement of mitochondria along processes is a fundamental activity in neurons that occurs independently of physiological changes in [Ca2+]i associated with action potential firing, synaptic activity, or release of Ca2+ from intracellular stores. calcium transient; dendrites  相似文献   

10.
We examined the effectsof metabolic inhibition on intracellular Ca2+ release insingle pulmonary arterial smooth muscle cells (PASMCs). Severemetabolic inhibition with cyanide (CN, 10 mM) increased intracellularcalcium concentration ([Ca2+]i) and activatedCa2+-activated Cl currents[ICl(Ca)] in PASMCs, responses that were greatlyinhibited by BAPTA-AM or caffeine. Mild metabolic inhibition with CN (1 mM) increased spontaneous transient inward currents andCa2+ sparks in PASMCs. In Xenopus oocytes, CNalso induced Ca2+ release and activatedICl(Ca), and these responses were inhibited by thapsigarginand cyclopiazonic acid to deplete sarcoplasmic reticulum (SR)Ca2+, whereas neither heparin nor anti-inositol1,4,5-trisphosphate receptor (IP3R) antibodies affected CNresponses. In both PASMCs and oocytes, CN-evoked Ca2+release was inhibited by carbonyl cyanidem-chlorophenylhydrazone (CCCP) and oligomycin or CCCP andthapsigargin. Whereas hypoxic stimuli resulted in Ca2+release in pulmonary but not mesenteric artery myocytes, CN induced release in both cell types. We conclude that metabolic inhibition withCN increases [Ca2+]i in both pulmonary andsystemic artery myocytes by stimulating Ca2+ release fromthe SR and mitochondria.

  相似文献   

11.
In fura 2-loaded N1E-115 cells, regulationof intracellular Ca2+ concentration([Ca2+]i) following a Ca2+ loadinduced by 1 µM thapsigargin and 10 µM carbonylcyanidep-trifluoromethyoxyphenylhydrazone (FCCP) wasNa+ dependent and inhibited by 5 mM Ni2+. Incells with normal intracellular Na+ concentration([Na+]i), removal of bath Na+,which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unlesscell Ca2+ buffer capacity was reduced. When N1E-115 cellswere Na+ loaded using 100 µM veratridine and 4 µg/mlscorpion venom, the rate of the reverse mode of theNa+/Ca2+ exchanger was apparently enhanced,since an ~4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loadedcells, we were able to demonstrate forward operation of theNa+/Ca2+ exchanger (net efflux ofCa2+) by observing increases (~ 6 mM) in[Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could onlybe observed when a continuous ionomycin-induced influx ofCa2+ occurred. The voltage-sensitive dyebis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used tomeasure changes in membrane potential. Ionomycin (1 µM) depolarizedN1E-115 cells (~25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250-500 µMbenzamil. These data provide evidence for the presence of anelectrogenic Na+/Ca2+ exchanger that is capableof regulating [Ca2+]i after release ofCa2+ from cell stores.

  相似文献   

12.
To study the effects of -opioid receptor stimulation onintracellular Ca2+ concentration([Ca2+]i)homeostasis during extracellular acidosis, we determined the effects of-opioid receptor stimulation on[Ca2+]iresponses during extracellular acidosis in isolated single ratventricular myocytes, by a spectrofluorometric method. U-50488H (10-30 µM), a selective -opioid receptor agonist, dosedependently decreased the electrically induced[Ca2+]itransient, which results from the influx ofCa2+ and the subsequentmobilization of Ca2+ from thesarcoplasmic reticulum (SR). U-50488H (30 µM) also increased theresting[Ca2+]iand inhibited the[Ca2+]itransient induced by caffeine, which mobilizesCa2+ from the SR, indicating thatthe effects of the -opioid receptor agonist involved mobilization ofCa2+ from its intracellular poolinto the cytoplasm. The Ca2+responses to 30 µM U-50488H were abolished by 5 µMnor-binaltorphimine, a selective -opioid receptorantagonist, indicating that the event was mediated by the -opioidreceptor. The effects of the agonist on[Ca2+]iand the electrically induced[Ca2+]itransient were significantly attenuated when the extracellular pH(pHe) was loweredto 6.8, which itself reduced intracellular pH(pHi) and increased[Ca2+]i.The inhibitory effects of U-50488H were restored during extracellular acidosis in the presence of 10 µM ethylisopropyl amiloride, a potentNa+/H+exchange blocker, or 0.2 mM Ni2+,a putativeNa+/Ca2+exchange blocker. The observations indicate that acidosismay antagonize the effects of -opioid receptor stimulation viaNa+/H+andNa+/Ca2+exchanges. When glucose at 50 mM, known to activate theNa+/H+exchange, was added, both the resting[Ca2+]iand pHi increased. Interestingly,the effects of U-50488H on [Ca2+]iand the electrically induced[Ca2+]itransient during superfusion with glucose were significantly attenuated; this mimicked the responses during extracellular acidosis. When a high-Ca2+ (3 mM) solutionwas superfused, the resting[Ca2+]iincreased; the increase was abolished by 0.2 mMNi2+, but thepHi remained unchanged. Like theresponses to superfusion with high-concentration glucose andextracellular acidosis, the responses of the[Ca2+]iand electrically induced[Ca2+]itransients to 30 µM U-50488H were also significantly attenuated. Results from the present study demonstrated for the first time thatextracellular acidosis antagonizes the effects of -opioid receptorstimulation on the mobilization ofCa2+ from SR. Activation of bothNa+/H+andNa+/Ca2+exchanges, leading to an elevation of[Ca2+]i,may be responsible for the antagonistic action of extracellular acidosis against -opioid receptor stimulation.

  相似文献   

13.
AlF4-is known to generate oscillations in intracellular Ca2+ concentration ([Ca2+]i) by activating G proteins in many cell types. However, in rat pancreatic acinar cells, AlF4--evoked [Ca2+]i oscillations were reported to be dependent on extracellular Ca2+, which contrasts with the [Ca2+]i oscillations induced by cholecystokinin (CCK). Therefore, we investigated the mechanisms by which AlF4- generates extracellular Ca2+-dependent [Ca2+]i oscillations in rat pancreatic acinar cells. AlF4--induced [Ca2+]i oscillations were stopped rapidly by the removal of extracellular Ca2+ and were abolished on the addition of 20 mM caffeine and 2 µM thapsigargin, indicating that Ca2+ influx plays a crucial role in maintenance of the oscillations and that an inositol 1,4,5-trisphosphate-sensitive Ca2+ store is also required. The amount of Ca2+ in the intracellular Ca2+ store was decreased as the AlF4--induced [Ca2+]i oscillations continued. Measurement of 45Ca2+ influx into isolated microsomes revealed that AlF4-directly inhibited sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). The activity of plasma membrane Ca2+-ATPase during AlF4- stimulation was not significantly different from that during CCK stimulation. After partial inhibition of SERCA with 1 nM thapsigargin, 20 pM CCK-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+. This study shows that AlF4- induces [Ca2+]i oscillations, probably by inositol 1,4,5-trisphosphate production via G protein activation but that these oscillations are strongly dependent on extracellular Ca2+ as a result of the partial inhibition of SERCA. cholecystokinin; plasma membrane adenosine 5'-triphosphatase; G proteins; caffeine  相似文献   

14.
The myoplasmic free Ca2+concentration([Ca2+]i)was measured in intact single fibers from mouse skeletal muscle withthe fluorescent Ca2+ indicatorindo 1. Some fibers were perfused in a solution in which theconcentration of Na+ was reducedfrom 145.4 to 0.4 mM (low-Na+solution) in an attempt to activate reverse-modeNa+/Ca2+exchange (Ca2+ entry in exchangefor Na+ leaving the cell). Undernormal resting conditions, application oflow-Na+ solution only increased[Ca2+]iby 5.8 ± 1.8 nM from a mean resting[Ca2+]iof 42 nM. In other fibers,[Ca2+]iwas elevated by stimulating sarcoplasmic reticulum (SR)Ca2+ release with caffeine (10 mM)and by inhibiting SR Ca2+ uptakewith2,5-di(tert-butyl)-1,4-benzohydroquinone(TBQ; 0.5 µM) in an attempt to activate forward-modeNa+/Ca2+exchange (Ca2+ removal from thecell in exchange for Na+ influx).These two agents caused a large increase in[Ca2+]i,which then declined to a plateau level approximately twice the baseline[Ca2+]iover 20 min. If the cell was allowed to recover between exposures tocaffeine and TBQ in a solution in whichCa2+ had been removed, theincrease in[Ca2+]iduring the second exposure was very low, suggesting thatCa2+ had left the cell during theinitial exposure. Application of caffeine and TBQ to a preparation inlow-Na+ solution produced a large,sustained increase in[Ca2+]iof ~1 µM. However, when cells were exposed to caffeine and TBQ in alow-Na+ solution in whichCa2+ had been removed, a sustainedincrease in[Ca2+]iwas not observed, although[Ca2+]iremained higher and declined slower than in normalNa+ solution. This suggests thatforward-modeNa+/Ca2+exchange contributed to the fall of[Ca2+]iin normal Na+ solution, but whenextracellular Na+ was low, aprolonged elevation of[Ca2+]icould activate reverse-modeNa+/Ca2+exchange. The results provide evidence that skeletal muscle fibers possess aNa+/Ca2+exchange mechanism that becomes active in its forward mode when [Ca2+]iis increased to levels similar to that obtained during contraction.

  相似文献   

15.
The hypothesisthat vascular protection in females and its absence in males reflectsgender differences in [Ca2+]i andCa2+ mobilization mechanisms of vascular smooth musclecontraction was tested in fura 2-loaded aortic smooth muscle cellsisolated from intact and gonadectomized male and female Wistar-Kyoto(WKY) and spontaneously hypertensive (SHR) rats. In WKY cells incubated in Hanks' solution (1 mM Ca2+), the resting length and[Ca2+]i were significantlydifferent in intact males (64.5 ± 1.2 µm and 83 ± 3 nM) than inintact females (76.5 ± 1.5 µm and 64 ± 7 nM). In intact male WKY,phenylephrine (Phe, 105 M) caused transient increasein [Ca2+]i to 428 ± 13 nMfollowed by maintained increase to 201 ± 8 nM and 32% cellcontraction. In intact female WKY, the Phe-induced [Ca2+]i transient was notsignificantly different, but the maintained [Ca2+]i (159 ± 7 nM) and cellcontraction (26%) were significantly less than in intact male WKY. InCa2+-free (2 mM EGTA) Hanks', Phe and caffeine (10 mM)caused transient increases in[Ca2+]i and contraction that werenot significantly different between males and females. Membranedepolarization by 51 mM KCl caused 31% cell contraction and increased[Ca2+]i to 259 ± 9 nM in intactmale WKY, which were significantly greater than a 24% contraction and214 ± 8 nM [Ca2+]i in intactfemale WKY. Maintained Phe- and KCl-stimulated cell contraction and[Ca2+]i were significantly greaterin SHR than WKY in all groups of rats. Reduction in cell contractionand [Ca2+]i in intact femalescompared with intact males was significantly greater in SHR (~30%)than WKY (~20%). No significant differences in cell contraction or[Ca2+]i were observed betweencastrated males, ovariectomized (OVX) females, and intact males, orbetween OVX females with 17-estradiol implants and intact females.Exogenous application of 17-estradiol (108 M) tocells from OVX females caused greater reduction in Phe- and KCl-inducedcontraction and [Ca2+]i in SHR thanWKY. Thus the basal, maintained Phe- and depolarization-induced [Ca2+]i and contraction of vascularsmooth muscle triggered by Ca2+ entry from theextracellular space exhibit differences depending on gender and thepresence or absence of female gonads. Cell contraction and[Ca2+]i due to Ca2+release from the intracellular stores are not affected by gender or gonadectomy. Gender-specific reduction in contractility and [Ca2+]i in vascular smoothmuscle of female rats is greater in SHR than WKY rats.

  相似文献   

16.
Effects of cytoplasmic Ca2+ on the electrical properties ofthe plasma membrane were investigated in tonoplast-free cellsof Chara australis that had been internally perfused with media,containing either 1 mM ATP to fuel the electrogenic pump orhexokinase and glucose to deplete the ATP and stop the pump. In the presence of ATP, cytoplasmic Ca2+ up to 2.5?10–5M did not affect the membrane potential (about -190 mV), butmembrane resistance decreased uniformly with increasing [Ca2+]i.In the absence of ATP, the membrane potential, which was onlyabout -110 mV, was depolarized further by raising [Ca2+]i from1.4?10–6 to 2.5?10–5 M. Membrane resistance, whichwas nearly the twofold that of ATP-provided cells, decreasedmarkedly with an increase in [Ca2+]i from zero to 1.38?10–6M, but showed no change for further increases. Internodal cellsof Nitellopsis obtusa were more sensitive to intracellular Ca2+with respect to membrane potential than were those of Charaaustralis, reconfirming the results obtained by Mimura and Tazawa(1983). The effect of cytoplasmic Ca2+ on the ATP-dependent H+ effluxwas measured. No marked difference in H+ effluxes was detectedbetween zero and 2.5?10–5 M [Ca2+]i; but, at 10–4M the ATP-dependent H+ efflux was almost zero. Ca2+ efflux experimentswere done to investigate dependencies on [Ca2+]i and [ATP]i.The efflux was about 1 pmol cm–2 s–1 at all [Ca2+]iconcentrations tested (1.38?10–6, 2.5?10–5, 10–4M).This value is much higher than the influx reported by Hayamaet al. (1979), and this efflux was independent of [ATP]i. Thepossibility of a Ca2+-extruding pump is discussed. 1 Present address: Botanisches Institut der Universit?t Bonn,Venusbergweg 22, 5300 Bonn, F.R.G. (Received September 22, 1984; Accepted February 19, 1985)  相似文献   

17.
The purpose ofthe present study was to determine whether cyclic ADP-ribose (cADPR)acts as a second messenger forCa2+ release through ryanodinereceptor (RyR) channels in tracheal smooth muscle (TSM). Freshlydissociated porcine TSM cells were permeabilized with -escin, andreal-time confocal microscopy was used to examine changes inintracellular Ca2+ concentration([Ca2+]i).cADPR (10 nM-10 µM) induced a dose-dependent increase in [Ca2+]i,which was blocked by the cADPR receptor antagonist 8-amino-cADPR (20 µM) and by the RyR blockers ruthenium red (10 µM) and ryanodine (10 µM), but not by the inositol 1,4,5-trisphosphate receptor blockerheparin (0.5 mg/ml). During steady-state[Ca2+]ioscillations induced by acetylcholine (ACh), addition of 100 nM and 1 µM cADPR increased oscillation frequency and decreased peak-to-troughamplitude. ACh-induced[Ca2+]ioscillations were blocked by 8-amino-cADPR; however, 8-amino-cADPR didnot block the[Ca2+]iresponse to a subsequent exposure to caffeine. These results indicatethat cADPR acts as a second messenger forCa2+ release through RyR channelsin TSM cells and may be necessary for initiating ACh-induced[Ca2+]ioscillations.

  相似文献   

18.
Palytoxin is a coral toxin that seriously impairs heart function, but its effects on excitation-contraction (E-C) coupling have remained elusive. Therefore, we studied the effects of palytoxin on mechanisms involved in atrial E-C coupling. In field-stimulated cat atrial myocytes, palytoxin caused elevation of diastolic intracellular Ca2+ concentration ([Ca2+]i), a decrease in [Ca2+]i transient amplitude, Ca2+ alternans followed by [Ca2+]i waves, and failures of Ca2+ release. The decrease in [Ca2+]i transient amplitude occurred despite high sarcoplasmic reticulum (SR) Ca2+ load. In voltage-clamped myocytes, palytoxin induced a current with a linear current-voltage relationship (reversal potential 5 mV) that was blocked by ouabain. Whole cell Ca2+ current and ryanodine receptor Ca2+ release channel function remained unaffected by the toxin. However, palytoxin significantly reduced Ca2+ pumping of isolated SR vesicles. In current-clamped myocytes stimulated at 1 Hz, palytoxin induced a depolarization of the resting membrane potential that was accompanied by delayed afterdepolarizations. No major changes of action potential configuration were observed. The results demonstrate that palytoxin interferes with the function of the sarcolemmal Na+-K+ pump and the SR Ca2+ pump. The suggested mode of palytoxin toxicity in the atrium involves the conversion of Na+-K+ pumps into nonselective cation channels as a primary event followed by depolarization, Na+ accumulation, and Ca2+ overload, which, in turn, causes arrhythmogenic [Ca2+]i waves and delayed afterdepolarizations. atrial myocytes; intracellular calcium  相似文献   

19.
We examined the effects of dissolved nitric oxide (NO) gas oncytoplasmic calcium levels ([Ca2+]i) in C6glioma cells under anoxic conditions. The maximum elevation (27 ± 3 nM) of [Ca2+]i was reached at 10 µM NO. Asecond application of NO was ineffective if the first was >0.5 µM.The NO donor diethylamine/NO mimicked the effects of NO. Acute exposureof the cells to low calcium levels was without effect on the NO-evokedresponse. Thapsigargin (TG) increased [Ca2+]iand was less effective if cells were pretreated with NO. Hemoglobin inhibited the effects of NO at a molar ratio of 10:1. 8-Bromo-cGMP waswithout effect on the NO-evoked response. If cells were pretreated withTG or exposed chronically to nominal amounts of calcium, NO decreased[Ca2+]i. The results suggest that C6 gliomacells have two receptors for NO. One receptor (NOA)elevates [Ca2+]i and resides on theendoplasmic reticulum (ER). The other receptor (NOB)decreases [Ca2+]i and resides on theplasmalemma or the ER. The latter receptor dominates when the level ofcalcium within intracellular stores is diminished.

  相似文献   

20.
The repeated elevation of cytosolic Ca2+ concentration ([Ca2+]i) above resting levels during contractile activity has been associated with long-lasting muscle fatigue. The mechanism underlying this fatigue appears to involve elevated [Ca2+]i levels that induce disruption of the excitation-contraction (E-C) coupling process at the triad junction. Unclear, however, are which aspects of the activity-related [Ca2+]i changes are responsible for the deleterious effects, in particular whether they depend primarily on the peak [Ca2+]i reached locally at particular sites or on the temporal summation of the increased [Ca2+] in the cytoplasm as a whole. In this study, we used mechanically skinned fibers from rat extensor digitorum longus muscle, in which the normal E-C coupling process remains intact. The [Ca2+]i was raised either by applying a set elevated [Ca2+] throughout the fiber or by using action potential stimulation to induce the release of sarcoplasmic reticulum Ca2+ by the normal E-C coupling system with or without augmentation by caffeine or buffering with BAPTA. Herein we show that elevating [Ca2+]i in the physiological range of 2–20 µM irreversibly disrupts E-C coupling in a concentration-dependent manner but requires exposure for a relatively long time (1–3 min) to cause substantial uncoupling. The effectiveness of Ca2+ released via the endogenous system in disrupting E-C coupling indicates that the relatively high [Ca2+]i attained close to the release site at the triad junction is a more important factor than the increase in bulk [Ca2+]i. Our results suggest that during prolonged vigorous activity, the many repeated episodes of relatively high triadic [Ca2+] can disrupt E-C coupling and lead to long-lasting fatigue. skeletal muscle; low-frequency fatigue; ryanodine receptor; skinned fiber  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号