首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transport of uridine into rabbit renal outer-cortical brush-border and basolateral membrane vesicles was compared at 22 degrees C. Uridine was taken up into an osmotically active space in the absence of metabolism for both types of membrane vesicles. Uridine influx by brush-border membrane vesicles was stimulated by Na+, and in the presence of inwardly directed gradients of Na+ a transient overshoot phenomenon was observed, indicating active transport. Kinetic analysis of the saturable Na+-dependent component of uridine flux indicated that it was consistent with Michaelis-Menten kinetics (Km 12 +/- 3 microM, Vmax. 3.9 +/- 0.9 pmol/s per mg of protein). The sodium:uridine coupling stoichiometry was found to be consistent with 1:1 and involved the net transfer of positive charge. In contrast, uridine influx by basolateral membrane vesicles was not dependent on the cation present and was inhibited by nitrobenzylthioinosine (NBMPR). NBMPR-sensitive uridine transport was saturable (Km 137 +/- 20 microM, Vmax. 5.2 +/- 0.6 pmol/s per mg of protein). Inhibition of uridine flux by NBMPR was associated with high-affinity binding of NBMPR to the basolateral membrane (Kd 0.74 +/- 0.46 nM). Binding of NBMPR to these sites was competitively blocked by adenosine and uridine. These results indicate that uridine crosses the brush-border surface of rabbit proximal renal tubule cells by Na+-dependent pathways, but permeates the basolateral surface by NBMPR-sensitive facilitated-diffusion carriers.  相似文献   

2.
The mechanisms of water transport across the rabbit renal proximal convoluted tubule were approached by measuring osmotic permeabilities and solute reflection coefficients of the brush-border and the basolateral membranes. Plasma and intracellular membrane vesicles were isolated from rabbit renal cortex by centrifugation on a Percoll gradient. Three major turbidity bands were obtained: a fraction of purified basolateral membranes (BLMV), the two others being brush-border (BBMV) and endoplasmic reticulum (ERMV) membrane vesicles. The osmotic permeability (Pf) of the three types of vesicle was measured using stop-flow techniques and their geometry was determined by quasi-elastic light scattering. Pf was equal to 123 +/- 8 microns/s (n = 10) for BBMV, 166 +/- 10 microns/s (n = 10) for BLMV and 156 +/- 9 microns/s (n = 4) for ERMV (T = 26 degrees C). A transcellular water permeability, per unit of apical surface area, of 71 microns/s was calculated considering that the luminal and the basolateral membranes act as two conductances in series. This value is in close agreement, after appropriate normalizations, with previously reported transepithelial water permeabilities obtained using in vitro microperfusion techniques thus supporting the hypothesis of a predominantly transcellular route for water flow across rabbit proximal convoluted tubule. The addition of 0.4 mM HgCl2, a sulfhydryl reagent, decreased Pf about 60% in three types of membrane providing evidence for the existence of proteic pathways. NaCl and KCl reflection coefficients were measured and found to be close to one for plasma and intracellular membranes suggesting that the water channels are not shared by salts.  相似文献   

3.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

4.
The effects of aminoglycoside antibiotics on plasma membranes were studied using rat renal basolateral and brush-border membrane vesicles. 3',4'-Dideoxykanamycin was bound to the basolateral membrane and brush-border membrane vesicles. They had a single class of binding sites with nearly the same constant, and the basolateral membrane vesicles had more binding sites than those of the brush-border membrane. Dideoxykanamycin B was transported into the intravesicular space of brush-border membrane vesicles, but not into that of basolateral membrane vesicles. The (Na+ + K+)-ATPase activity of the plasma membrane fraction prepared from the kidney of rat administered with dideoxykanamycin B intravenously decreased significantly. Aminoglycoside antibiotics entrapped in the basolateral membrane vesicles inhibited (Na+ + K+)-ATPase activity, but those added to the basolateral membrane vesicles externally failed to do so. The activity of (Na+ + K+)-ATPase was non-competitively inhibited by gentamicin. It is thus concluded that aminoglycoside antibiotics are taken up into the renal proximal tubular cells across the brush-border membrane and inhibit the (Na+ + K+)-ATPase activity of basolateral membrane. This inhibition may possibly disrupt the balance of cellular electrolytes, leading to a cellular dysfunction, and consequently to the development of aminoglycoside antibiotics' nephrotoxicity.  相似文献   

5.
Three chlorophyll-protein complexes have been resolved from blue-green algae using an improved procedure for membrane solubilization and electrophoretic fractionation. One complex has a red absorbance maximum of 676 nm and a molecular weight equivalency of 255 000 +/- 15 000. A second complex has an absorbance maximum of 676 nm, a molecular weight equivalency of 118 000 +/- 8000, and resembles the previously described P-700-chlorophyll a-protein (CPI) of higher plants and algae. The third chlorophyll-protein has a red absorbance maximum of 671 nm and a molecular weight equivalency of 58 000 +/- 5000. Blue-green algal membrane fractions enriched in Photosystem I and heterocyst cells do not contain this third chlorophyll-protein, whereas Photosystem II-enriched membrane fractions and vegetative cells do. A component of the same spectral characteristics and molecular weight equivalency was also observed in chlorophyll b-deficient mutants of barley and maize. It is hypothesized that this third complex is involved in some manner with Photosystem II.  相似文献   

6.
Summary A new procedure for the rapid isolation of renal cortical brush-border and basolateral membranes from the same homogenate is described. Brush-border membranes isolated using Mg2+-EGTA precipitation were enriched 18-fold for leucine aminopeptidase and had a recovery of 32.5%. Basolateral membrane fractions were isolated using a discontinuous sucrose gradient and showed an enrichment of 10.7-fold and recovery of 12.8% using (Na+, K+)-ATPase as a marker enzyme. Lipid analysis using two-dimensional TLC separation of phospholipids and gas liquid chromatography for cholesterol showed marked differences in the lipid composition of the brush-border and basolateral membranes. The brush-border membrane had increased sphingomyelin, phosphatidylserine, ethanolamine plasmalogens, and an increased cholesterol-to-phospholipid and sphingomyelin-to-phosphatidylcholine ratio compared to the basolateral membrane. The relative turnover of total membrane and individual phospholipid species using a double isotope ratio method was carried out. Phospholipids were labeled with either phosphorus 32 and 33 or acetate (3H, 1-14C). The relative turnover of phospholipid species and cholesterol differed strikingly. Phosphatidylcholine showed a high turnover, phosphatidylethanolamine and phosphatidylinositol had intermediate values and sphingomyelin, phosphatidylserine and cholesterol had low relative turnover rates. The order of phospholipid class relative turnover was independent of the labeled precursor used. The brush-border membrane had a significantly reduced relative turnover rate for total membrane phospholipids, sphingomyelin and cholesterol compared to the basolateral membrane. These data show marked differences in the lipid composition and relative turnover rates of the phospholipid species of the brush-border and basolateral membranes. They provide a biochemical basis for the recently reported differences in brush-border and basolateral membrane fluidity and suggest independent cellular regulation of brush-border and basolateral membrane lipids.  相似文献   

7.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

8.
The effects of temperature acclimation of carp upon the hydrocarbon order of intestinal membranes has been determined. A fractionation technique has been developed for the simultaneous purification of brush-border and basolateral membrane fractions from the intestinal mucosa. The specific activity of alkaline phosphatase in the brush-border fraction was enhanced 6.4-fold over that of the initial homogenate, whilst the (Na(+)-K+)-stimulated ATPase was enhanced 5.8-fold in the basolateral fraction. The specific activities of NADPH-cytochrome-c reductase, succinate-cytochrome-c reductase and acid phosphatase were not increased in these two fractions. Membrane hydrocarbon order in membranes from 10 and 30 degrees C-acclimated carp has been compared by measuring the steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene over a range of temperatures. In the brush-border fraction, polarization was identical in both cold- and warm-acclimated groups, whilst large differences were observed in the basolateral fraction sufficient to offset approx. 75% of the temperature-induced ordering effects of cold. The fatty acid composition of the major phosphoglyceride fractions in the brush-border fraction was also largely unaffected by thermal acclimation, whilst the basolateral fraction showed significant increases in the proportion of unsaturated fatty acids in the cold. It is concluded that whilst the basolateral membrane of intestinal mucosa displays a large homoeoviscous response that correlates with a shift in lipid composition, the brush-border membrane does not. These findings are consistent with evidence of functional adaptations of the basolateral membrane during thermal acclimation (Gibson, J.S., Ellory, J.C. and Cossins, A.R. (1985) J. Exp. Biol. 114, 355-364).  相似文献   

9.
Target sizes of the renal sodium-D-glucose cotransport system in brush-border membranes of calf kidney cortex were estimated by radiation inactivation. In brush-border vesicles irradiated at -50 degrees C with 1.5 MeV electron beams, sodium-dependent phlorizin binding, and Na+-dependent D-glucose tracer exchange decreased exponentially with increasing doses of radiation (0.4-4.4 Mrad). Inactivation of phlorizin binding was due to a reduction in the number of high-affinity phlorizin binding sites but not in their affinity. The molecular weight of the Na+-dependent phlorizin binding unit was estimated to be 230 000 +/- 38 000. From the tracer exchange experiments a molecular weight of 345 000 +/- 24 500 was calculated for the D-glucose transport unit. The validity of these target size measurements was established by concomitant measurements of two brush-border enzymes, alkaline phosphatase and gamma-glutamyltransferase, whose target sizes were found to be 68 570 +/- 2670 and 73 500 +/- 2270, respectively. These findings provide further evidence for the assumption that the sodium-D-glucose cotransport system is a multimeric structure, in which distinct complexes are responsible for phlorizin binding and D-glucose translocation.  相似文献   

10.
A rapid and reproducible method has been developed for the simultaneous isolation of basolateral and brush-border membranes from the rabbit renal cortex. The basolateral membrane preparation was enriched 25-fold in (Na+ + K+)-ATPase and the brush-border membrane fraction was enriched 12-fold in alkaline phosphatase, whereas the amount of cross-contamination was low. Contamination of these preparations by mitochondria and lysosomes was minimal as indicated by the low specific activities of enzyme markers, i.e., succinate dehydrogenase and acid phosphatase. The basolateral fraction consisted of 35-50% sealed vesicles, as demonstrated by detergent (sodium dodecyl sulfate) activation of (Na+ + K+)-ATPase activity and [3H]ouabain binding. The sidedness of the basolateral membranes was estimated from the latency of ouabain-sensitive (Na+ + K+)-ATPase activity assayed in the presence of gramicidin, which renders the vesicles permeable to Na+ and K+. These studies suggest that nearly 90% of the vesicles are in a right-side-out orientation.  相似文献   

11.
Brush-border membrane vesicles prepared from rabbit kidney cortex were incubated at 37 degrees C for 30 min with phosphatidylinositol-specific phospholipase C. This maneuver resulted in a release of approx. 85% of the brush-border membrane-linked enzyme alkaline phosphatase as determined by its enzymatic activity. Transport of inorganic [32P]phosphate (100 microM) by the PI-specific phospholipase C-treated brush-border membrane vesicles was measured at 20-22 degrees C in the presence of an inwardly directed 100 mM Na+ gradient. Neither initial uptake rates, as estimated from 10-s uptake values (103.5 +/- 6.8%, n = 7 experiments), nor equilibrium uptake values, measured after 2 h (102 +/- 3.4%) were different from controls (100%). Control and PI-specific phospholipase C-treated brush-border membrane vesicles were extracted with chloroform/methanol to obtain a proteolipid fraction which has been shown to bind Pi with high affinity and specificity (Kessler, R.J., Vaughn, D.A. and Fanestil, D.D. (1982) J. Biol. Chem. 257, 14311-14317). Phosphate binding (at 10 microM Pi) by the extracted proteolipid was measured. No significant difference in binding was observed between the two types of preparations: 31.0 +/- 9.37 in controls and 29.8 +/- 8.3 nmol/mg protein in the proteolipid extracted from PI-specific phospholipase C-treated brush-border membrane vesicles. It appears therefore that alkaline phosphatase activity is essential neither for Pi transport by brush-border membrane vesicles nor for Pi binding by proteolipid extracted from brush-border membrane. These results dissociate alkaline phosphatase activity, but not brush-border membrane vesicle transport of phosphate, from phosphate binding by proteolipid.  相似文献   

12.
In our previous paper (Yanase, M. et al. (1983) Biochim. Biophys. Acta 733, 95-101) we reported that the Na+-dependent D-glucose uptake into brush-border membrane vesicles is decreased in rabbits with experimental Fanconi syndrome (induced by anhydro-4-epitetracycline). In the present paper we investigate the mechanism underlying this decrease. D-Glucose is taken up into the osmotically active space in anhydro-4-epitetracycline-treated brush-border membrane vesicles and exhibits the same distribution volume and the same degree of nonspecific binding and trapping as in control brush-border membrane vesicles. The passive permeability properties of control and anhydro-4-epitetracycline-treated brush-border membrane vesicles are shown to be the same as measured by the time-dependence of L-glucose efflux from brush-border membrane vesicles. D-Glucose flux was measured by the equilibrium exchange procedure at constant external and internal Na+ concentrations and zero potential. Kinetic analyses of Na+-dependent D-glucose flux indicate that Vmax in anhydro-4-epitetracycline-treated brush-border membrane vesicles (79.3 +/- 7.6 nmol/min per mg protein) is significantly smaller than in control brush-border membrane vesicles (141.3 +/- 9.9 nmol/min per mg protein), while the Km values in the two cases are not different from each other (22.3 +/- 0.9 and 27.4 +/- 1.8 mM, respectively). These results suggest that Na+-dependent D-glucose carriers per se are affected by anhydro-4-epitetracycline, and that this disorder is an important underlying mechanism in the decreased Na+-dependent D-glucose uptake into anhydro-4-epitetracycline-treated brush-border membrane vesicles.  相似文献   

13.
The uptake and metabolism of two water-soluble vitamins were measured in rat renal cortical slices, isolated tubules, and vesicles of the brush-border and basolateral cell membranes to determine (a) whether it is possible to produce slices that have open tubules and, (b) whether slices and tubules metabolize vitamins similarly. Transport of ascorbic acid is sodium-dependent in slices and in brush-border vesicles but is sodium-independent in basolateral vesicles, suggesting that the brush-border membrane of slices is accessible to components of the bathing solution. Nicotinic acid was metabolized similarly (97-98%) in both slices and isolated tubules. Oxygen consumption by slices maintained in a closed chamber was constant as pO2 decreased from 88% to 58%. Slices are concluded to be a suitable model for transport and metabolic studies providing that care is taken in their preparation and use.  相似文献   

14.
Characteristics of succinate transport were determined in basolateral and brush-border membrane vesicles (BLMV and BBMV, respectively) isolated in parallel from rabbit renal cortex. The uptake of succinate was markedly stimulated by the imposition of an inwardly directed Na+ gradient, showing an "overshoot" phenomenon in both membrane preparations. The stimulation of succinate uptake by an inwardly directed Na+ gradient was not significantly affected by pH clamp or inhibition of Na(+)-H+ exchange. The Na(+)-dependent and -independent succinate uptakes were not stimulated by an outwardly directed pH gradient. The Na dependence of succinate uptake exhibited sigmoidal kinetics, with Hill coefficients of 2.17 and 2.38 in BLMV and BBMV, respectively. The Na(+)-dependent succinate uptake by BLMV and BBMV was stimulated by a valinomycin-induced inside-negative potential. The Na(+)-dependent succinate uptake by BLMV and BBMV followed a simple Michaelis-Menten kinetics, with an apparent Km of 22.20 +/- 4.08 and 71.52 +/- 0.14 microM and a Vmax of 39.0 +/- 3.72 and 70.20 +/- 0.96 nmol/(mg.min), respectively. The substrate specificity and the inhibitor sensitivity of the succinate transport system appeared to be very similar in both membranes. These results indicate that both the renal brush-border and basolateral membranes possess the Na(+)-dependent dicarboxylate transport system with very similar properties but with different substrate affinity and transport capacity.  相似文献   

15.
Na uptake studies were performed in order to examine the activity of a Na/H exchanger in basolateral membrane vesicles isolated from rat jejunum. Experiments were carried out under voltage-clamped conditions in order to avoid electrodiffusional ionic movements. 1 mM Na uptake was found to be enhanced by an outward proton gradient and its initial rate was further increased by the presence of monensin or nigericin. The pH gradient-driven Na uptake was inhibited by 2 mM amiloride and unaffected by 0.1 mM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. The initial rate of the proton gradient-induced Na uptake was saturable with respect to external Na, with a Km of 13.6 +/- 1.4 mM and a Vmax of 35.4 +/- 2.2 nmol/mg protein per min. Li competed with Na for the exchange process, whereas K, Rb, Cs, tetramethylammonium had no effect. We conclude that rat jejunal basolateral membrane contains a Na/H exchanger whose properties are similar to those of the antiporter identified in the brush-border membrane.  相似文献   

16.
Highly enriched brush-border and basolateral membranes isolated from rat renal cortex were used to study the distribution of endogenous gangliosides in the two distinct plasma membrane domains of epithelial cells. These two membrane domains differed in their glycolipid composition. The basolateral membranes contained more of both neutral and acidic glycolipids, expressed on a protein basis. In both membranes, the neutral glycolipids corresponding to mono-, di-, tri- and tetraglycosylceramides were present. The basolateral membranes contained more diglycosylceramide than the brush-border membranes. The major gangliosides found were GM4, GM3, and GD3 with minor amounts of GM1 and GD1a. The latter were identified and quantified by sensitive iodinated cholera toxin binding assays. When the distribution of individual gangliosides was calculated as a percent of total gangliosides, the brush-border membranes were enriched with GM3, GM1 and GD1a compared to the basolateral membranes, which were enriched with GD3 and GM4. The observation of a distinct distribution of glycolipids between brush-border and basolateral membranes of the same epithelial cell suggests that there may be a specific sorting and insertion process for epithelial plasma membrane glycolipids. In turn, asymmetric glycolipid biogenesis may reflect differences in glycolipid function between the two domains of the epithelial plasma membrane.  相似文献   

17.
M Fujita  H Ohta    T Uezato 《The Biochemical journal》1981,196(3):669-673
Brush borders free of nuclei were isolated by repeated homogenization and centrifugation in iso-osmotic medium. They showed typical morphology under electron microscopy. The mean recovery and enrichment of alkaline phosphatase activity in the brush-border fraction were 50% and 17.5-fold respectively. gamma-Glutamyl transpeptidase showed a close parallelism with alkaline phosphatase and sucrase in subcellular distribution. Microvillar membranes were purified from isolated brush borders; they showed a further enrichment for alkaline phosphatase and were composed of homogeneous vesicles. Both brush-border and microvillar-membrane preparations were analysed for contamination by basolateral and endoplasmic-reticular membranes. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the microvillar-membrane preparation in six different systems revealed approx. 40 components in the mol.wt. range 15 000-232 000. They were grouped into seven major classes on the basis of molecular weight and electrophoretic patterns.  相似文献   

18.
Basolateral membrane vesicles from rat jejunal enterocytes, especially purified of brush-border contamination, were used for Na+ uptake. The basolateral membrane vesicles are osmotically active and under our experimental conditions Na+ binding is much lower than transport. An outwardly directed proton gradient stimulates Na+ uptake at both 5 microM and 5 mM concentrations. The proton gradient effect can be inhibited completely by 2 mM amiloride and partially by either FCCP or NH4Cl (NH3 diffusion). Membrane potential effects can be excluded by having valinomycin plus K+ on both sides of the vesicles. These results suggest that there is an Na+/H+ exchanger in the basolateral membrane of rat enterocytes.  相似文献   

19.
Summary A fast and easy procedure is proposed for preparing concomitantly from the same sample of intestinal mucosa of A+ rabbits, four fractions high enriched in the brush-border and basolateral plasma membrane domains, rough endoplasmic reticulum, and smooth endoplasmic reticulum plus Golgi apparatus membranes, respectively. This is the first time the technique of flow fluorometry has been applied to characterize the brush-border and basolateral membrane fractions using polyclonal or monoclonal antibodies against antigens common to or specific for these two plasma membrane domains. This technique definitely proves the presence of aminopeptidase in at least 60% of the basolateral membrane vesicles, where its level is about 4.5% of that in the brush-border membrane vesicles. The endoglycosidase H-sensitive intermediate of glycosylation of aminopeptidase N in the steady state is accumulated in both the rough and smooth endoplasmic reticulum membranes. Although the rough membrane is more extensive it contains only about 40% of this transient form.  相似文献   

20.
Glutamine uptake was examined in isolated renal brush-border and basolateral-membrane vesicles from control and acidotic rats. In brush-border vesicles from acidotic animals, there was a significant increase in the initial rate of glutamine uptake compared with that in controls. Lowering the pH of the medium increased the initial rate of glutamine uptake in brush-border vesicles from acidotic, but not from control, rats. In brush-border vesicles from both groups of animals, two saturable transport systems mediated glutamine uptake. There was a 2-fold increase in the Vmax. of the low-affinity high-capacity system in the brush-border vesicles from the acidotic animals compared with that from control animals, with no alteration in the other kinetic parameters. There was no difference in glutamine uptake by the two saturable transport systems in basolateral vesicles from control and acidotic animals. Lowering the incubation-medium pH increased the uptake of glutamine by basolateral vesicles from both control and acidotic rats to a similar extent. The data indicate that during acidosis there are alterations in glutamine transport by both the basolateral and brush-border membrane which could enhance its uptake by the renal-tubule cell for use in ammoniagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号