首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excitation conduction in the atrioventricular node was simulated based on the spatially discrete model of the heart proposed in an earlier paper (Kawato et al., 1986). We constructed a model system composed of the atrium, the atrioventricular node and the Purkinje fiber. Coupling coefficients between these tissues were quantitatively estimated from experimental data on size and membrane capacitance of the three kinds of cardiac cells. We found the following three important features in the simulated excitation conduction along the atrioventricular node. First, shape of action potential was found to be different at different locations of the atrioventricular node although the membrane properties were assumed uniform through the atrioventricular node. Our analysis suggests that the difference in the action potential waveforms observed by Paes de Carvalho & De Almedia (1960) can be ascribed to the electrical influences of the atrium and the His bundle on the atrioventricular node. Second, when the excitation wavefront invaded the atrioventricular node from the atrium, a step was observed in the depolarization phase of the action potential at the atrioventricular node neighboring with the atrium. Janse found a similar step in the real experiment (1969). It is revealed that this step is caused by termination of the junctional current which flows from the atrium to the atrioventricular node. Finally, we found that the conduction velocity measured near the boundary between the atrium and the atrioventricular node was lower than that in the middle part of the atrioventricular node, which is in accordance with the experimental observation by Scher et al. (1959).  相似文献   

2.
The atrioventricular junction of the fish heart, namely the segment interposed between the single atrium and the single ventricle, has been studied anatomically and histologically in several chondrichthyan and teleost species. Nonetheless, knowledge about myosin heavy chain (MyHC) in the atrioventricular myocardium remains scarce. The present report is the first one to provide data on the MyHC isoform distribution in the myocardium of the atrioventricular junction in chondrichthyans, specifically in the lesser spotted dogfish, Scyliorhinus canicula, a shark species whose heart reflects the primitive cardiac anatomical design in gnathostomes. Hearts from five dogfish were examined using histochemical and immunohistochemical techniques. The anti-MyHC A4.1025 antibody was used to detect differences in the occurrence of MyHC isoforms in the dogfish, as the fast-twitch isoforms MYH2 and MYH6 have a higher affinity for this antibody than the slow-twitch isoforms MYH7 and MYH7B. The histochemical findings show that myocardium of the atrioventricular junction connects the trabeculated myocardium of the atrium with the trabeculated layer of the ventricular myocardium. The immunohistochemical results indicate that the distribution of MyHC isoforms in the atrioventricular junction is not homogeneous. The atrial portion of the atrioventricular myocardium shows a positive reactivity against the A4.1025 antibody similar to that of the atrial myocardium. In contrast, the ventricular portion of the atrioventricular junction is not labelled, as is the case with the ventricular myocardium. This dual condition suggests that the myocardium of the atrioventricular junction has two contraction patterns: the myocardium of the atrial portion contracts in line with the atrial myocardium, whereas that of the ventricular portion follows the contraction pattern of the ventricular myocardium. Thus, the transition of the contraction wave from the atrium to the ventricle may be established in the atrioventricular segment because of its heterogeneous MyHC isoform distribution. The findings support the hypothesis that a distinct MyHC isoform distribution in the atrioventricular myocardium enables a synchronous contraction of inflow and outflow cardiac segments in vertebrates lacking a specialized cardiac conduction system.  相似文献   

3.
4.
Antibodies were produced against myosins isolated from the left atrial myocardium (anti-bAm) and the left ventricular myocardium (anti-bVm) of the bovine heart. Cross-reactive antibodies were removed by cross-absorption. Absorbed anti-bAm and anti-bVm were specific for the myosin heavy chains when tested by enzyme immunoassay combined with SDS gel electrophoresis. Indirect immunofluorescence was used to determine the reactivity of atrial muscle fibers to the two antibodies. Three populations of atrial muscle fibers were distinguished in the bovine heart: (a) fibers reactive with anti-bAm and unreactive with anti-bVm, like most fibers in the left atrium; (b) fibers reactive with both antibodies, especially numerous in the right atrium; (c) fibers reactive with anti-bVm and unreactive with anti-bAm, present only in the interatrial septum and in specific regions of the right atrium, such as the crista terminalis. These findings can be accounted for by postulating the existence of two distinct types of atrial myosin heavy chains, one of which is antigenically related to ventricular myosin. The tendency for fibers labeled by anti-bVm to occur frequently in bundles and their preferential distribution in the crista terminalis, namely along one of the main conduction pathways between the sinus node and the atrioventricular node, and in the interatrial septum, where different internodal tracts are known to converge, suggests that these fibers may be specialized for faster conduction.  相似文献   

5.
Major components of the cardiac conduction system including the sinoatrial node (SAN), atrioventricular node (AVN), the His Bundle, and the right and left bundle branches are too small to be directly visualized by multidetector CT (MDCT) given the limited spatial resolution of current scanners. However, the related anatomic landmarks and variants of this system a well as the areas with special interest to electrophysiologists can be reliably demonstrated by MDCT. Some of these structures and landmarks include the right SAN artery, right atrial cavotricuspid isthmus, Koch triangle, AVN artery, interatrial muscle bundles, and pulmonary veins. In addition, MDCT has an imperative role in demarcating potential arrhythmogenic structures. The aim of this review will be to assess the extent at which MDCT can outline the described anatomic landmarks and therefore provide crucial information used in clinical practice.  相似文献   

6.
张玲玲  钮伟真 《生理学报》1995,47(2):142-148
一般认为房室结具有滤波特性,即它能阻止过快或过于提前的心房冲动传到心室。本实验旨在研究家兔离体心脏组织的不应期及房室结的滤波牧场生(n=18)。实验中发现:(1)在短基础周期(200-300ms)房室结的相对不应期最长,而在长基础周期(600,700ms)希浦系(HisPurkinje sytem)的相对不应期最长;(2)在多种基础周期下,大多数心脏(16/18)房室结有效不应期小于心房功能不应期  相似文献   

7.
To characterize developmental changes in impulse propagation within atrial musculature, we performed high-speed optical mapping of activation sequence of the developing chick atria using voltage-sensitive dye. The activation maps were correlated with detailed morphological studies using scanning electron microscopy, histology, and whole mount confocal imaging with three-dimensional reconstruction. A preferential pathway appeared during development within the roof of the atria, transmitting the impulse rapidly from the right-sided sinoatrial node to the left atrium. The morphological substrate of this pathway, the bundle of Bachman, apparent from stage 29 onward, was a prominent ridge of pectinate muscles continuous with the terminal crest. Further acceleration of impulse propagation was noted along the ridges formed by the developing pectinate muscles, ramifying from the terminal crest toward the atrioventricular groove. In contrast, when the impulse reached the interatrial septum, slowing was often observed, suggesting that the septum acts as a barrier or sink for electrical current. We conclude that these inhomogeneities in atrial impulse propagation are consistent with existence of a specialized network of fast-conducting tissues. The purpose of these preferential pathways appears to be to assure synchronous atrial activation and contraction rather than rapid impulse conduction between the sinoatrial and atrioventricular nodes.  相似文献   

8.
Excessive right ventricular apex pacing has significant adverse effects on the cardiac function and hence, it is necessary to clinically optimize pacing parameters and advocate suitable physiological pacing to safeguard the cardiac function after pacemaker implant. Minimizing ventricular pacing is an atrioventricular node priority function, to encourage ventricular self conduction and to reduce unnecessary right ventricular pacing. Minimized ventricular pacing reduces ventricular pacing by encouraging self atrioventricular conduction function and extending the AV interval. This study is a prospective cohort study to evaluate the changes of cardiac function in patients and serum amino-terminal natriuretic peptide (NT-proBNP) before and after pacing, and the risk of atrial fibrillation with different CUM% VP. The study has shown that the cardiac function will deteriorate with an increase in pacing rate.  相似文献   

9.
The heart rate and intraatrial latencies between epicardial electrograms from three sites of the right atrium have been studied during vagal stimulation in open-chest dogs. It has been shown that alterations of latencies started at a certain cardiac cycle length irrespective of pacing frequency. A transitional process of changes from a steady latency value in the control to another steady value during vagal stimulation has been observed. The transitional process has been simulated in experimental procedure in which two sites of the right atrium were paced at close and constant frequencies. To interpret the results obtained one-dimensional model of the sinus node has been constructed. According to the model, pacemaker shift within the sinus node results from a competition between two foci of automaticity with close intrinsic frequencies.  相似文献   

10.
The normal excitation and conduction in the heart are maintained by the coordination between the dynamics of ionic conductance of each cell and the electrical coupling between cells. To examine functional roles of these two factors, we proposed a spatially-discrete model of conduction of excitation in which the individual cells were assumed isopotential. This approximation was reasoned by comparing the apparent space constant with the measured junctional resistance between myocardial cells. We used the four reconstruction models previously reported for five kinds of myocardial cells. Coupling coefficients between adjacent cells were determined quantitatively from the apparent space constants. We first investigated to what extent the pacemaker activity of the sinoatrial node depends on the number and the coupling coefficient of its cells, by using a one-dimensional model system composed of the sinoatrial node cells and the atrial cells. Extensive computer simulation revealed the following two conditions for the pacemaker activity of the sinoatrial node. The number of the sinoatrial node cells and their coupling coefficients must be large enough to provide the atrium with the sufficient electric current flow. The number of the sinoatrial node cells must be large so that the period of the compound system is close to the intrinsic period of the sinoatrial node cell. In this simulation the same sinoatrial node cells produced action potentials of different shapes depending on where they were located in the sinoatrial node. Therefore it seems premature to classify the myocardial cells only from their waveforms obtained by electrical recordings in the compound tissue. Second, we investigated the very slow conduction in the atrioventricular node compared to, for example, the ventricle. This was assumed to be due to the inherent property of the membrane dynamics of the atrioventricular node cell, or to the small value of the coupling coefficient (weak intercellular coupling), or to the electrical load imposed on the atrioventricular node by the Purkinje fibers, because the relatively small atrioventricular node must provide the Purkinje fibers with sufficient electric current flow. Relative contributions of these three factors to the slow conduction were evaluated using the model system composed of only the atrioventricular cells or that composed of the atrioventricular and Purkinje cells. We found that the weak coupling has the strongest effect. In the model system composed of the atrioventricular cells, the propagation failure was not observed even for very small values of the coupling coefficient.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The embryonic vertebrate heart is composed of two major chambers, a ventricle and an atrium, each of which has a characteristic size, shape and functional capacity that contributes to efficient circulation. Chamber-specific gene expression programs are likely to regulate key aspects of chamber formation. Here, we demonstrate that epigenetic factors also have a significant influence on chamber morphogenesis. Specifically, we show that an atrium-specific contractility defect has a profound impact on ventricular development. We find that the zebrafish locus weak atrium encodes an atrium-specific myosin heavy chain that is required for atrial myofibrillar organization and contraction. Despite their atrial defects, weak atrium mutants can maintain circulation through ventricular contraction. However, the weak atrium mutant ventricle becomes unusually compact, exhibiting a thickened myocardial wall, a narrow lumen and changes in myocardial gene expression. As weak atrium/atrial myosin heavy chain is expressed only in the atrium, the ventricular phenotypes in weak atrium mutants represent a secondary response to atrial dysfunction. Thus, not only is cardiac form essential for cardiac function, but there also exists a reciprocal relationship in which function can influence form. These findings are relevant to our understanding of congenital defects in cardiac chamber morphogenesis.  相似文献   

12.
Niu WZ  Gao YL  Liu P  Liu BY  Ye G 《生理学报》2000,52(3):259-262
本文目的在于深入研究降钙素基因相关肽(CGRP)对豚鼠冠状血流量以及心脏传导系统各部分的作用。采用Langendorff法灌流心脏,同步记录心脏表面电图和希氏束电活动。观察应用CGRP前后的冠脉流量、自主心率、在相同心房周期下的房室结(AH)及希浦系传导时间(HV)、心脏出现3:2文氏传导及2:1房室传导阻滞所需的最长起搏周期(PCL3:2,PCL2:1)。CGRP(3-30nmol/L)可显著增  相似文献   

13.
Autonomic regulation of subsidiary atrial pacemakers during exercise   总被引:2,自引:0,他引:2  
Cardiac responses to graded treadmill exercise were compared in conscious dogs before and after excision of the sinoatrial node (SAN) and adjacent tissue along the sulcus terminalis. The chronotropic and dromotropic responses to dynamic exercise were compared with and without selective muscarinic (atropine) and/or beta-adrenergic (timolol) blockade. With the SAN intact, cardiac acceleration was prompt during onset of exercise and in proportion to work intensity. Immediately after SAN excision (1-7 days), pacemaker activity exhibited marked instability in rate and pacemaker location, with rapid shifts between atrial and junctional foci. Soon thereafter (1-2 wk), subsidiary atrial pacemakers (SAPs) assumed the primary pacemaker function. Although the SAP foci demonstrated stable heart rates and atrioventricular (AV) intervals at rest and during exercise, heart rates at rest and during steady-state exercise were reduced 34% from corresponding levels in the SAN-intact state, both with and without selective autonomic blockade. For control of dromotropic function, animals with SAP foci showed pronounced shortening in AV interval in conjunction with exercise that was further exacerbated by pretreatment with atropine. Eight weeks after excision of the primary SAN pacemakers, direct electrophysiological mapping localized the SAP foci to either the inferior right atrium along the sulcus terminalis or the dorsal cranial right atrium (in or near Bachmann's bundle). Animals with SAPs localized to the inferior right atrium had a more marked suppression in heart rate with a corresponding greater decrease in AV interval during exercise than dogs with SAP foci identified within the dorsal cranial right atrium.  相似文献   

14.
Light optic and electron microscopic investigation of the sinuauricular node node (spu), atrioventricular node (pzhu) and bundle of His (pzhp) has been carried out in 23 hearts of intact non-inbred male rats. Original techniques of oriented embedding of elements of the conductive system for their electron microscopic identification have been suggested. A morphological classification of specialized cardiac myocytes has been worked out basing on differences in their form and size, number of myofibrils and degree of their regulation. On its base three type of specialized myofibrils have been revealed in the conductive system. Topography of these cells has been described within spu, pzhu and pzhp. The suggested ultrastructural classification of specialized cardiac myocytes is compared with the data obtained for the cardiac conductive system in other types of mammals.  相似文献   

15.
16.
It has been postulated that intrathoracic pressure increases may impair cardiac function by decreasing coronary flow. To determine whether altered coronary flow causes or results from change in cardiac function, we used 14 anesthetized dogs in propranolol-induced heart failure following atrioventricular node ablation. After thoracoabdominal binding, the animals were paced and ventilated at the same frequency, and inspiration was synchronized with cardiac systole, resulting in systole-specific pericardial pressure increases (SSPPI). At SSPPI magnitudes of 15 and 30 mmHg, left atrial transmural pressure decreased and cardiac output increased, whereas decreases in left ventricular end-systolic transmural pressure and myocardial O2 consumption were directly related. Concurrent decreases in coronary sinus flow (CSF) and coronary arteriovenous O2 gradient with SSPPI 15 mmHg indicate autoregulation. However, the arteriovenous O2 gradient remained unaltered with SSPPI 30 mmHg, despite further decrease in CSF. Because the absolute diastolic aortic pressure decreased, a limit may exist for increasing SSPPI above which CSF may be directly affected.  相似文献   

17.
Mammals and birds acquired high performance hearts and endothermy during their independent evolution from amniotes with many sauropsid features. A literature review shows that the variation in atrial morphology is greater in mammals than in ectothermic sauropsids. We therefore hypothesized that the transition from ectothermy to endothermy was associated with greater variation in cardiac structure. We tested the hypothesis in 14 orders of birds by assessing the variation in 15 cardiac structures by macroscopic inspection and histology, with an emphasis on the atria as they have multiple features that lend themselves to quantification. We found bird hearts to have multiple features in common with ectothermic sauropsids (synapomorphies), such as the presence of three sinus horns. Convergent features were shared with crocodylians and mammals, such as the cranial offset of the left atrioventricular junction. Other convergent features, like the compact organization of the atrial walls, were shared with mammals only. Pacemaker myocardium, identified by Isl1 expression, was anatomically node-like (Mallard), thickened (Chicken), or indistinct (Lesser redpoll, Jackdaw). Some features were distinctly avian, (autapomorphies) including the presence of a left atrial antechamber and the ventral merger of the left and right atrial auricles, which was found in some species of parrots and passerines. Most features, however, exhibited little variation. For instance, there were always three systemic veins and two pulmonary veins, whereas among mammals there are 2–3 and 1–7, respectively. Our findings suggest that the transition to high cardiac performance does not necessarily lead to a greater variation in cardiac structure.  相似文献   

18.
A 74-year old was considered for atrioventricular (AV) nodal ablation in view of atrial fibrillation (AF) with poorly controlled ventricular rate despite being on amiodarone. Targeted AV nodal ablation was successfully performed after identifying the target site for ablation by reviewing an ultra high-density map of the His region produced by automatic electrogram annotation.Key words: His bundle, atrioventricular node, cardiac mapping, catheter ablation  相似文献   

19.
20.
The development of the atrioventricular conduction system in the mouse heart has been studied by light and electron microscopy from the time of the completion of ventricular septation to fetal stage II, 13–16 days postcoitum. At the beginning of this period the already established atrioventricular node (AVN) enlarges rapidly into the dorsal AV cushion from the primitive AV tract, reaching almost its full fetal size when septation is complete. The development of the atrionodal interconnections is a slow and complex process. The dorsal atrial myocardium develops on both sides of the node, establishing a muscular overlay over its proximal aspect, and also incorporating the former AV tract. At this time also, the developing muscular interatrial septum grows downward to establish contact with the node, the sinus venosus, and the myocardium of the right and left atrial walls. The distally proceeding differentiation of the ab initio continuous conduction pathway along the AVN, His bundle, and bundle branches demonstrates a progressive and sequential development of high cellular glycogen content. Progressive isolation of the atrioventricular conduction system leading to (still incomplete) insulation by connective tissue, has been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号