首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetate Production by Methanogenic Bacteria   总被引:2,自引:2,他引:0       下载免费PDF全文
Methanosarcina barkeri MS and 227 and Methanosarcina mazei S-6 produced acetate when grown on H2-CO2, methanol, or trimethylamine. Marked differences in acetate production by the two bacterial species were found, even though methane and cell yields were nearly the same. M. barkeri produced 30 to 75 μmol of acetate per mmol of CH4 formed, but M. mazei produced only 8 to 9 μmol of acetate per mmol of CH4.  相似文献   

2.
Rhamnolipids (RLs) are well-studied biosurfactants naturally produced by pathogenic strains of Pseudomonas aeruginosa. Current methods to produce RLs in native and heterologous hosts have focused on carbohydrates as production substrate; however, methane (CH4) provides an intriguing alternative as a substrate for RL production because it is low cost and may mitigate greenhouse gas emissions. Here, we demonstrate RL production from CH4 by Methylotuvimicrobium alcaliphilum DSM19304. RLs are inhibitory to M. alcaliphilum growth (<0.05 g/l). Adaptive laboratory evolution was performed by growing M. alcaliphilum in increasing concentrations of RLs, producing a strain that grew in the presence of 5 g/l of RLs. Metabolomics and proteomics of the adapted strain grown on CH4 in the absence of RLs revealed metabolic changes, increase in fatty acid production and secretion, alterations in gluconeogenesis, and increased secretion of lactate and osmolyte products compared with the parent strain. Expression of plasmid-borne RL production genes in the parent M. alcaliphilum strain resulted in cessation of growth and cell death. In contrast, the adapted strain transformed with the RL production genes showed no growth inhibition and produced up to 1 μM of RLs, a 600-fold increase compared with the parent strain, solely from CH4. This work has promise for developing technologies to produce fatty acid-derived bioproducts, including biosurfactants, from CH4.  相似文献   

3.
The quantitative contribution of fatty acids and CO2 to methanogenesis was studied by using stirred, 3-liter bench-top digestors fed on a semicontinuous basis with cattle waste. The fermentations were carried out at 40 and 60°C under identical loading conditions (6 g of volatile solids per liter of reactor volume per day, 10-day retention time). In the thermophilic digestor, acetate turnover increased from a prefeeding level of 16 μM/min to a peak (49 μM/min) 1 h after feeding and then gradually decreased. Acetate turnover in the mesophilic digestor increased from 15 to 40 μM/min. Propionate turnover ranged from 2 to 5.2 and 1.5 to 4.5 μM/min in the thermophilic and mesophilic digestors, respectively. Butyrate turnover (0.7 to 1.2 μM/min) was similar in both digestors. The proportion of CH4 produced via the methyl group of acetate varied with time after feeding and ranged from 72 to 75% in the mesophilic digestor and 75 to 86% in the thermophilic digestor. The contribution from CO2 reduction was 24 to 29% and 19 to 27%, respectively. Propionate and butyrate turnover accounted for 20% of the total CH4 produced. Acetate synthesis from CO2 was greatest shortly after feeding and was higher in the thermophilic digestor (0.5 to 2.4 μM/min) than the mesophilic digestor (0.3 to 0.5 μM/min). Counts of fatty acid-degrading bacteria were related to their turnover activity.  相似文献   

4.
Methane Metabolism in a Temperate Swamp   总被引:4,自引:1,他引:3       下载免费PDF全文
Comparisons between in situ CH4 concentration and potential factors controlling its net production were made in a temperate swamp. Seasonal measurements of water table level and depth profiles of pH, dissolved CH4, CO2, O2, SO42-, NO3-, formate, acetate, propionate, and butyrate were made at two adjacent sites 1.5 to 2 m apart. Dissolved CH4 was inversely correlated to O2 and, in general, to NO3- and SO42-, potential inhibitors of methanogenesis. At low water table levels (August 1992), maximal CH4 (2 to 4 μM) occurred below 30 cm, whereas at high water table levels (October 1992) or under flooded conditions (May 1993), CH4 maxima (4 to 55 μM) occurred in the top 10 to 20 cm. Higher CH4 concentrations were likely supported by inputs of fresh organic matter from decaying leaf litter, as suggested by high acetate and propionate concentrations (25 to 100 μM) in one of the sites in fall and spring. Measurements of potential CH4 production (and consumption) showed that the highest rates generally occurred in the top 10 cm of soil. Soil slurry incubations confirmed the importance of organic matter to CH4 production but also showed that competition for substrates by nonmethanogenic microorganisms could greatly attenuate its effect.  相似文献   

5.
We report the effect of CH4 and of CH4 oxidation on nitrification in freshwater sediment from Hamilton Harbour, Ontario, Canada, a highly polluted ecosystem. Aerobic slurry experiments showed a high potential for aerobic N2O production in some sites. It was suppressed by C2H2, correlated to NO3- production, and stimulated by NH4+ concentration, supporting the hypothesis of a nitrification-dependent source for this N2O production. Diluted sediment slurries supplemented with CH4 (1 to 24 μM) showed earlier and enhanced nitrification and N2O production compared with unsupplemented slurries (≤1 μM CH4). This suggests that nitrification by methanotrophs may be significant in freshwater sediment under certain conditions. Suppression of nitrification was observed at CH4 concentrations of 84 μM and greater, possibly through competition for O2 between methanotrophs and NH4+ -oxidizing bacteria and/or competition for mineral N between these two groups of organisms. In Hamilton Harbour sediment, the very high CH4 concentrations (1.02 to 6.83 mM) which exist would probably suppress nitrification and favor NH4+ accumulation in the pore water. Indeed, NH4+ concentrations in Hamilton Harbour sediment are higher than those found in other lakes. We conclude that the impact of CH4 metabolism on N cycling processes in freshwater ecosystems should be given more attention.  相似文献   

6.
The carbon and electron flow pathways and the bacterial populations responsible for the transformation of H2-CO2, formate, methanol, methylamine, acetate, ethanol, and lactate were examined in eutrophic sediments collected during summer stratification and fall turnover. The rate of methane formation averaged 1,130 μmol of CH4 per liter of sediment per day during late-summer stratification versus 433 μmol of CH4 per liter of sediment per day during the early portion of fall turnover, whereas the rate of sulfate reduction was 280 μmol of sulfate per liter of sediment per day versus 1,840 μmol of sulfate per liter of sediment per day during the same time periods, respectively. The sulfate-reducing population remained constant while the methanogenic population decreased by one to two orders of magnitude during turnover. The acetate concentration increased from 32 to 81 μmol per liter of sediment while the acetate transformation rate constant decreased from 3.22 to 0.70 per h, respectively, during stratification versus turnover. Acetate accounted for nearly 100% of total sedimentary methanogenesis during turnover versus 70% during stratification. The fraction of 14CO2 produced from all 14C-labeled substrates examined was 10 to 40% higher during fall turnover than during stratification. The addition of sulfate, thiosulfate, or sulfur to stratified sediments mimicked fall turnover in that more CO2 and CH4 were produced. The addition of Desulfovibrio vulgaris to sulfate-amended sediments greatly enhanced the amount of CO2 produced from either [14C]methanol or [2-14C]acetate, suggesting that H2 consumption by sulfate reducers can alter methanol or acetate transformation by sedimentary methanogens. These data imply that turnover dynamically altered carbon transformation in eutrophic sediments such that sulfate reduction dominated over methanogenesis principally as a consequence of altering hydrogen metabolism.  相似文献   

7.
Degradation of glucose has been implicated in acetate production in rice field soil, but the abundance of glucose, the temporal change of glucose turnover, and the relationship between glucose and acetate catabolism are not well understood. We therefore measured the pool sizes of glucose and acetate in rice field soil and investigated the turnover of [U-14C]glucose and [2-14C]acetate. Acetate accumulated up to about 2 mM during days 5 to 10 after flooding of the soil. Subsequently, methanogenesis started and the acetate concentration decreased to about 100 to 200 μM. Glucose always made up >50% of the total monosaccharides detected. Glucose concentrations decreased during the first 10 days from 90 μM initially to about 3 μM after 40 days of incubation. With the exception at day 0 when glucose consumption was slow, the glucose turnover time was in the range of minutes, while the acetate turnover time was in the range of hours. Anaerobic degradation of [U-14C]glucose released [14C]acetate and 14CO2 as the main products, with [14C]acetate being released faster than 14CO2. The products of [2-14C]acetate metabolism, on the other hand, were 14CO2 during the reduction phase of soil incubation (days 0 to 15) and 14CH4 during the methanogenic phase (after day 15). Except during the accumulation period of acetate (days 5 to 10), approximately 50 to 80% of the acetate consumed was produced from glucose catabolism. However, during the accumulation period of acetate, the rate of acetate production from glucose greatly exceeded that of acetate consumption. Under steady-state conditions, up to 67% of the CH4 was produced from acetate, of which up to 56% was produced from glucose degradation.  相似文献   

8.
From the second-highest dilution in a most-probable-number dilution series with lactate and sulfate as substrates and rice paddy soil as the inoculum, a strain of Desulfovibrio desulfuricans was isolated. In addition to reducing sulfate, sulfite, and thiosulfate, the strain also reduced nitrate to ammonia. The latter process was studied in detail, since the ability to reduce nitrate was strongly influenced by the presence of sulfide. Sulfide inhibited both growth on nitrate and nitrate reduction. A 70% inhibition of the nitrate reduction rate was obtained at 127 μM sulfide, and growth was inhibited by 50% at approximately 320 μM sulfide and was not detectable above 700 μM sulfide. In contrast, sulfate reduction was not affected at concentrations of up to 5 mM. After growth with sulfate, an induction period of 2 to 4 days was needed before nitrate reduction started. When nitrate and sulfate were present simultaneously, only sulfate was reduced, except when sulfate was present at very low concentrations (4 μM). At higher sulfate concentrations (500 μM), nitrate reduction was temporarily halted. The affinity for nitrate uptake was extremely high (Km = 0.05 μM) compared with that for sulfate uptake (Km = 5 μM). Thus, at low nitrate concentrations this bacterium is favored relative to denitrifiers (Km = 1.8 to 13.7 μM) or other nitrate ammonifiers (e.g., Clostridium spp. [Km = 500 μM]).  相似文献   

9.

Background

Increased endocannabinoid tonus by dual-action fatty acid amide hydrolase (FAAH) and substrate selective cyclooxygenase (COX-2) inhibitors is a promising approach for pain-relief. One such compound with this profile is 2-(2-fluorobiphenyl-4-yl)-N-(3-methylpyridin-2-yl)propanamide (Flu-AM1). These activities are shown by Flu-AM1 racemate, but it is not known whether its two single enantiomers behave differently, as is the case towards COX-2 for the parent flurbiprofen enantiomers. Further, the effects of the compound upon COX-2-derived lipids in intact cells are not known.

Methodology/Principal Findings

COX inhibition was determined using an oxygraphic method with arachidonic acid and 2-arachidonoylglycerol (2-AG) as substrates. FAAH was assayed in mouse brain homogenates using anandamide (AEA) as substrate. Lipidomic analysis was conducted in unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Both enantiomers inhibited COX-2 in a substrate-selective and time-dependent manner, with IC50 values in the absence of a preincubation phase of: (R)-Flu-AM1, COX-1 (arachidonic acid) 6 μM; COX-2 (arachidonic acid) 20 μM; COX-2 (2-AG) 1 μM; (S)-Flu-AM1, COX-1 (arachidonic acid) 3 μM; COX-2 (arachidonic acid) 10 μM; COX-2 (2-AG) 0.7 μM. The compounds showed no enantiomeric selectivity in their FAAH inhibitory properties. (R)-Flu-AM1 (10 μM) greatly inhibited the production of prostaglandin D2 and E2 in both unstimulated and lipopolysaccharide + interferon γ- stimulated RAW 264.7 macrophage cells. Levels of 2-AG were not affected either by (R)-Flu-AM1 or by 10 μM flurbiprofen, either alone or in combination with the FAAH inhibitor URB597 (1 μM).

Conclusions/Significance

Both enantiomers of Flu-AM1 are more potent inhibitors of 2-AG compared to arachidonic acid oxygenation by COX-2. Inhibition of COX in lipopolysaccharide + interferon γ- stimulated RAW 264.7 cells is insufficient to affect 2-AG levels despite the large induction of COX-2 produced by this treatment.  相似文献   

10.
We evaluated Fusarium contamination and the levels of hexadepsipeptide mycotoxins in 13 wheat samples affected by head blight in Finland. Fusarium avenaceum was the dominant species (91%) isolated from all samples, but isolates of F. culmorum (4%), F. tricinctum (3%), and F. poae (2%) also were recovered. Beauvericin (0.64 to 3.5 μg/g) was detected in all 13 samples. Enniatin B (trace to 4.8 μg/g) was detected in 12 samples, enniatin B1 (trace to 1.9 μg/g) was detected in 8 samples, and enniatin A1 (trace to 6.9 μg/g) was detected in 10 samples. Ten of 13 strains of F. avenaceum and 2 strains of F. poae and F. tricinctum produced beauvericin in culture on rice (trace to 70, 9.4, and 33 μg/g, respectively). All strains also produced enniatins (trace to 2,700 μg/g). This is the first report on the natural cooccurence of beauvericin and enniatins in wheat infected predominantly by F. avenaceum.  相似文献   

11.
Pyrococcus furiosus has two types of NiFe-hydrogenases: a heterotetrameric soluble hydrogenase and a multimeric transmembrane hydrogenase. Originally, the soluble hydrogenase was proposed to be a new type of H2 evolution hydrogenase, because, in contrast to all of the then known NiFe-hydrogenases, the hydrogen production activity at 80°C was found to be higher than the hydrogen consumption activity and CO inhibition appeared to be absent. NADPH was proposed to be the electron donor. Later, it was found that the membrane-bound hydrogenase exhibits very high hydrogen production activity sufficient to explain cellular H2 production levels, and this seems to eliminate the need for a soluble hydrogen production activity and therefore leave the soluble hydrogenase without a physiological function. Therefore, the steady-state kinetics of the soluble hydrogenase were reinvestigated. In contrast to previous reports, a low Km for H2 (~20 μM) was found, which suggests a relatively high affinity for hydrogen. Also, the hydrogen consumption activity was 1 order of magnitude higher than the hydrogen production activity, and CO inhibition was significant (50% inhibition with 20 μM dissolved CO). Since the Km for NADP+ is ~37 μM, we concluded that the soluble hydrogenase from P. furiosus is likely to function in the regeneration of NADPH and thus reuses the hydrogen produced by the membrane-bound hydrogenase in proton respiration.  相似文献   

12.
A large number of methanol-utilizing bacteria were screened for extracellular production of pyrroloquinoline quinone (PQQ) by using methanol as the carbon and energy sources. Of the bacteria selected, Hyphomicrobium sp. strain TK 0441 was examined for PQQ production by using a jar fermentor. The amount of PQQ in the broth and the level of methanol dehydrogenase activity in the cells were increased by simply decreasing the amount of Fe added to the medium. On the other hand, extracellularly produced protein which interfered with the purification of PQQ was decreased by simply increasing the amount of Mg added to the medium. A suitable medium that contained 1 μg of Fe per ml, 150 μg of Mg per ml, and trace elements was developed. In this medium, the production of PQQ reached approximately 1 mg/ml and protein formation was low.  相似文献   

13.
Effects of Minerals on Neomycin Production by Streptomyces fradiae   总被引:3,自引:1,他引:2       下载免费PDF全文
A study was made on the mineral requirements of Streptomyces fradiae strain 3535 for neomycin production. It was observed that optimal levels of the elements Ca, Fe, and Zn per milliliter of a synthetic medium for neomycin production were 10.8, 1.0, and 0.115 μg, respectively. K2HPO4 was required at a concentration of 0.1% for maximal yield of neomycin, whereas NaCl and the metals Mn and Cu were without any effect. High doses of Zn (0.23 μg/ml or above) caused destruction of neomycin after the fifth day of fermentation.  相似文献   

14.
The effects of temperature on rates and pathways of CH4 production and on the abundance and structure of the archaeal community were investigated in acidic peat from a mire in northern Scandinavia (68°N). We monitored the production of CH4 and CO2 over time and measured the turnover of Fe(II), ethanol, and organic acids. All experiments were performed with and without specific inhibitors (2-bromoethanesulfonate [BES] for methanogenesis and CH3F for acetoclastic methanogenesis). The optimum temperature for methanogenesis was 25°C (2.3 μmol CH4 · g [dry weight]−1 · day−1), but the activity was relatively high even at 4°C (0.25 μmol CH4 · g [dry weight]−1 · day−1). The theoretical lower limit for methanogenesis was calculated to be at −5°C. The optimum temperature for growth as revealed by real-time PCR was 25°C for both archaea and bacteria. The population structure of archaea was studied by terminal restriction fragment length polymorphism analysis and remained constant over a wide temperature range. Hydrogenotrophic methanogenesis accounted for about 80% of the total methanogenesis. Most 16S rRNA gene sequences that were affiliated with methanogens and all McrA sequences clustered with the exclusively hydrogenotrophic order Methanobacteriales, correlating with the prevalence of hydrogenotrophic methanogenesis. Fe reduction occurred parallel to methanogenesis and was inhibited by BES, suggesting that methanogens were involved in Fe reduction. Based upon the observed balance of substrates and thermodynamic calculations, we concluded that the ethanol pool was oxidized to acetate by the following two processes: syntrophic oxidation with methanogenesis (i) as an H2 sink and (ii) as a reductant for Fe(III). Acetate accumulated, but a considerable fraction was converted to butyrate, making volatile fatty acids important end products of anaerobic metabolism.  相似文献   

15.
Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake   总被引:10,自引:8,他引:2       下载免费PDF全文
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 μmol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of 14CH4 from 14C-labeled HCOOH, HCO3, and CH3OH and [2-14C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H14CO3 by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH4 and CO2 in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 μg/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO2 production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 μg/liter) completely inhibited methanogenesis and stimulated CO2 formation.  相似文献   

16.
We have evaluated the biosynthesis, characterization and inhibition of Leukotrien (LT) B4 in unstimulated and in A23187-stimulated human whole blood. LTB4 was assayed by radioimmunoassay (RIA) both in unextracted serum and after extraction and thin-layer chromatography (TLC). Unstimulated human whole blood allowed to clot at 37°C for 60 min produced only trace amounts of LTB4 (0.16±0.05 ng/ml, mean±SD, n=3). LTB4-like immunoreactivity (ir-LTB4) detectable in unstimulated serum samples was largely overestimated by direct RIA, most likely because of interfering substance(s) unrealed to cyclooxygenasep or lipoxygenase activity. Incubation of human whole blood with A23187 (2–10 μM) resulted in a concentration-dependent stimulation of LTB4 production. At 10 μM A23187, ir-LTB4 was 18±2.4 ng/ml (mean±SEM, n=28). In A23187-stimulated serum samples, LTB4 concentrations measured by direct RIA correlated in a statistically significant fashion with those measured after extraction and TLC. Nafazatrom added caused a dose-dependent inhibition of A23187-stimulated ir-LTB4 production with an IC50 of 17 μM.  相似文献   

17.
Although Sphagnum (moss)-dominated, northern peatlandecosystems harbor methane (CH4)-producing microorganisms(methanogens) and are a significant source of atmosphericCH4, rates of CH4 production vary widely amongdifferent systems. Very little work has been done to examine whetherconcentrations of cations and metal elements may account for thevariability. We examined rates of CH4 production in peat fromfive geographically and functionally disparateSphagnum-dominated peatlands by incubating peat samples invitro with and without additions of trace metals (Fe, Ni, Co) andbase cations (Ca, Li, Na). In peat from the most mineral poor sites, theaddition of metals and Na enhanced CH4 production beyond thatobserved in controls. The same treatments in mineral rich sites yieldedno effect or an inhibition of CH4 production. None of thetreatments affected anaerobic respiration, measured as CO2production, in the in vitro incubations of peat, except addedcitrate, suggesting that methanogens, and not the entire anaerobiccommunity, can be limited by the availability of metal elements andcations.  相似文献   

18.
Hexamita sp. is an amitochondriate free-living diplomonad which inhabits O2-limited environments, such as the deep waters and sediments of lakes and marine basins. 13C nuclear magnetic resonance spectroscopy reveals ethanol, lactate, acetate, and alanine as products of glucose fermentation under microaerobic conditions (23 to 34 μM O2). Propionic acid and butyric acid were also detected and are believed to be the result of fermentation of alternative substrates. Production of organic acids was greatest under microaerobic conditions (15 μM O2) and decreased under anaerobic (<0.25 μM O2) and aerobic (200 to 250 μM O2) conditions. Microaerobic incubation resulted in the production of high levels of oxidized end products (70% acetate) compared to that produced under anoxic conditions (20% acetate). In addition, data suggest that Hexamita cells contain the arginine dihydrolase pathway, generating energy from the catabolism of arginine to citrulline, ornithine, NH4+, and CO2. The rate of arginine catabolism was higher under anoxic conditions than under microaerobic conditions. Hexamita cells were able to grow in the absence of a carbohydrate source, albeit with a lower growth rate and yield.  相似文献   

19.
Pyridine-2,6-dithiocarboxylic acid (pdtc) is a metal chelator produced by Pseudomonas spp. It has been shown to be involved in the biodegradation of carbon tetrachloride; however, little is known about its biological function. In this study, we examined the antimicrobial properties of pdtc and the mechanism of its antibiotic activity. The growth of Pseudomonas stutzeri strain KC, a pdtc-producing strain, was significantly enhanced by 32 μM pdtc. All nonpseudomonads and two strains of P. stutzeri were sensitive to 16 to 32 μM pdtc. In general, fluorescent pseudomonads were resistant to all concentrations tested. In competition experiments, strain KC demonstrated antagonism toward Escherichia coli. This effect was partially alleviated by 100 μM FeCl3. Less antagonism was observed in mutant derivatives of strain KC (CTN1 and KC657) which lack the ability to produce pdtc. A competitive advantage was restored to strain CTN1 by cosmid pT31, which restores pdtc production. pT31 also enhanced the pdtc resistance of all pdtc-sensitive strains, indicating that this plasmid contains elements responsible for resistance to pdtc. The antimicrobial effect of pdtc was reduced by the addition of Fe(III), Co(III), and Cu(II) and enhanced by Zn(II). Analyses by mass spectrometry determined that Cu(I):pdtc and Co(III):pdtc2 form immediately under our experimental conditions. Our results suggest that pdtc is an antagonist and that metal sequestration is the primary mechanism of its antimicrobial activity. It is also possible that Zn(II), if present, may play a role in pdtc toxicity.  相似文献   

20.
Enzymes AKR1C regulate the action of oestrogens, androgens, and progesterone at the pre-receptor level and are also associated with chemo-resistance. The activities of these oestrone halides were investigated on recombinant AKR1C enzymes. The oestrone halides with halogen atoms at both C-2 and C-4 positions (13β-, 13α-methyl-17-keto halogen derivatives) were the most potent inhibitors of AKR1C1. The lowest IC50 values were for the 13α-epimers 2_2I,4Br and 2_2I,4Cl (IC50, 0.7 μM, 0.8 μM, respectively), both of which selectively inhibited the AKR1C1 isoform. The 13α-methyl-17-keto halogen derivatives 2_2Br and 2_4Cl were the most potent inhibitors of AKR1C2 (IC50, 1.5 μM, 1.8 μM, respectively), with high selectivity for the AKR1C2 isoform. Compound 1_2Cl,4Cl showed the best AKR1C3 inhibition, and it also inhibited AKR1C1 (Ki: AKR1C1, 0.69 μM; AKR1C3, 1.43 μM). These data show that halogenated derivatives of oestrone represent a new class of potent and selective AKR1C inhibitors as lead compounds for further optimisations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号