首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The hemocyanins of the Melongenidae family of marine gastropods: Melongena corona, Busycon canaliculatum, B. carica, B. contrarium, and B. spiratum exist in solution as multi-decameric aggregates characterized by sedimentation coefficients of approximately 105 S, 130 S, 150 S, 170 S, and higher values, corresponding to di-, tri-, tetra-, penta-, and larger multi-decameric particles. 2. The hemocyanins of B. contrarium and B. carica seem to form the largest decameric aggregates with the tri- to penta-decamers respresenting the major constitutents. Scanning transmission electron microscopy (STEM), both of unstained, freeze-dried and negatively-stained specimens, shows the presence of discrete aggregates consisting of up to ten decameric units. 3. The particle masses as determined by STEM mass measurements for individual molecules gave integral multiples of from 4.2 x 10(6) to 4.4 x 10(6) daltons ranging from about 8.2 x 10(6) daltons for the typical di-decamer of B. canaliculatum hemocyanin to as high as about 39 x 10(6) and 43 x 10(6) for the nano-and deca-decamers of B. contrarium hemocyanin. 4. The appearance of the higher multi-decamers in both negatively-stained and freeze-dried specimens suggest that they are formed by the addition of decameric units to a single di-decameric unit "tail-wise" in both directions. The higher aggregates formed seem to terminate with a closed head or collar at both ends of the assembly.  相似文献   

2.
Higher order assemblies of molluscan hemocyanins   总被引:2,自引:0,他引:2  
1. The hemocyanins of the Fissurellidae, Naticidae and Melongenidae families of marine gastropods as well as some other molluscs including some members of the Opistobranchia and Bivalvia groups have hemocyanins which exist in solution as tri-decameric and mixed, multi-decameric aggregates characterized by sedimentation coefficients close to 100 S, 130 S, 150 S, 170 S and 200 S to 230 S. 2. The particle masses of the molluscan hemocyanins appear to be integral multiples close to 4.4 x 10(6) daltons. Thus, particle mass values of 4.47 x 10(6), 8.67 x 10(6) and 13.40 x 10(6) daltons were obtained for representative decameric, di-decameric, and tri-decameric components of Stenoplax conspicua, Fasciolaria tulipa and Euspira (Lunatia) heros hemocyanins. For Busycon contrarium, a gastropod with a mixed multidecameric hemocyanin, scanning transmission electron microscopic (STEM) measurements gave particle masses ranging from 8.89 x 10(6) and 13.20 x 10(6) for the di- and tri-decameric components to 38.87 x 10(6) and 43.40 x 10(6) daltons for highest nano- and deca-decameric aggregates. 3. The electron microscopic images of both uranyl acetate-stained and unstained specimens of hemocyanin aggregates indicate a non-random mode of assembly of the multi-decameric particles. This is most apparent from the electron micrographs of the moon snail hemocyanins. The tri-decameric and tetra-decameric particles seem to be assembled from a single di-decameric unit of the Mellema and Klug arrangement, with the collar ends facing outward, to which decameric units have been added from one or both ends, in a unidirectional tail-to-head to tail-to-collar manner. Consequently, all the aggregates including the higher, Melongenidae polymers have the appearance of closed cylinders terminating with the collar ends. 4. The radial distribution of the end-on views of the hemocyanin of the moon-snail Calinatioina oldroydii, show that the radial mass drops to zero at the center of the cylindrical particles consisting of one, two, or three decamers. This suggests that no caps are present at the ends of the hemocyanin particles which would inhibit or terminate their linear assembly. 5. The light-scattering behavior of B. contrarium and Marisa cornarietis hemocyanins examined as a function of increasing reagent concentration using the hydrophobic urea and Hofmeister salt series of reagents, show distinct aggregation and increase in molecular weights at low concentrations of reagent. Together with the stabilizing influence of Mg2+ and Ca2+ ions, this suggests polar and ionic stabilization of the inter-decameric contacts between the central di-decamers and the added decameric units of the higher aggregates of molluscan hemocyanins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
1. The hemocyanins of the Naticidae family, E. heros, N. duplicata, P. draconis, P. lewisii and C. oldroydii were investigated by sedimentation velocity and scanning transmission electron microscopy. 2. At pH 8.0, 0.05 M Mg2+ E. heros hemocyanin is found to be predominantly in the tri-decameric state with a sedimentation coefficient (So20,w) of 131.3 (+/- 0.6) S. While the hemocyanin of N. duplicata is also mainly in the 130 S form, the hemocyanin of C. oldroydii is largely in the di-decameric form with a sedimentation coefficient close to 100 S. Other Naticidae hemocyanins, those of P. lewisii and P. draconis, have mixtures of the 100 S and 130 S di- and tri-decamers, and minor amounts of 150 S and faster sedimenting components. 3. The average particle masses based on STEM measurements are 8.85 x 10(6), 1303 x 10(6), and 17.1 x 10(6) da for the di-, tri-, and tetra-decameric assemblies of hemocyanin. 4. The subunit mol. wts of C. oldroydii hemocyanin and the published values for E. heros hemocyanin at alkaline pHs and in the presence of 8.0 M urea range from 4.2 x 10(5) to 4.8 x 10(5), suggesting the same decameric organization of the sub-assemblies of the Naticidae hemocyanins as for other molluscan hemocyanins. 5. The appearance of the larger hemocyanin particles in the electron micrographs support the hypothesis for their assembly that was based on similar studies of the hemocyanins of the Melongenidae family. According to this scheme the formation of higher aggregates is accomplished by the tail-to-head addition of each decameric unit to a central di-decamer which itself has the tail-to-tail Mellema and Klug arrangement of decamers. In this model all the higher aggregates terminate from either end with the same "collar" ends.  相似文献   

4.
Keyhole limpet hemocyanin (KLH) is widely used as an immune stimulant and hapten carrier derived from a marine mollusc Megathura crenulata. To provide details of the stability and equilibrium of KLH, different intermediate species were investigated with a series of biophysical techniques: circular dichroism, binding of hydrophobic dye, 1-anilino-8-naphthalene sulfonic acid, acrylamide-induced fluorescence quenching, thermal stability and dynamic light scattering. KLH in its native state at pH 7.4 exists in the stable didecameric form with hydrodynamic radii (R h) of 28.22 nm, which is approximately equal to a molecular mass of 8.8 ± 0.6 MDa. The experimental results demonstrated the presence of two structurally distinct species in the conformational transition of KLH under acidic conditions. One species populates at pH 2.8, characterized as decameric (4.8 ± 0.2 MDa; R h = 22.02 nm), molten globule-like state, while the other accumulates at pH 1.2 and is characterized as a tetramer (2.4 ± 0.8 MDa; R h = 16.47 nm) with more organized secondary and tertiary structures. Our experimental manipulation of the oligomeric states of KLH has provided data that correlate well with the known oligomeric forms obtained from total KLH formed in vivo and extends our understanding of multimer formation by KLH. The results are of particular interest in light of the important role of the mechanistic pathway of pH-dependent structural changes of Hc stability in the biochemical and medical applications of these respiratory proteins.  相似文献   

5.
Hemocyanins are blue copper containing respiratory proteins residing in the hemolymph of many molluscs and arthropods. They can have different molecular masses and quaternary structures. Moreover, several molluscan hemocyanins are isolated with one, two or three isoforms occurring as decameric, didecameric, multidecameric or tubule aggregates. We could recently isolate three different hemocyanin isopolypeptides from the hemolymph of the garden snail Helix lucorum (HlH). These three structural subunits were named αD-HlH, αN-HlH and β-HlH. We have cloned and sequenced their cDNA which is the first result ever reported for three isoforms of a molluscan hemocyanin. Whereas the complete gene sequence of αD-HlH and β-HlH was obtained, including the 5′ and 3′ UTR, 180 bp of the 5′ end and around 900 bp at the 3′ end are missing for the third subunit. The subunits αD-HlH and β-HlH comprise a signal sequence of 19 amino acids plus a polypeptide of 3409 and 3414 amino acids, respectively. We could determine 3031 residues of the αN-HLH subunit. Sequence comparison with other molluscan hemocyanins shows that αD-HlH is more related to Aplysia californicum hemocyanin than to each of its own isopolypeptides. The structural subunits comprise 8 different functional units (FUs: a, b, c, d, e, f, g, h) and each functional unit possesses a highly conserved copper-A and copper-B site for reversible oxygen binding. Potential N-glycosylation sites are present in all three structural subunits. We confirmed that all three different isoforms are effectively produced and secreted in the hemolymph of H. lucorum by analyzing a tryptic digest of the purified native hemocyanin by MALDI-TOF and LC-FTICR mass spectrometry.  相似文献   

6.
We describe here the structure of the hemocyanin from the Chilean gastropod Concholepas concholepas (CCH), emphasizing some attributes that make it interesting among molluscan hemocyanins. CCH exhibits a predominant didecameric structure as revealed by electron microscopy and a size of 8 MDa by gel filtration, and, in contrast with other mollusc hemocyanins, its stabilization does not require additional Ca(2+) and/or Mg(2+) in the medium. Polyacrylamide gel electrophoresis studies, analyses by a MonoQ FPLC column, and Western blots with specific monoclonal antibodies showed that CCH is made by two subunits noncovalently linked, named CCH-A and CCH-B, with molecular masses of 405 and 350 kDa, respectively. Interestingly, one of the subunits undergoes changes within the macromolecule; we demonstrated that CCH-A has an autocleavage site that under reducing conditions is cleaved to yield two polypeptides, CCH-A1 (300 kDa) and CCH-A2 (108 kDa), whereas CCH-B remains unchanged. The CCH-A nick occurs at 4 degrees C, increases at 37 degrees C, and is not inhibited by the addition of protease inhibitors and/or divalent cations. Since the CCH structure is a heterodimer, we investigated whether subunits would be either intermingled, forming heterodecamers, or assembled as two homogeneous decamers. Light scattering and electron microscope studies of the in vitro reassociation of purified CCH subunits demonstrated that the sole addition of Mg(2+) is needed for its reassembly into the native decameric molecule; no homodecamer reorganization was found with either CCH-A or CCH-B subunits alone. Our evidence showed that C. concholepas hemocyanin is an unusual example of heterodecameric organization.  相似文献   

7.
Molluscan hemocyanin: structure,evolution, and physiology   总被引:1,自引:0,他引:1  
Most molluscs have blue blood because their respiratory molecule is hemocyanin, a type-3 copper-binding protein that turns blue upon oxygen binding. Molluscan hemocyanins are huge cylindrical multimeric glycoproteins that are found freely dissolved in the hemolymph. With molecular masses ranging from 3.3 to 13.5 MDa, molluscan hemocyanins are among the largest known proteins. They form decamers or multi-decamers of 330- to 550-kDa subunits comprising more than seven paralogous functional units. Based on the organization of functional domains, they assemble to form decamers, di-decamers, and tri-decamers. Their structure has been investigated using a combination of single particle electron cryo-microsopy of the entire structure and high-resolution X-ray crystallography of the functional unit, although, the one exception is squid hemocyanin for which a crystal structure analysis of the entire molecule has been carried out. In this review, we explain the molecular characteristics of molluscan hemocyanin mainly from the structural viewpoint, in which the structure of the functional unit, architecture of the huge cylindrical multimer, relationship between the composition of the functional unit and entire tertiary structure, and possible functions of the carbohydrates are introduced. We also discuss the evolutionary implications and physiological significance of molluscan hemocyanin.  相似文献   

8.
9.
Hemocyanin is the blue respiratory protein of many arthropod species. While its structure, evolution, and physiological function have been studied in detail in Decapoda, there is little information on hemocyanins from other crustacean taxa. Here, we have investigated the hemocyanin of the peacock mantis shrimp Odontodactylus scyllarus, which belongs to the Stomatopoda (Hoplocarida). O. scyllarus hemocyanin forms a dodecamer (2 × 6-mer), which is composed of at least four distinct subunit types. We obtained the full-length cDNA sequences of three hemocyanin subunits, while a fourth cDNA was incomplete at its 5′ end. The complete full-length cDNAs of O. scyllarus hemocyanin translate into polypeptides of 650–662 amino acids, which include signal peptides of 16 or 17 amino acids. The predicted molecular masses of 73.1–75.1 kDa correspond well with the main hemolymph proteins detected by SDS-PAGE and Western blotting using various anti-hemocyanin antibodies. Phylogenetic analyses show that O. scyllarus hemocyanins belong to the β-type of malacostracan hemocyanin subunits, which diverged from the other subunits before the radiation of the malacostracan subclasses around 520 million years ago. Molecular clock analysis revealed an ancient and complex pattern of hemocyanin subunit evolution in Malacostraca and also allowed dating divergence times of malacostracan taxa.  相似文献   

10.
Recent aspects of the subunit organization and dissociation of hemocyanins   总被引:2,自引:0,他引:2  
1. The hemocyanins of the arthropod phylum are built of multiples of hexamers consisting of 1,2,4,6 and 8 of such basic assemblies. Their molecular weights range from about 0.45 x 10(6) to 3.9 x 10(6) daltons. The basic hexameric unit consists of bean-shaped monomers organized in the form of two layers of trimers placed on top of one another. The subunits are heterogeneous, in most cases consisting of four or more electrophoretically different polypeptide chains. 2. Molluscan hemocyanins have an entirely different structure and pattern of assembly from the arthropodan hemocyanins. The basic assembly of the molluscan hemocyanins are decamers organized in the form of right-handed cylinders approximately 300 A in diameter and 140-190 A in height. Different species have one, two and sometimes more than two such assemblies forming correspondingly longer cylindrical particles with molecular weights ranging from about 3.3 x 10(6) to 13 x 10(6) daltons. Cephalopod and chiton hemocyanins consist of single decameric particles, while gastropods have hemocyanins organized of di-decamers or higher assemblies. The subunits of these hemocyanins are elongated protein chains with seven or eight folded globular domains, each housing a binuclear copper center capable of binding and delivering oxygen. 3. The dissociation behavior of the arthropod hemocyanin hexamers and di-hexamers with the hydrophobic urea series of reagents suggest polar and ionic interactions as the main sources of stabilization of the hexamers and the hexamer to hexamer contacts within the di-hexamers. 4. Dissociation studies with the same urea probes with the molluscan hemocyanins, however, suggest a different pattern of stabilization. The stabilization of the decamer to decamer contacts within the gastropod di-decamers appear to be predominantly polar and ionic with relatively few hydrophobic interaction sites. The dimer contacts within the decamers and the monomer to monomer contacts within the dimers observed in the octopus and chiton hemocyanins appear to be predominantly hydrophobic in nature. 5. The urea and the pH dissociation profiles of the single decameric assemblies of some of the octopus and chiton hemocyanins investigated by light-scattering molecular weight methods, have been fitted using either a two-species, decamer to dimer and decamer to monomer scheme of subunit dissociation or a three-species, decamer to dimer to monomer scheme of dissociation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Hemocyanins are giant oxygen transport proteins found in the hemolymph of several invertebrate phyla. They constitute giant multimeric molecules whose size range up to that of cell organelles such as ribosomes or even small viruses. Oxygen is reversibly bound by hemocyanins at binuclear copper centers. Subunit interactions within the multisubunit hemocyanin complex lead to diverse allosteric effects such as the highest cooperativity for oxygen binding found in nature. Crystal structures of a native hemocyanin oligomer larger than a hexameric substructure have not been published until now. We report for the first time growth and preliminary analysis of crystals of the 24-meric hemocyanin (MW = 1.8 MDa) of emperor scorpion (Pandinus imperator), which diffract to a resolution of 6.5 Å. The crystals are monoclinc with space group C 1 2 1 and cell dimensions a = 311.61 Å, b = 246.58 Å and c = 251.10 Å (α = 90.00°, β = 90.02°, γ = 90.00°). The asymmetric unit contains one molecule of the 24-meric hemocyanin and the solvent content of the crystals is 56%. A preliminary analysis of the hemocyanin structure reveals that emperor scorpion hemocyanin crystallizes in the same oxygenated conformation, which is also present in solution as previously shown by cryo-EM reconstruction and small angle x-ray scattering experiments.  相似文献   

12.
1. The hemocyanins of the Muricidae and Fasciolariidae families of marine gastropods: Chicoreus florifer dilectus, Muricanthus fulvescens, Urosalpinx cinerea, Fasciolaria lilium hunteria, and Pleuroploca gigantea were investigated by sedimentation velocity, scanning transmission electron microscopy, light-scattering, and other physical techniques. 2. The hemocyanins of these species are characterized by sedimentation coefficients close to 100 S and molecular weights of 8.2 x 10(6)-9.0 x 10(6). 3. The hemocyanins have di-decameric structures, with tail-to-tail arrangement of the decameric halves of the cylindrical particles. Only the hemocyanin of U. cinerea was found to contain about 30% higher, tri-, and tetra-decameric particles, with one or two decameric units added in a tail-to-head manner to a central di-decameric particle of the Mellema and Klug tail-to-tail arrangement. 4. The influence of pH, and the urea and Hofmeister salt series of reagents on the subunit structure and denaturation of P. gigantea hemocyanin were also investigated.  相似文献   

13.
The stabilizing effects of Ca2+ and Mg2+ ions on the decameric structure of hemocyanins from two representative chitons, Stenoplax conspicua and Mopalia muscosa were investigated by light-scattering molecular weight measurements, ultracentrifugation, absorbance, and circular dichroism methods. The dissociation profiles at any given pH resulting from the decrease in divalent ion concentration, investigated at a fixed protein concentration of 0.1 g.liter-1, could be fitted by a decamer-to-dimer-to monomer scheme of subunit dissociation. The initial decline in the light-scattering molecular weight curves required one or two apparent binding sites per hemocyanin dimer formed as intermediate dissociation product, with apparent dissociation constants (kD,2) for Ca2+ ions of 0.7 to 7 X 10(-4) M, not very different from the value of 2.5 X 10(-4) M obtained by Makino by equilibrium dialysis for the hemocyanin of the opistobranch, Dolabella auricularia. The binding of Mg2+ ion to S. conspicua and M. muscosa hemocyanins appears to be both weaker than the binding of Ca2+ and more pH dependent, with kD,2 values ranging from the 3 X 10(-4) to 4 X 10(-2) M at pH 8.5 to 9.5. The dissociation the decameric hemocyanin species (sedimentation coefficient ca. 60 S) is also observed in the ultracentrifugation with the initial appearance of 18-20 S dimers, followed by a shift in equilibrium to monomeric species of lower sedimentation rates of 11-12 S as the divalent ion concentration is reduced below 1 X 10(-4) M Ca2+ and Mg2+. The dissociation of dimers to monomers in the second step of the reaction is characterized by one or two binding sites per subunit and a somewhat stronger affinity for divalent ions, indicated by apparent dissociation constants (kD,1) of 0.7 X 10(-4) to 3 X 10(-3) M. Circular dichroism and absorbance measurements at 222 and 346 nm suggest no significant changes in the conformation of the hemocyanin subunits produced by the different stages of subunit dissociation.  相似文献   

14.
A 12 A resolution three-dimensional density map of the Haliotis tuberculata hemocyanin type 1 (HtH1) didecamer has been obtained by cryoelectron microscopy of unstained molecules and angular reconstitution. The dyad symmetry of the 8 MDa D5 HtH1 didecamer, formed by the pairing of two asymmetric 4 MDa ring-like C5 decamers, is emphasised. The major and minor surface helical grooves of the didecamer are well defined, in agreement with earlier data on molluscan hemocyanins. The location of the obliquely orientated repeating unit, a subunit dimer, within the decamer has been defined. Following interactive extraction of this dimer, several new structural features of the dimer and of the subunit have now emerged with improved detail. The subunit dimer possesses pseudo 2-fold symmetry, resulting from the steric arrangement of the wall domains/functional units (FUs-abcdef) of the two subunits. The arc and collar FUs (g and h) depart from this inherent 2-fold symmetry and are thereby responsible for the asymmetry of the C5 decamer, with the internalised collar/arc complex at one edge of the decamer. The FU heterodimers forming the wall morphological units have a hollow centre, and thus create a series of repeating channels that extend within the wall through all three tiers of the decamer. The connections between the wall and the arc are defined with improved clarity, and evidence is provided to indicate that the arc and collar FU pairs have a homodimeric composition (gg and hh, respectively). Two possibilities for the subunit path within the subunit dimer are presented, which correlate with the available structural, immunolabelling and protease cleavage data from HtH1 and other molluscan hemocyanins.  相似文献   

15.
Oxygen binding by arthropod hemocyanin from the scorpion Leirus quinquestriatus and the crabs Telphusa fluviatilis and Ocypoda cursor was studied in Ca2+, Mg2+-free solutions. The binding was found to be co-operative in all three cases. Our results and a re-examination of the literature lead us to conclude that co-operative oxygen binding is a built-in feature common to arthropod hemocyanins, distinguishing them from mollusc hemocyanins where co-operativity is conditional upon the presence of Ca2+ or Mg2+.  相似文献   

16.
Hemocyanin is a copper-containing protein that transports O2 in the hemolymph of many arthropod species. Within the crustaceans, hemocyanin appeared to be restricted to Malacostraca but has recently been identified in Remipedia. Here, we report the occurrence of hemocyanin in ostracods, indicating that this respiratory protein is more widespread within crustaceans than previously thought. By analyses of expressed sequence tags and by RT-PCR, we obtained four full length and nine partial hemocyanin sequences from six of ten investigated ostracod species. Hemocyanin was identified in Myodocopida (Actinoseta jonesi, Cypridininae sp., Euphilomedes morini, Skogsbergia lerneri, Vargula tsujii) and Platycopida (Cytherelloidea californica) but not in Podocopida. We found no evidence for the presence of hemoglobin in any of these ostracod species. Like in other arthropods, we identified multiple hemocyanin subunits (up to six) to occur in a single ostracod species. Bayesian phylogenetic analyses showed that ostracod hemocyanin subunit diversity evolved independently from that of other crustaceans. Ostracod hemocyanin subunits were found paraphyletic, with myodocopid and platycopid subunits forming distinct clades within those of the crustaceans. This pattern suggests that ostracod hemocyanins originated from distinct subunits in the pancrustacean stemline.  相似文献   

17.
Quantitative mass analysis of bacteriophage T4 proheads by scanning transmission electron microscopy (STEM) revealed a mass of 79.5 +/- 0.6 MDa, while hydrodynamic measurements yielded a prohead mass of about 80 MDa. This is 25% less than the prohead mass deduced from its polypeptide composition, and this finding implies that the bacteriophage T4 prohead is built of fewer polypeptide copies than previously reported. In contrast, the mass of mature heads measured by STEM, 194 +/- 2 MDa, is in agreement with previous mass measurements of DNA and protein content, and it is consistent with the previously determined stoichiometry. This good agreement of average STEM values for proheads and mature heads with corresponding hydrodynamic measurements suggests that STEM allows faithful evaluation of the masses of large supramolecular assemblies (i.e., greater than or equal to 200 MDa) such as whole viruses or cellular organelles.  相似文献   

18.
Summary Three murine hybridoma cell lines secreting IgG1 antibodies to 4×6 tarantula (Eurypelma californicum) hemocyanin were isolated, and the monoclonal antibodies Ec-7, Ec-8 and Ec-24 characterized by immunoblotting, immunoelectrophoresis and ELISA. WholeEurypelma hemocyanin, and the isolated subunitsa tog served as probes. For the subunits a novel, quick purification scheme on FPLC combined with immuno-affinity chromatography was established.Additionally, two cell lines secreting IgM antibodies were isolated. These antibodies showed irrelevant cross reactivities.Ec-7 strongly reacts with subunitd and weakly withb. Ec-8 and Ec-24 are specifically directed againstEurypelma subunitsa ande, respectively. The epitopes of Ec-7 and Ec-8 are sequence-dependent, whereas the Ec-24 epitope is conformation-dependent. Ec-8 and Ec-24 are specific forEurypelma hemocyanin. Ec-7 is not reactive to crustacean, centipede or gastropod hemocyanins, but binds to scorpion hemocyanin and to the immunological correlates of subunitsd andf in the hemocyanins of the spiderCupiennius salei and the xiphosuranLimulus polyphemus.In immunoblots with different polyclonal antisera,Eurypelma andAstacus hemocyanin cross-reacted with calliphorin, a larval serum protein from the blowflyCalliphora vicina. Calliphorin and chelicerate hemocyanins share the Ec-7 epitope. Sedimentation coefficients, pH stability regions, subunit size, and electron microscopical appearance of calliphorin are indiscernable from a typical 1×6 arthropod hemocyanin. This relationship is discussed in the context of hemocyanin evolution.Abbreviations FPLC fast performance liquid chromatography - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate A preliminary account of this work was presented in June 1987 at the annual meeting of the Deutsche Zoologische Gesellschaft at Ulm (Markl 1987a)  相似文献   

19.
Co(II)-substituted hemocyanin (Co(II)Hc) of the octopus, Octopus vulgaris, has been prepared by dialysis of apohemocyanin against Co(II·) ion and subsequent Chelex-treatment. The blue 50%-Co(II)Hc (half-apo Co(II)Hc), in which binuclear coppers are replaced in the hemocyanin by a single Co(II), exhibits two absorption maxima at 560 (?Co=250) and 594 nm (?Co=320 M?1 cm?1) and a shoulder near 610 nm, all of which are attributed to a dd transition of high spin Co(II) (S=3/2) with a tetrahedral geometry. The magnetic circular dichroism (MCD) spectrum in this region also suggests the existence of a tetrahedral Co(II) species in the protein. The visible absorption and MCD spectra of octopus 50%-Co(II)Hc are quite similar to those of squid 50%-Co(II)Hc described in the previous paper (S. Suzuki, J. Kino, M. Kimura, W. Mori and A. Nakahara, Inorg. Chim. Acta, 66, 41 (1982)). The formation of half-apo Co(II)Hc demonstrates that the binuclear copper sites in native octopus hemocyanin may differ from each other in coordination geometry, as in other molluscan hemocyanins, squid and snail hemocyanins. The coordination environment of the active-site Co(II) substituted for Cu in the octopus hemocyanin is the same as that of the corresponding active site of the squid hemocyanin.  相似文献   

20.
Background: The crystallographic structure of the gigantic hemoglobin (erythrocruorin) of the annelid worm, Lumbricus terrestris, provides a molar mass of 3.6 MDa for the hexagonal bilayer structure. Prior to this determination, some light-scattering and ultracentrifugal measurements indicated higher masses: 4.1–4.4 MDa. Values of 3.6 MDa were attributed to dissociation or subunit loss. However, early electron microscopy of the giant hemoglobin from a related annelid, Eumenia crassa by Öster Levin, showed that the hexagonal bilayer molecules were present mostly as oligomers; few were monomeric. Methods: Measurements by light-scattering of solutions of Lumbricus hemoglobin resolved by size-exclusion chromatography have been used to determine the weight-average molar mass of self-associating proteins. The X-ray structure has been re-examined. Results: Our measurements show that both 3.6 MDa monomers and self-association products are present as a mixture. Analysis of the X-ray structure indicates several different kinds of monomer–monomer interactions. Conclusions: We propose that the measured masses of Lumbricus hemoglobin as high as 4.4 MDa, result from oligomerization. These masses would result from the presence of an array of oligomers of various sizes together with monomers of 3.6 MDa. Furthermore, several different kinds of monomer–monomer interactions are clearly evident in the X-ray structure as well as in solution. General significance: The results demonstrate that self-association of monomers of the hemoglobin of Lumbricus terrestris explains the high molar masses of 4.1–4.4 MDa previously observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号