首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkalophilic Bacillus no. C-3 isolated from soil produced 5′-nucleotidase (EC 3.1.3.5) extracellularly when cultured in a medium containing Mn2+. The unique point of enzyme production is that the enzyme was produced well in the medium containing a rather high concentration of Mn2+, in spite of a small difference in growth. The optimum concentration of Mn2+ for the enzyme production was 10 mM and over. Mn2+ could not be replaced by other divalent cations when added singly. In the presence of 10 mM Mn2+, the enzyme production was repressed by the addition of 0.5 mM phosphate to the medium. The course of the enzyme production closely paralleled the increase in growth. The optimum pH for the enzyme activity was 9.2–9.5, and KHCO3-K2CO3 buffer was suitable for the enzyme.  相似文献   

2.
A 5′-nucleotidase (5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) was highly purified from rat liver. The preparation appeared homogeneous on the criteria of disc-gel electrophoresis.A pH optimum at about 6.5 was observed for all substrates tested. The activity of this enzyme was absolutely dependent on the presence of various bivalent metal salts. The highest V value was attained with MgCl2 and the concentration at half-enzyme saturation was lowest with MnCl2. The enzyme had markedly higher affinities for IMP, dIMP, GMP and dGMP than the other 5′-mononucleotides, although V values for all the substrates tested were in the same order of magnitude.The activity of this enzyme was stimulated by various alkali metal salts, some carboxylic acids and adenine nucleotides. When AMP was used as substrate, the substrate-velocity plot was sigmoidal and NaCl, Tris-maleate and ATP stimulated the enzyme by decreasing the sigmoidicity of the plot. When IMP was used as substrate, the substrate-velocity plot was hyperbolic and these three activators stimulated the enzyme by increasing the V and decreasing the Km value.Some of these results provided consistent evidence for the identity of this enzyme and the cytosol 5′-nucleotidase, the presence of which had been reported in crude preparations from rat liver.  相似文献   

3.
Summary A -cyclodextrin glucosyltransferase was purified from alkalophilic Bacillus sp. No. 562 over 64-fold with a yield of 32%. Its molecular size was estimated to be 170 kDa by gel filtration and 82 kDa by SDS-PAGE, with a pI of 7.2. The enzyme showed optimum activity at 65 °C and pH 7.0. It was stable from 0 to70 °C and from pH 7.0 to 11.0. The enzyme was specifically inhibited by Fe2+ and Fe3+.  相似文献   

4.
-Mannanase produced by Bacillus sp. W-2, isolated from decayed commercial konjak cake, was purified from the culture supernatant by (NH4)2 SO4 precipitation, adsorption to konjak gel, and column chromatography with DEAE-cellulose, Sephadex G-100 and Sephacryl S-200. Its molecular size was estimated by SDS-PAGE as 40 kDa, and by gel filtration as 36 kDa. The enzyme was most active at pH 7 and 70°C and was stable for at least 1 h between pH 5 and 10 and below 60°C. Its activity was completely inhibited by Hg2+. The enzyme hydrolysed galactomannan better than glucomannan and mainly produced mannose and mannobiose.The authors are with the Department of Bioproductive Science, Faculty of Agriculture, Utsunomiya University. Utsunomiya, Tochigi 321, Japan  相似文献   

5.
α-Amylase (EC 3.2.1.1) hydrolyzes an internal α-1,4-glucosidic linkage of starch and related glucans. Alkalophilic liquefying enzymes from Bacillus species are utilized as additives in dishwashing and laundry detergents. In this study, we found that Bacillus sp. AAH-31, isolated from soil, produced an alkalophilic liquefying α-amylase with high thermostability. Extracellular α-amylase from Bacillus sp. AAH-31 (AmyL) was purified in seven steps. The purified enzyme showed a single band of 91 kDa on SDS-PAGE. Its specific activity of hydrolysis of 0.5% soluble starch was 16.7 U/mg. Its optimum pH and temperature were 8.5 and 70 °C respectively. It was stable in a pH range of 6.4-10.3 and below 60 °C. The calcium ion did not affect its thermostability, unlike typical α-amylases. It showed 84.9% of residual activity after incubation in the presence of 0.1% w/v of EDTA at 60 °C for 1 h. Other chelating reagents (nitrilotriacetic acid and tripolyphosphate) did not affect the activity at all. AmyL was fully stable in 1% w/v of Tween 20, Tween 80, and Triton X-100, and 0.1% w/v of SDS and commercial detergents. It showed higher activity towards amylose than towards amylopectin or glycogen. Its hydrolytic activity towards γ-cyclodextin was as high as towards short-chain amylose. Maltotriose was its minimum substrate, and maltose and maltotriose accumulated in the hydrolysis of maltooligosaccharides longer than maltotriose and soluble starch.  相似文献   

6.
A gene encoding β-galactosidase from Bacillus circulans which had hydrolysis specificity for the β1-3 linkage was expressed in Escherichia coli. The β-galactosidase was purified from crude cell lysates of E. coli by column chromatographies on Resource Q and Sephacryl S-200 HR. The enzyme released galactose with high selectivity from oligosaccharides which had terminal β1-3 linked galactose residues. However it did not hydrolyse β1-4 linked galactooligosaccharides. Moreover, Galβ1-3GlcNAc, Galβ1-3GalNAc, and their p-nitrophenyl glycosides were regioselectively synthesized in 10–46% yield by the transglycosylation reaction using this enzyme.  相似文献   

7.
Summary An extracellular -amylase has been isolated from a continuous culture of a thermophilic strain of Bacillus brevis. This enzyme was purified eightfold and obtained in electrophoretically homogenous form. The enzyme had a molecular weight of about 58000, a pH optimum from 5.0 to 9.0 and a temperature optimum at 80°C. The half-life of the purified enzyme in the presence of 5 mM CaCl2 at 90° C and pH 8.0 was 20 min. The K m value for soluble starch was calculated to be 0.8 mg/ml.  相似文献   

8.
A thermotolerant -amylase was purified from Bacillus circulans S31 isolated from soil in Hong Kong. The purified enzyme has an M r of 64 kDa and was stable at 50°C and pH 7.0 for 30 min. Its K m for starch was 0.9 mg/ml with a V max of 0.3 mg/min. It was not activated by any metal ion although sulphydrys reagents were inhibitory.H.S. Kwan, K.H. So and K.Y. Chan are with the Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong S.C. Cheng is with the Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic, Hung Hom, Hong Kong.  相似文献   

9.
  • 1.1. A search for nucleoside phosphotransferase activity in Bacillus cereus led to the following results: (i) The phosphotransferase activity was associated with a membrane bound 5′-nucleotidase. (ii) The enzyme phosphorylates both purine and pyrimidine nucleosides as well as 2′,3′-dideoxyinosine. (iii) The enzyme was inhibited by adenylic nucleotide di- and triphosphates, and its nucleotidase activity was increased in the presence of inosine as phosphate acceptor.
  • 2.2. Bacterial and vertebrate 5′-nucleotidases with phosphotransferase activity diner for several characteristics, such as cellular location, substrate specificity, magnesium requirement and regulation.
  相似文献   

10.
An exocellular γ-glutamyl arylamide-hydrolyzing enzyme was produced by a Bacillus sp. in L-glutamate-containing medium. This enzyme was a tetrameric simple protein composed of two heavy subunits (Mr 56,000) and two light subunits (Mr 46,000). It hydrolyzed γ-amido, acyl and aryl bonds in L- and D-glutamyl compounds, and the activity on L-glutamic acid γ-p-nitroanilide was inhibited by the addition of glutamate and γ-glutamyl compounds but not by α-glutamyl compounds. The activity was stimulated by various dipeptides but not by free amino acids, L-Alanine, glycine, L-serine and L-cysteine inhibited the enzyme competitively. Addition of hy-droxylamine had no effect on the activity.  相似文献   

11.
APS-kinase (ATP: adenylylsulphate 3-phosphotransferase, EC 2.7.1.25) has been purified from the alga Chlamydomonas reinhardii, strain CW 15 by means of chromatofocussing and affinity chromatography. The isolated protein showed an apparent molecular mass of 44,000 upon sodium dodecylsulphate polyacrylamide gel electrophoresis. The transfer of phosphate groups from ATP onto APS required a pH of 6.8, the presence of Mg2+ ions and a reducing thiol. Its catalytical activity was destroyed by sulphhydryl group inhibitors (phenyl-mercuri compounds, dithiopyridine) and alkylating reagents.The purified enzyme attained a V max of 360 pkat under optimal reaction conditions declining to v limit of 260 pkat in the presence of excess substrate APS. This sensitivity towards changes in substrate concentrations was parallelled by a high affinity and specificity: apparent K m APS: 2 · 10-6 mol · l-1, and K m ATP: 7 · 10-6 mol · l-1. The enzyme was found specific for ATP, d-ATP and CTP, while UTP, ITP and GTP showed marginal activity. The Hill coefficients suggested 4 binding sites for APS and 1 for ATP. Excessive APS resulted in a negative slope indicating 3 inhibiting sites of the substrate.Abbreviations APS Adenosine 5-phosphosulphate - dATP 2-deoxyadenosine 5-triphosphate - p-CMB p-chloromercuribenzoate - DTE dithioerythritol - DTT dithiothreitol - -MSH -mercaptoethanol - PAPS 3-phosphoadenosine 5-phosphosulphate - PAP 3-phosphoadenosine 5-phosphate - SDS sodium dodecyl sulphate This work is part of a dissertation submitted by H. G. J., Bochum 1982  相似文献   

12.
《Plant science》1987,50(2):117-123
A cyclic nucleotide-binding phosphatase was purified from silver beet leaves by a procedure involving chromatography on CM-Sepharose CL-6B, DEAE-Sephacel, casein-Sepharose 4B, concanavalin A-agarose and Ultrogel AcA44. The enzyme is eluted from concanavalin A-agarose by 0.5 M α-methylglucoside at high ionic strength. The enzyme is monomeric, having a subunit molecular weight (Mr) of 28 000; the native Mr is 31 000 as determined from gel filtration. The enzyme catalyzes the hydrolysis of a range of phosphomonoesters including various nucleotides and O-phosphotyrosine but not O-phosphoserine or O-phosphothreonine. The leaf phosphatase is competitively inhited by guanosine 3′ : 5′-cyclic monphosphate (cGMP) and adenosine 3′ : 5′-cyclic monophosphate (cAMP) (Ki-values: 0.4 μM and 3.3 μM, respectively). The leaf phosphotase has the highest affinity for cGMP yet reported for a plant protein.  相似文献   

13.
The discovery of novel bacterial cyclodextrin glucanotransferase (CGTase) enzyme could provide advantages in terms of its production and relative activity. In this study, eight bacterial strains isolated from soils of a biodiversity-rich vegetation in Egypt based on their hydrolyzing activity of starch, were screened for CGTase activity, where the most active strain was identified as Bacillus lehensis. Optimization process revealed that the using of rice starch (25 %) and a mixture of peptone/yeast extract (1 %) at pH 10.5 and 37 °C for 24 h improved the bacterial growth and enzyme activity. The bacterial CGTase was successively purified by acetone precipitation, gel filtration chromatography in a Sephadex G-100 column and ion exchange chromatography in a DEAE-cellulose column. The specific activity of the CGTase was increased approximately 274-fold, from 0.21 U/mg protein in crude broth to 57.7 U/mg protein after applying the DEAE-cellulose column chromatography. SDS-PAGE showed that the purified CGTase was homogeneous with a molecular weight of 74.1 kDa. Characterization of the enzyme exhibited optimum pH and temperature of 7 and 60 °C, respectively. CGTase relative activity was strongly inhibited by Mg2+, Zn2+, Al3+ and K+, while it was slightly enhanced by 5 and 9 % with Cu2+ and Fe2+ metal ions, respectively.  相似文献   

14.
We found a novel cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. G-825-6. The enzyme was expressed in the culture broth by recombinant Bacillus subtilis KN2 and was purified and characterized. The enzyme named CGTase825-6 showed 95% amino acid sequence identity with a known enzyme β-/γ-CGTase from Bacillus firmus/lentus 290-3. However, the product specificity of CGTase825-6 differed from that of β-/γ-CGTase. CGTase825-6 produced γ-cyclodextrin (CD) as the main product, but degradation of γ-CD was observed with prolonged reaction. The product specificity of the enzyme was positioned between γ-CGTase produced by Bacillus clarkii 7364 and B. firmus/lentus 290-3 β-/γ-CGTase. It showed that the difference of product specificity was dependent on only 28 amino acid residues in 671 residues in CGTase825-6. We compared the amino acid sequence of CGTase825-6 and those of other CGTases and constructed a protein structure model of CGTase825-6. The comparison suggested that the diminished loop (Val138-Asp142) should provide subsite -8 for γ-CD production and that Asp142 might have an important role in product specificity. CGTase825-6 should be a useful tool to produce γ-CD and to study the differences of producing mechanisms between γ-CD and β-CD.  相似文献   

15.
Abstract

Synthetic oligoribonucleotides (RNA) are efficiently prepared with 2′-O-tert-butyldimethylsilyl nucleoside 3′-O-phosphoramidites with labile base-protection; Admf or APac, Gdmf, Cibu, U. After cleavage from the polystyrene support, the exocyclic amine protecting groups are removed with conc. NH4OH: ethanol/3:1 by heating at 55°C for 3–5 h. The 2′-O- silyl protecting groups are removed with tetra-n-butylammonium fluoride in THF or more conveniently with neat triethylamine trihydrofluoride. To gain the advantages of increased capacity on reverse phase HPLC and the convenience of cartridge based purification (OPC, Oligonucleotide Purification Cartridge), the 5′ trityl was left on the RNA as the final protecting group to be removed. The mild conditions which are effective for trityl removal are shown to preserve 3′-5′ phosphate linkage integrity in RNA. The absence of phosphate migration is demonstrated by model studies, utilizing N4 -isobutyryl-5′-O-DMT-3′-O-TBDMS-2′-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) as a control monomer and digestion by 3′-5′ selective P1 nuclease and alkaline phosphatase and HPLC analysis. Oligoribonucleotides were analyzed by Microgel capillary electrophoresis, anion-exchange HPLC, and the enzymatic digest/HPLC method.

  相似文献   

16.
Radioactive PAPS was synthesized with a predetermined specific activity using enzymes purified from Bacillus stearothermophilus. The reaction system, incorporating 1.5mCi of 35S-H2SO4 and 500 nmol of ATP, produced 582 μCi of 35S-PAPS. The synthesized 35S-PAPS was purified by ECTEOLA cellulose chromatography, followed by desalting with DOWEX 50W-X8. The final yield was 206 μmol of 35S-PAPS with a radioactivity of 411 μCi.  相似文献   

17.
α-Glucosidase has been isolated from Bacillus cereus in ultracentrifugally and electrophoretically homogeneous form, and its properties have been investigated. The enzyme has a sedimentation constant of 1.4 S and a molecular weight of 12,000. The highly purified enzyme splits α-d-(1→4)-glucosidic linkages in maltose, maltotriose, and phenyl α-maltoside, but shows little or no activity toward polysaccharides, such as amylose, amylopectin, glycogen and soluble starch. The enzyme has α-glucosyltransferase activity, the main transfer product from maltose being maltotriose. The enzyme can also catalyze the transfer of α-glucosyl residue from maltose to riboflavin. On the basis of inhibition studies with diazonium-1-H-tetrazole, rose bengal and p-chloromercuribenzoate, it is assumed that the enzyme contains both histidine and cysteine residues in the active center.  相似文献   

18.
Extracts of Chlorella pyrenoidosa, Euglena gracilis var. bacillaris, spinach, barley, Dictyostelium discoideum and Escherichia coli form an unknown compound enzymically from adenosine 5′-phosphosulphate in the presence of ammonia. This unknown compound shares the following properties with adenosine 5′-phosphoramidate: molar proportions of constituent parts (1 adenine:1 ribose:1 phosphate:1 ammonia released at low pH), co-electrophoresis in all buffers tested including borate, formation of AMP at low pH through release of ammonia, mass and i.r. spectra and conversion into 5′-AMP by phosphodiesterase. This unknown compound therefore appears to be identical with adenosine 5′-phosphoramidate. The enzyme that catalyses the formation of adenosine 5′-phosphoramidate from ammonia and adenosine 5′-phosphosulphate was purified 1800-fold (to homogeneity) from Chlorella by using (NH4)2SO4 precipitation and DEAE-cellulose, Sephadex and Reactive Blue 2–agarose chromatography. The purified enzyme shows one band of protein, coincident with activity, at a position corresponding to 60000–65000 molecular weight, on polyacrylamide-gel electrophoresis, and yields three subunits on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of 26000, 21000 and 17000 molecular weight, consistent with a molecular weight of 64000 for the native enzyme. Isoelectrofocusing yields one band of pI4.2. The pH optimum of the enzyme-catalysed reaction is 8.8. ATP, ADP or adenosine 3′-phosphate 5′-phosphosulphate will not replace adenosine 5′-phosphosulphate, and the apparent Km for the last-mentioned compound is 0.82mm. The apparent Km for ammonia (assuming NH3 to be the active species) is about 10mm. A large variety of primary, secondary and tertiary amines or amides will not replace ammonia. One mol.prop. of adenosine 5′-phosphosulphate reacts with 1 mol.prop. of ammonia to yield 1 mol.prop. each of adenosine 5′-phosphoramidate and sulphate; no AMP is found. The highly purified enzyme does not catalyse any of the known reactions of adenosine 5′-phosphosulphate, including those catalysed by ATP sulphurylase, adenosine 5′-phosphosulphate kinase, adenosine 5′-phosphosulphate sulphotransferase or ADP sulphurylase. Adenosine 5′-phosphoramidate is found in old samples of the ammonium salt of adenosine 5′-phosphosulphate and can be formed non-enzymically if adenosine 5′-phosphosulphate and ammonia are boiled. In the non-enzymic reaction both adenosine 5′-phosphoramidate and AMP are formed. Thus the enzyme forms adenosine 5′-phosphoramidate by selectively speeding up an already favoured reaction.  相似文献   

19.
Six compounds, Z- and E-fadyenolide (3, 4), 1-ally1-2,3-(methylenedioxy)-4,5-dimethoxy-benzene (5), 4-methoxy-3,5-bis (3′-methyl-2′-butenyl)-benzoic acid (6), 2,6-dihydroxy-4-methoxy-dihydrochalcone (7), and 5-hydroxy-7-methoxyflavanone (8) were isolated from three species of Jamaican Piper, Piper fadyenii, C.D.C., Piper aduncum L. and Piper hispidum Sw. Three amides (9 ~ 11) of 3,5-dimethoxy-4-oxo-5-phenylpent-2-enoic acid using piperidine, pyrrolidine and morpholine, respectively, were synthesized from compounds 3 and 4, and tested for insecticidal activity against the tick Boophilus microplus (Canestrini) and the flour feetle, Tribolium confusum Duval. In our experiment, compounds 9 ~ 11 inhibited ovogenesis of B. microplus and were toxic to T. confusum. Compounds 3 ~ 8 were found to have no activity.  相似文献   

20.
1. When Bacillus cereus 569/H was grown in a casamino acid (casein-hydrolysate) medium containing zinc sulphate rapid production of extracellular beta-lactamase II preceded that of beta-lactamase I. 2. beta-Lactamase I was separated from beta-lactamase II by fractional precipitation with ammonium sulphate. 3. beta-Lactamase I was purified by a process involving chromatography on Celite and DEAE-cellulose and beta-lactamase II by chromatography on DEAE-cellulose after denaturation of beta-lactamase I by heat. Both enzymes were obtained in crystalline form. 4. beta-Lactamase II prepared in this way appeared to have a higher molecular weight than beta-lactamase I and required Zn(2+) as a cofactor for both cephalosporinase and penicillinase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号