首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Du  Y. Si  J. Yu 《Biotechnology letters》2001,23(19):1613-1617
Medium-chain-length fatty acids, such as nonanoic (9:0) and octanoic (8:0) acids, are more toxic to Ralstonia eutropha than volatile fatty acids such as acetic, propionic and butyric acids. Nonanoic acid was degraded to acetic and propionic acids via -oxidation by Ralstonia eutropha for cell growth and synthesis of polyhydroxyalkanoates (PHAs). In a mixture of the fatty acids, utilization of nonanoic acid was depressed by acetic and propionic acids, and vice versa. The PHA accumulation from the volatile fatty acids was decreased from 53% (w/w) of dry cell mass to 23% due to the nonanoic acid. Similar phenomena were also observed with octanoic acid and its metabolic intermediates, acetic and butyric acids.  相似文献   

2.
Clostridium formicoaceticum homofermentatively converts lactate to acetate at 37 degrees C and pH 6.6-9.6. However, this fermentation is strongly inhibited by acetic acid at acidic pH. The specific growth rate of this organism decreased from a maximum at pH 7.6 to zero at pH 6.6. This inhibition effect was found to be attributed to both H(+) and undissociated acetic acid. At pH values below 7.6, the H(+) inhibited the fermentation following non-competitive inhibition kinetics. The acetic acid inhibition was found to be stronger at a lower medium pH. At pH 6.45-6.8, cell growth was found to be primarily limited by a maximum undissociated acetic acid concentration of 0.358 g/L (6mM). This indicates that the undissociated acid, not the dissociated acid, is the major acid inhibitor. At pH 7.6 or higher, this organism could tolerate acetate concentrations of higher than 0.8M, but salt (Na(+)) became a strong inhibitor at concentrations of higher than 0.4M. Acetic acid inhibition also can be represented by noncompetitive inhibition kinetics. A mathematical model for this homoacetic fermentation was also developed. This model can be used to simulate batch fermentation at any pH between 6.9 and 7.6.  相似文献   

3.
4.
The production of acetic acid by Clostridium thermoaceticum was studied by using batch fermentations. In a pH-controlled fermentation with sodium hydroxide (pH 6.9), this organism was able to produce 56 g of acetic acid per liter. On the other hand, when the pH was not controlled and was decreased during fermentation to 5.4, the maximum attainable acetic acid concentration was only 15.3 g/liter. To obtain a better understanding of the end product inhibition, various salts were tested to determine their effect on the growth rate of C. thermoaceticum. An inverse linear relationship between the growth rate and the final cell concentration to the sodium acetate concentration was found. By using different concentrations of externally added sodium salts, the relative growth inhibition caused by the anion was found to be in the order of acetate > chloride > sulfate. Various externally added cations of acetate were also examined with respect to their inhibitory effects on growth. The relative magnitude of inhibition on the growth rate was found to be ammonium > potassium > sodium. The combined results have shown that the undissociated acetic acid was much more inhibitory than the ionized acetate ion. Complete growth inhibition resulted when the undissociated acetic acid concentration was between 0.04 and 0.05 M and when the ionized acetate concentration was 0.8 M. Therefore, at low pH (below 6.0), undissociated acetic acid is responsible for growth inhibition, and at high pH (above 6.0), ionized acetate ion is responsible for growth inhibition.  相似文献   

5.
Acetic acid (167 mM) and lactic acid (548 mM) completely inhibited growth of Saccharomyces cerevisiae both in minimal medium and in media which contained supplements, such as yeast extract, corn steep powder, or a mixture of amino acids. However, the yeast grew when the pH of the medium containing acetic acid or lactic acid was adjusted to 4.5, even though the medium still contained the undissociated form of either acid at a concentration of 102 mM. The results indicated that the buffer pair formed when the pH was adjusted to 4.5 stabilized the pH of the medium by sequestering protons and by lessening the negative impact of the pH drop on yeast growth, and it also decreased the difference between the extracellular and intracellular pH values (Delta(pH)), the driving force for the intracellular accumulation of acid. Increasing the undissociated acetic acid concentration at pH 4.5 to 163 mM by raising the concentration of the total acid to 267 mM did not increase inhibition. It is suggested that this may be the direct result of decreased acidification of the cytosol because of the intracellular buffering by the buffer pair formed from the acid already accumulated. At a concentration of 102 mM undissociated acetic acid, the yeast grew to higher cell density at pH 3.0 than at pH 4.5, suggesting that it is the total concentration of acetic acid (104 mM at pH 3.0 and 167 mM at pH 4.5) that determines the extent of growth inhibition, not the concentration of undissociated acid alone.  相似文献   

6.
1. The effects in the cow of intraruminal infusions of acetic acid, propionic acid or butyric acid on the secretion of the component fatty acids of the milk fat, and of these acids and of lactic acid on the composition of the blood plasma of the jugular vein, have been studied. 2. The infusion of acetic acid or butyric acid increased the yield of the C4–C16 acids of milk fat but decreased the yield of C18 acids. The infusion of propionic acid decreased the yields of all major component acids except palmitic acid and possibly lauric acid. 3. The changes in the concentrations in blood plasma of glucose and of ketone bodies were consistent with the glucogenic effect of propionic acid and the ketogenic effects of butyric acid and acetic acid. The effects of lactic acid were not consistent from cow to cow. Only with the infusion of acetic acid was a significant increase in the concentration of total volatile fatty acids in blood plasma found. Infusions of butyric acid and of propionic acid tended to depress the concentration of citric acid in the blood plasma and infusion of acetic acid increased it. No consistent effects of the infused acids on the concentration in blood plasma of esterified cholesterol, free cholesterol, triglyceride or phospholipid were observed. 4. The possibility is discussed that the effects of the infused acids on milk-fat secretion are caused through an alteration of the concentrations of precursors of milk fat in mammary arterial blood.  相似文献   

7.
Acetic acid (167 mM) and lactic acid (548 mM) completely inhibited growth of Saccharomyces cerevisiae both in minimal medium and in media which contained supplements, such as yeast extract, corn steep powder, or a mixture of amino acids. However, the yeast grew when the pH of the medium containing acetic acid or lactic acid was adjusted to 4.5, even though the medium still contained the undissociated form of either acid at a concentration of 102 mM. The results indicated that the buffer pair formed when the pH was adjusted to 4.5 stabilized the pH of the medium by sequestering protons and by lessening the negative impact of the pH drop on yeast growth, and it also decreased the difference between the extracellular and intracellular pH values (ΔpH), the driving force for the intracellular accumulation of acid. Increasing the undissociated acetic acid concentration at pH 4.5 to 163 mM by raising the concentration of the total acid to 267 mM did not increase inhibition. It is suggested that this may be the direct result of decreased acidification of the cytosol because of the intracellular buffering by the buffer pair formed from the acid already accumulated. At a concentration of 102 mM undissociated acetic acid, the yeast grew to higher cell density at pH 3.0 than at pH 4.5, suggesting that it is the total concentration of acetic acid (104 mM at pH 3.0 and 167 mM at pH 4.5) that determines the extent of growth inhibition, not the concentration of undissociated acid alone.  相似文献   

8.
1. Sheep fed at a constant rate were infused intraruminally with [1-(14)C]-acetate, -propionate or -butyrate during 5hr. periods. 2. Volatile fatty acids were estimated in the rumen contents and steady-state conditions were obtained. 3. Of the butyric acid carbon 60% was in equilibrium with 20% of the acetic acid carbon, and 2-3g.atoms of carbon were interconverted/day. 4. Little interconversion took place between propionic acid, acetic acid or butyric acid. 5. The net production rates for acetic acid, propionic acid and butyric acid were 3.7, 1.0 and 0.7moles/day respectively. 6. The production of volatile fatty acids accounted for 80% of the animal's energy expenditure.  相似文献   

9.
We investigated the intracellular physiological conditions associated with the induction of butanol-producing enzymes in Clostridium acetobutylicum. During the acidogenic phase of growth, the internal pH decreased in parallel with the decrease in the external pH, but the internal pH did not go below 5.5 throughout batch growth. Butanol was found to dissipate the proton motive force of fermenting C. acetobutylicum cells by decreasing the transmembrane pH gradient, whereas the membrane potential was affected only slightly. In growing cells, the switch from acid to solvent production occurred when the internal undissociated butyric acid concentration reached 13 mM and the total intracellular undissociated acid concentration (acetic plus butyric acids) was at least 40 to 45 mM. Similar values were obtained when cultures were supplemented with 50 mM butyric acid initially or when a phosphate-buffered medium was used instead of an acetate-buffered medium. To measure the induction of the enzymes involved in solvent synthesis, we determined the rates of conversion of butyrate to butanol in growing cells. The rate of butanol formation reached a maximum in the mid-solvent phase, when the butanol concentration was 50 mM. Although more solvent accumulated later, de novo enzyme synthesis decreased and then ceased.  相似文献   

10.
Bacterial fermentation of lignocellulose has been regarded as a sustainable approach to butyric acid production. However, the yield of butyric acid is hindered by the conversion efficiency of hydrolysate xylose. A mesophilic alkaline-tolerant strain designated as Clostridium butyricum B10 was isolated by xylose fermentation with acetic and butyric acids as the principal liquid products. To enhance butyric acid production, performance of the strain in batch fermentation was evaluated with various temperatures (20–47 °C), initial pH (5.0–10.0), and xylose concentration (6–20 g/L). The results showed that the optimal temperature, initial pH, and xylose concentration for butyric acid production were 37 °C, 9.0, and 8.00 g/L, respectively. Under the optimal condition, the yield and specific yield of butyric acid reached about 2.58 g/L and 0.36 g/g xylose, respectively, with 75.00% butyric acid in the total volatile fatty acids. As renewable energy, hydrogen was also collected from the xylose fermentation with a yield of about 73.86 mmol/L. The kinetics of growth and product formation indicated that the maximal cell growth rate (μ m ) and the specific butyric acid yield were 0.1466 h?1 and 3.6274 g/g cell (dry weight), respectively. The better performance in xylose fermentation showed C. butyricum B10 a potential application in efficient butyric acid production from lignocellulose.  相似文献   

11.
Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.  相似文献   

12.
1. Exposure of unfertilized starfish eggs to dilute solutions of weak acids (fatty acids, benzoic and carbonic acids) in isotonic balanced salt solution causes complete activation with the proper durations of exposure. For each acid the rate of activation (reciprocal of optimum duration) varies with concentration and temperature; at a given temperature and within a considerable range of concentrations (e.g. 0.00075 to 0.004 M for butyric acid), this rate is approximately proportional to concentration. We may thus speak of a molecular rate of action characteristic of each acid. 2. In general the molecular rate of action increases with the dissociation constant and surface activity of the acids. In the fatty acid series (up to caproic), formic acid has the most rapid effect, acting about four times as rapidly as acetic; for the other acids the order is: acetic = propionic ≦ butyric < valeric < caproic. Carbonic acid acts qualitatively like the fatty acids, but its molecular rate of action is only about one-fourteenth that of acetic acid. 3. Hydrochloric and lactic acids are relatively ineffective as activating agents, apparently because of difficulty of penetration. Lactic acid is decidedly the more effective. The action of both acids is only slightly modified by dissolving in pure (isotonic NaCl and CaCl2) instead of in balanced salt solution. 4. The rate of action of acetic acid, in concentrations of 0.002 M to 0.004 M is increased (by 10 to 20 per cent) by adding Na-acetate (0.002 to 0.016) to the solution. The degree of acceleration is closely proportional to the estimated increase in undissociated acetic acid molecules. Activation thus appears to be an effect of the undissociated acid molecules in the external solution and not of the ions. Acetate anions and H ions acting by themselves, in concentrations much higher than those of the solutions used, have no activating effect. The indications are that the undissociated molecules penetrate rapidly, the ions slowly. Having penetrated, the molecules dissociate inside the egg, yielding the ions of the acid. 5. When the rate of activation is slow, as in 0.001 M acetic acid, the addition of Na-acetate (0,008 M to 0.016 M) has a retarding effect, referable apparently to the gradual penetration of acetate ions to the site of the activation reaction with consequent depression of dissociation. 6. An estimate of the CH of those solutions (of the different activating acids) which activate the egg at the same rate indicates that their H ion concentrations are approximately equal. On the assumptions that only the undissociated molecules penetrate readily, and that the conditions of dissociation are similar inside and outside the egg, this result indicates (especially when the differences in adsorption of the acids are considered) that the rate of activation is determined by the CH at the site of the activation reaction within the egg.  相似文献   

13.
The toxicity of four volatile fatty acids (VFAs) as anaerobic digestion (AD) intermediates was investigated at pH 7. Photobacterium phosphoreum T3 was used as an indicator organism. Binary, ternary and mixtures of AD intermediates were designated by letters A (acetic acid + propionic acid), B (acetic acid + butyric acid), C (acetic acid + ethanol), D (propionic acid + butyric acid), E (propionic acid + ethanol), F (butyric acid + ethanol), G (acetic acid + propionic acid + butyric acid), H (acetic acid + propionic acid + ethanol), I (acetic acid + butyric acid+ ethanol), J (propionic acid + butyric acid + ethanol) and K (acetic acid + propionic acid + butyric acid + ethanol) to assess the toxicity through equitoxic mixing ratio method. The IC50 values of acetic acid, propionic acid, butyric acid and ethanol were 9.812, 7.76, 6.717 and 17.33 g/L respectively, displaying toxicity order of: butyric acid > propionic acid > acetic acid > ethanol being additive in nature. The toxic effects of four VFAs could be designated as synergistic and one additive in nature.  相似文献   

14.
Summary The pink-pigmented, amylolytic and pectinolytic bacterium Clostridium puniceum in anaerobic batch culture at pH 5.5 and 25–30°C produced butan-1-ol as the major product of fermentation of glucose or starch. The alcohol was formed throughout the exponential phase of growth and surprisingly little acetone was simultaneously produced. Furthermore, acetic and butyric acids were only accumulated in low concentrations, and under optimal conditions were completely re-utilised before the fermentation ceased. Thus, in a minimal medium containing 4% w/v glucose as sole source of carbon and energy, after 65 h at 25°C, pH 5.5 all of the glucose had been consumed to yield (g product/100 g glucose utilised) butanol 32, acetone 3 and ethanol 2. Butanol was again the major product of glucose fermentation during phosphate-limited chemostat culture wherein, although the organism eventually lost its capacity to sporulate and to synthesize granulose, production of butanol continued for at least 100 volume changes. Under no growth condition was the organism capable of producing more than 13.3 g l-1 of butanol. At pH 5.5, growth on pectin was slow and yielded a markedly lesser biomass concentration than when growth was on glucose or starch; acetic acid was the major fermentation product with lower concentrations of methanol, acetone, butanol and butyric acid. At pH 7, growth on all substrates produced virtually no solvents but high concentrations of both acetic and butyric acids.  相似文献   

15.
Acetic, oxalic, malic, and citric acids significantly inhibited the growth of Colletotrichum, gloeosporioides, a phytopathogenic fungus, and acetic acid showed the strongest inhibition with no growth at 50 mM. The growth inhibition by these organic acids was closely related with the inhibition of respiration, as tested using three species, C. gloeosporioides, C. coccodes, and C. dematium. Optimum growth of C. gloeosporioides was observed around pH 6.0. The inhibition of growth by acetic acid accelerated along with a decrease in pH from 6.0 to 4.0, suggesting that the inhibition might be more enhanced by undissociated form of acetic acid. Despite of growth inhibition by acetic acid, the fungus was able to grow in a normal medium when acetic acid was eliminated, implying that the growth inhibition may be resulted from an acetic acid-mediated inhibition of respiration than a structural damage of cell. Catalase activity of the fungus increased in response to 0.1% hydrogen peroxide, but addition of this together with 30 mM acetic acid brought about a decrease in the activity. The fungus which showed no grow at 30 mM acetic acid or 0.5% hydrogen peroxide began to grow after the elimination of these. But the fungus added simultaneously by these two compounds did not grow at all despite the elimination of these. Thus, controlling of Colletotrichum might be developed using acetic acid which is generally less dangerous than chemical reagents.  相似文献   

16.
The process of methanification of volatile fatty acids (VFA) was studied to elucidate its kinetics. An upflow anaerobic sludge bed (UASB) system was used to perform the experiments. At residence times of less than 2.5 h the UASB system was found to exhibit hysteresis with respect to acetic and propionic acid consumption but not with respect to butyric acid consumption. These hysteretic effects could be attributed to the manner in which the various VFA-consuming cultures were structured inside the flocculated biomass in light of the cross-inhibitory effects of the acetic- and propionic-acid-consuming fractions of the total culture. (Butyric acid proved to be non-interactive.) Production of methane was found to respond almost instantaneously to changes in the inlet conditions of the UASB system. This indicated that methane is not primarily growth associated, as has often been assumed, but is related to changes in the culture's maintenance energy requirements. Reactor operation was found to be stable even when the concentration of each VFA in the feed was simultaneously changed by 50%. Even at very high organic throughput rates (35 kg COD/day m(3)-reactor) conversions of 82% were observed.  相似文献   

17.
AIMS: Assessment of individual production of organic acids by Lactobacillus acidophilus ATCC 4962 in the presence of mannitol, fructooligosaccharide (FOS) and inulin. METHODS AND RESULTS: The production patterns of individual organic acids by L. acidophilus ATCC 4962 were assessed using the experimental region for optimum cholesterol removal from the interaction between L. acidophilus ATCC 4962 and prebiotics selected in our previous study. The production of acetic and formic acids was growth associated and was greatly influenced by the inoculum size of the organism and the concentration of mannitol. The growth of the organism was repressed with the fermentation end products of FOS and inulin, which subsequently exhibited repressed production of acetic and formic acids as well. The inoculum size, mannitol and FOS linearly affected the formation of butyric acid and the response surface generated showed a correlation between butyric acid and acetic acid. The experimental regions with increased production of lactic acid showed cessation of growth of the organism, indicating inhibition of growth at high concentration of lactic acid. CONCLUSIONS: The production of individual organic acids was dependent on growth and the fermentability of prebiotics. Mannitol, FOS and inulin favoured the production of formic, lactic and butyric acids respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The fermentability of prebiotics to produce metabolites has been a controversial issue. Information gathered in this study provides a better understanding on the production of organic acids from fermentation of mannitol, FOS and inulin by L. acidophilus ATCC 4962, and on changes in their production as a response from interaction of factors.  相似文献   

18.
Previous work has shown that undissociated forms of organic acids, such as formic, acetic, and propionic acids, increase the permeability of barley roots to ions. The work here was undertaken to test whether these undissociated acids affect the lipids from the root membranes in such a way as to account for the permeability increase. Relative amounts of the principal fatty acids from barley root membranes were measured as a function of organic acid concentration, pH, and time of treatment of barley roots under conditions similar to those of the previous studies.  相似文献   

19.
E.RUSTRIAN, J.P. DELGENES AND R. MOLETTA. 1996. Experiments were performed to examine the effect of volatile fatty acids(VFA) as carbon source, on the phoshate uptake parameters in four Acinetobacter strains. Acetic and butyric acids were equally good carbon sources for phosphate removal, while propionic acid was the least efficient substrate. The best ratios of assimilated phosphate vs VFA consumed were 0-178 wit acetic acid by Ac.calcoaceticus NRRL 4270, 0.21 with propionic acid by Ac.calcoaceticus NRRL 4270 AND 0.187 with butyric acid by Acinetobacter sp.SUCT 5.  相似文献   

20.
It is known that the presence of volatile fatty acids may play a role in the inactivation of pathogens for systems that employ an acid phase reactor. This study was conducted to investigate the influence of volatile fatty acids on the inactivation of Salmonella spp. over a range of digestion temperatures. In this study, digesters that were treating municipal wastewater treatment plant sludges were operated at temperatures that ranged from 35 to 49 degrees C and had a solids residence time of 15 days. Samples collected from the effluent of the digesters were dosed with solutions containing acetic, propionic, and butyric acids alone and in mixtures, and the dosed effluents were analyzed for Salmonella spp. over time. In the first round of testing, the digester effluents were dosed with individual organic acids and also a mixture containing all three volatile fatty acids over a range of concentrations from 750 to 6000 mg/L, and the pH of the samples was fixed at a value of 5.5. In the second round of testing, the sample sludges were spiked with a fixed amount of organic acid mixture, and the pH was varied from 4.5 to 7.5. The reduction of Salmonella spp. in digester effluents, when dosed with volatile organic acids, was found to depend on pH, temperature, the chain length of the acids, and the concentration and composition of the acids present. Increases in temperature appeared to increase the inhibitory effects of the volatile organic acids. At mesophilic temperatures, acidic pHs resulted in a greater inhibition of Salmonella spp.; whereas at higher temperatures neutral pHs were found to be more inhibitory. The results suggest that acid phase digesters that operate at elevated temperatures and low pH can achieve substantial reduction of Salmonella spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号