首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial 2-nitroreductase NbaA is the primary enzyme initiating the degradation of 2-nitrobenzoate (2-NBA), and its activity is controlled by posttranslational modifications. To date, the structure of NbaA remains to be elucidated. In this study, the crystal structure of a Cys194Ala NbaA mutant was determined to a 1.7-Å resolution. The substrate analog 2-NBA methyl ester was used to decipher the substrate binding site by inhibition of the wild-type NbaA protein. Tandem mass spectrometry showed that 2-NBA methyl ester produced a 2-NBA ester bond at the Tyr193 residue in the wild-type NbaA but not residues in the Tyr193Phe mutant. Moreover, covalent binding of the 2-NBA methyl ester to Tyr193 reduced the reactivity of the Cys194 residue on the peptide link. The Tyr193 hydroxyl group was shown to be essential for enzyme catalysis, as a Tyr193Phe mutant resulted in fast dissociation of flavin mononucleotide (FMN) from the protein with the reduced reactivity of Cys194. FMN binding to NbaA varied with solution NaCl concentration, which was related to the catalytic activity but not to cysteine reactivity. These observations suggest that the Cys194 reactivity is negatively affected by a posttranslational modification of the adjacent Tyr193 residue, which interacts with FMN and the substrate in the NbaA catalytic site.  相似文献   

2.
DNA polymerase I (Pol I) is an enzyme of DNA replication and repair containing three active sites, each requiring divalent metal ions such as Mg2+ or Mn2+ for activity. As determined by EPR and by 1/T1 measurements of water protons, whole Pol I binds Mn2+ at one tight site (KD = 2.5 microM) and approximately 20 weak sites (KD = 600 microM). All bound metal ions retain one or more water ligands as reflected in enhanced paramagnetic effects of Mn2+ on 1/T1 of water protons. The cloned large fragment of Pol I, which lacks the 5',3'-exonuclease domain, retains the tight metal binding site with little or no change in its affinity for Mn2+, but has lost approximately 12 weak sites (n = 8, KD = 1000 microM). The presence of stoichiometric TMP creates a second tight Mn2+ binding site or tightens a weak site 100-fold. dGTP together with TMP creates a third tight Mn2+ binding site or tightens a weak site 166-fold. The D424A (the Asp424 to Ala) 3',5'-exonuclease deficient mutant of the large fragment retains a weakened tight site (KD = 68 microM) and has lost one weak site (n = 7, KD = 3500 microM) in comparison with the wild-type large fragment, and no effect of TMP on metal binding is detected. The D355A, E357A (the Asp355 to Ala, Glu357 to Ala double mutant of the large fragment of Pol I) 3',5'-exonuclease-deficient double mutant has lost the tight metal binding site and four weak metal binding sites. The binding of dGTP to the polymerase active site of the D355A,E357A double mutant creates one tight Mn2+ binding site with a dissociation constant (KD = 3.6 microM), comparable with that found on the wild-type enzyme, which retains one fast exchanging water ligand. Mg2+ competes at this site with a KD of 100 microM. It is concluded that the single tightly bound Mn2+ on Pol I and a weakly bound Mn2+ which is tightened 100-fold by TMP are at the 3',5'-exonuclease active site and are essential for 3',5'-exonuclease activity, but not for polymerase activity. Additional weak Mn2+ binding sites are detected on the 3',5'-exonuclease domain, which may be activating, and on the polymerase domain, which may be inhibitory. The essential divalent metal activator of the polymerase reaction requires the presence of the dNTP substrate for tight metal binding indicating that the bound substrate coordinates the metal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Incubation of maize branching enzyme, mBEI and mBEII, with 100 μM diethylpyrocarbonate (DEPC) rapidly inactivated the enzymes. Treatment of the DEPC-inactivated enzymes with 100–500 mM hydroxylamine restored the enzyme activities. Spectroscopic data indicated that the inactivation of BE with DEPC was the result of histidine modification. The addition of the substrate amylose or amylopectin retarded the enzyme inactivation by DEPC, suggesting that the histidine residues are important for substrate binding. In maize BEII, conserved histidine residues are in catalytic regions 1 (His320) and 4 (His508). His320 and His508 were individually replaced by Ala via site-directed mutagenesis to probe their role in catalysis. Expression of these mutants inE. coli showed a significant decrease of the activity and the mutant enzymes hadK m values 10 times higher than the wild type. Therefore, residues His320 and His508 do play an important role in substrate binding.  相似文献   

4.
Thermoactinomyces vulgaris R-47 alpha-amylase 2 (TVAII) can efficiently hydrolyze both starch and cyclomaltooligosaccharides (cyclodextrins). The crystal structure of an inactive mutant TVAII in a complex with maltohexaose was determined at a resolution of 2.1A. TVAII adopts a dimeric structure to form two catalytic sites, where substrates are found to bind. At the catalytic site, there are many hydrogen bonds between the enzyme and substrate at the non-reducing end from the hydrolyzing site, but few hydrogen bonds at the reducing end, where two aromatic residues, Trp356 and Tyr45, make effective interactions with a substrate. Trp356 drastically changes its side-chain conformation to achieve a strong stacking interaction with the substrate, and Tyr45 from another molecule forms a water-mediated hydrogen bond with the substrate. Kinetic analysis of the wild-type and mutant enzymes in which Trp356 and/or Tyr45 were replaced with Ala suggested that Trp356 and Tyr45 are essential to the catalytic reaction of the enzyme, and that the formation of a dimeric structure is indispensable for TVAII to hydrolyze both starch and cyclodextrins.  相似文献   

5.
It has been appreciated for many years that the luciferase from the luminous marine bacterium Vibrio harveyi has a highly reactive cysteinyl residue which is protected from alkylation by binding of flavin. Alkylation of the reactive thiol, which resides in a hydrophobic pocket, leads to inactivation of the enzyme. To determine conclusively whether the reactive thiol is required for the catalytic mechanism, we have constructed a mutant by oligonucleotide directed site-specific mutagenesis in which the reactive cysteinyl residue, which resides at position 106 of the α subunit, has been replaced with a seryl residue. The resulting α106Ser luciferase retains full activity in the bioluminescence reaction, although the mutant enzyme has a ca 100-fold increase in the FMNH2 dissociation constant. The α106Ser luciferase is still inactivated by N-ethylmaleimide, albeit at about 1/10 the rate of the wild-type (α106Cys) enzyme, demonstrating the existence of a second, less reactive, cysteinyl residue that was obscured in the wild-type enzyme by the highly reactive cysteinyl residue at position α106. An α106Ala variant luciferase was also active, but the α106Val mutant enzyme was about 50-fold less active than the wild type. All three variants (Ser, Ala and Val) appeared to have somewhat reduced affinities for the aldehyde substrate, the valine mutant being the most affected. It is interesting to note that the α106 mutant luciferases are much less subject to aldehyde substrate inhibition than is the wild-type V. harveyi luciferase, suggesting that the molecular mechanism of aldehyde substrate inhibition involves the Cys at α106.  相似文献   

6.
Phosphorylation of the catalytic subunit of cyclic AMP-dependent protein kinase, or protein kinase A, on Thr-197 is required for optimal enzyme activity, and enzyme isolated from either animal sources or bacterial expression strains is found phosphorylated at this site. Autophosphorylation of Thr-197 occurs in Escherichia coli and in vitro but is an inefficient intermolecular reaction catalyzed primarily by active, previously phosphorylated molecules. In contrast, the Thr-197 phosphorylation of newly synthesized protein kinase A in intact S49 mouse lymphoma cells is both efficient and insensitive to activators or inhibitors of intracellular protein kinase A. Using [35S]methionine-labeled, nonphosphorylated, recombinant catalytic subunit as the substrate in a gel mobility shift assay, we have identified an activity in extracts of protein kinase A-deficient S49 cells that phosphorylates catalytic subunit on Thr-197. The protein kinase A kinase activity partially purified by anion-exchange and hydroxylapatite chromatography is an efficient catalyst of protein kinase A phosphorylation in terms of both a low Km for ATP and a rapid time course. Phosphorylation of wild-type catalytic subunit by the kinase kinase activates the subunit for binding to a pseudosubstrate peptide inhibitor of protein kinase A. By both the gel shift assay and a [γ-32P]ATP incorporation assay, the enzyme is active on wild-type catalytic subunit and on an inactive mutant with Met substituted for Lys-72 but inactive on a mutant with Ala substituted for Thr-197. Combined with the results from mutant subunits, phosphoamino acid analysis suggests that the enzyme is specific for phosphorylation of Thr-197.  相似文献   

7.
Knowledge-based protein modeling and substrate docking experiments as well as structural and sequence comparisons were performed to identify potential active-site residues in chitinase, a molting enzyme from the tobacco hornworm, Munduca sexta. We report here the identification of an active-site amino acid residue, W145. Several mutated forms of the gene encoding this protein were generated by site-directed mutagenesis, expressed in a baculovirus-insect cell-line system, and the corresponding mutant proteins were purified and characterized for their catalytic and substrate-binding properties. W145, which is present in the presumptive catalytic site, was selected for mutation to phenylalanine (F) and glycine (G), and the resulting mutant enzymes were characterized to evaluate the mechanistic role of this residue. The wild-type and W145F mutant proteins exhibited similar hydrolytic activities towards a tri-GlcNAc oligosaccharide substrate, but the former was approximately twofold more active towards a polymeric chitin-modified substrate. The W145G mutant protein was inactive towards both substrates, although it still retained its ability to bind chitin. Therefore, W145 is required for optimal catalytic activity but is not essential for binding to chitin. Measurement of kinetic constants of the wild-type and mutant proteins suggests that W145 increases the affinity of the enzyme for the polymeric substrate and also extends the alkaline pH range in which the enzyme is active.  相似文献   

8.
Inhibition of enzyme activity by high concentrations of substrate and/or cofactor is a general phenomenon demonstrated in many enzymes, including aldehyde dehydrogenases. Here we show that the uncharacterized protein BetB (SA2613) from Staphylococcus aureus is a highly specific betaine aldehyde dehydrogenase, which exhibits substrate inhibition at concentrations of betaine aldehyde as low as 0.15 mM. In contrast, the aldehyde dehydrogenase YdcW from Escherichia coli, which is also active against betaine aldehyde, shows no inhibition by this substrate. Using the crystal structures of BetB and YdcW, we performed a structure-based mutational analysis of BetB and introduced the YdcW residues into the BetB active site. From a total of 32 mutations, those in five residues located in the substrate binding pocket (Val288, Ser290, His448, Tyr450, and Trp456) greatly reduced the substrate inhibition of BetB, whereas the double mutant protein H448F/Y450L demonstrated a complete loss of substrate inhibition. Substrate inhibition was also reduced by mutations of the semiconserved Gly234 (to Ser, Thr, or Ala) located in the BetB NAD+ binding site, suggesting some cooperativity between the cofactor and substrate binding sites. Substrate docking analysis of the BetB and YdcW active sites revealed that the wild-type BetB can bind betaine aldehyde in both productive and nonproductive conformations, whereas only the productive binding mode can be modeled in the active sites of YdcW and the BetB mutant proteins with reduced substrate inhibition. Thus, our results suggest that the molecular mechanism of substrate inhibition of BetB is associated with the nonproductive binding of betaine aldehyde.  相似文献   

9.
Barley limit dextrinase (HvLD) of glycoside hydrolase family 13 is the sole enzyme hydrolysing α-1,6-glucosidic linkages from starch in the germinating seed. Surprisingly, HvLD shows 150- and 7-fold higher activity towards pullulan and β-limit dextrin, respectively, than amylopectin. This is investigated by mutational analysis of residues in the N-terminal CBM-21-like domain (Ser14Arg, His108Arg, Ser14Arg/His108Arg) and at the outer subsites +2 (Phe553Gly) and +3 (Phe620Ala, Asp621Ala, Phe620Ala/Asp621Ala) of the active site. The Ser14 and His108 mutants mimic natural LD variants from sorghum and rice with elevated enzymatic activity. Although situated about 40 Å from the active site, the single mutants had 15–40% catalytic efficiency compared to wild type for the three polysaccharides and the double mutant retained 27% activity for β-limit dextrin and 64% for pullulan and amylopectin. These three mutants hydrolysed 4,6-O-benzylidene-4-nitrophenyl-63-α-d-maltotriosyl-maltotriose (BPNPG3G3) with 51–109% of wild-type activity. The results highlight that the N-terminal CBM21-like domain plays a role in activity. Phe553 and the highly conserved Trp512 sandwich a substrate main chain glucosyl residue at subsite +2 of the active site, while substrate contacts of Phe620 and Asp621 at subsite +3 are less prominent. Phe553Gly showed 47% and 25% activity on pullulan and BPNPG3G3, respectively having a main role at subsite +2. By contrast at subsite +3, Asp621Ala increased activity on pullulan by 2.4-fold, while Phe620Ala/Asp621Ala retained only 7% activity on pullulan albeit showed 25% activity towards BPNPG3G3. This outcome supports that the outer substrate binding area harbours preference determinants for the branched substrates amylopectin and β-limit dextrin.  相似文献   

10.
Site-directed mutagenesis was used to create four mutant versions of Escherichia coli aspartate transcarbamylase at three positions in the catalytic chain of the enzyme. The location of all the amino acid substitutions was near the carbamyl phosphate binding site as previously determined by X-ray crystallography. Arg-54, which interacts with both the anhydride oxygen and a phosphate oxygen of carbamyl phosphate, was replaced by alanine. This mutant enzyme was approximately 17,000-fold less active than the wild type, although the binding of substrates and substrate analogues was not altered substantially. Arg-105, which interacts with both the carbonyl oxygen and a phosphate oxygen of carbamyl phosphate, was replaced by alanine. This mutant enzyme exhibited an approximate 1000-fold loss of activity, while the activity of catalytic subunit isolated from this mutant enzyme was reduced by 170-fold compared to the wild-type catalytic subunit. The KD of carbamyl phosphate and the inhibition constants for acetyl phosphate and N-(phosphono-acetyl)-L-aspartate (PALA) were increased substantially by this amino acid substitution. Furthermore, this loss in substrate and substrate analogue binding can be correlated with the large increases in the aspartate and carbamyl phosphate concentrations at half of the maximum observed specific activity, [S]0.5. Gln-137, which interacts with the amino group of carbamyl phosphate, was replaced by both asparagine and alanine. The asparagine mutant exhibited only a small reduction in activity while the alanine mutant was approximately 50-fold less active than the wild type. The catalytic subunits of both these mutant enzymes were substantially more active than the corresponding holoenzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Since crystallographic studies on Escherichia coli aspartate transcarbamoylase (ATCase) indicate that Gln 231 is in the active site of the enzyme and participates in the binding of the substrate, aspartate, it seemed of interest to examine mutant enzymes in which Gln 231 was replaced by Asn or Ile. The two mutant forms containing amino acid substitutions were characterized by a combination of steady-state kinetics, hydrodynamic measurements, and equilibrium ligand binding techniques. Both mutant forms exhibited a dramatic reduction in the affinity of the protein for substrates and substrate analogues as well as a very large decrease in catalytic activity. Moreover, the amino acid substitutions introduced within the active site of the enzyme led to unusual allosteric properties in the mutant enzymes. Although the bisubstrate analogue N-(phosphonoacetyl)-L-aspartate promotes the characteristic global conformational change in the mutant forms that is observed with the wild-type enzyme, the combination of substrate and substrate analogue does not. Cooperativity with respect to substrate binding is largely reduced compared to wild-type ATCase. Also, the effector molecules ATP and CTP which bind to the regulatory chains have dramatic effects on the activity of the mutant enzymes containing replacements for Gln 231 in the catalytic chains. In stark contrast to the wild-type enzyme, in which effects of nucleotides are manifested primarily by changes in the K0.5 of the enzyme, ATP and CTP have large effects on the Vmax of the mutant enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A FAD-dependent glucose dehydrogenase (FADGDH) mutant with narrow substrate specificity was constructed by site-directed mutagenesis. Several characteristics of FADGDH, such as high catalytic activity and high electron transfer ability, make this enzyme suitable for application to glucose sensors. However, for further applications, improvement of the broad substrate specificity is needed. In this paper, we mutated two residues, Asn475 and Ala472, which are located near the putative active site of the catalytic subunit of FADGDH and have been predicted from the alignment with the active site of glucose oxidase. Of the 38 mutants constructed, Ala472Phe and Asn475Asp were purified and their activities were analyzed. Both mutants showed a higher specificity toward glucose compared to the wild type enzyme.  相似文献   

13.
The active site of cellobiose dehydrogenase from Phanerochaete chrysosporium is composed of two subsites, a catalytic C subsite and a substrate-binding B subsite. Based on the crystal structure of the enzyme with a cellobiose analogue, residue Glu279 was selected for site-directed mutagenesis studies. Substitution of Glu279 to Ala, Asn, and Asp had no effect on the expression of the protein in Pichia pastoris but completely abolished its enzymatic activity. Substitution of Glu279 to Gln drastically altered the enzyme’s substrate specificity. While the wild-type cellobiose dehydrogenase efficiently oxidizes cellobiose and lactose, the Glu279Gln mutant retained most of its activity with cellobiose but was completely inactive with lactose. We generated structural models of the active site interacting with cellobiose and lactose to provide an interpretation of these results.  相似文献   

14.
HAP1, also known as APE/Ref-1, is the major apurinic/apyrimidinic (AP) endonuclease in human cells. Previous structural studies have suggested a possible role for the Asp-210 residue of HAP1 in the enzymatic function of this enzyme. Here, we demonstrate that substitution of Asp-210 by Asn or Ala eliminates the AP endonuclease activity of HAP1, while substitution by Glu reduces specific activity ~500-fold. Nevertheless, these mutant proteins still bind efficiently to oligonucleotides containing either AP sites or the chemically unrelated bulky p-benzoquinone (pBQ) derivatives of dC, dA and dG, all of which are substrates for HAP1. These results indicate that Asp-210 is required for catalysis, but not substrate recognition, consistent with enzyme kinetic data indicating that the HAP1–D210E protein has a 3000-fold reduced Kcat for AP site cleavage, but an unchanged Km. Through analysis of the binding of Asp-210 substitution mutants to oligonucleotides containing either an AP site or a pBQ adduct, we conclude that the absence of Asp-210 allows the formation of a stable HAP1–substrate complex that exists only transiently during the catalytic cycle of wild-type HAP1 protein. We interpret these data in the context of the structure of the HAP1 active site and the recently determined co-crystal structure of HAP1 bound to DNA substrates.  相似文献   

15.
Plant glutathione transferases (GSTs) play a key role in the metabolism of various xenobiotics. In this report, the catalytic mechanism of the tau class GSTU4-4 isoenzyme from Glycine max (GmGSTU4-4) was investigated by site-directed mutagenesis and steady-state kinetic analysis. The catalytic properties of the wild-type enzyme and three mutants of strictly conserved residues (Ser13Ala, Asn48Ala and Pro49Ala) were studied in 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction. The results showed that the mutations significantly affect substrate binding and specificity. The effect of Ser13Ala mutation on the catalytic efficiency of the enzyme could be explained by assuming the direct involvement of Ser13 to the reaction chemistry and the correct positioning of GSH and CDNB in the ternary catalytic complex. Asn48 and Pro49 were found to have a direct role on the structural integrity of the GSH-binding site (G-site). Moreover, mutation of Asn48 and Pro49 residues may bring about secondary effects altering the thermal stability and the catalytic activity (kcat) of the enzyme without affecting the nature of the rate-limiting step of the catalytic reaction.  相似文献   

16.
The type I and type II regulatory subunits of cAMP-dependent protein kinase can be distinguished by autophosphorylation. The type II regulatory subunits have an autophosphorylation site at a proteolytically sensitive hinge region, while the type I regulatory subunits have a pseudophosphorylation site. Only holoenzyme formed with type I regulatory subunits has a high affinity binding site for MgATP. In order to determine the functional consequences of regulatory subunit phosphorylation on interaction with the catalytic subunit, an autophosphorylation site was introduced into the type I regulatory subunit using recombinant DNA techniques. When Ala97 at the hinge region of the type I regulatory subunit was replaced with Ser, the regulatory subunit became a good substrate for the catalytic subunit. Stoichiometric phosphorylation occurred exclusively at Ser97. Radioactivity was incorporated primarily into the recombinant regulatory subunit when catalytic subunit and [gamma-32P]ATP were added to the total bacterial extract. Phosphorylation of the mutant regulatory subunit also occurred readily following polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose. Phosphorylation occurred as an intramolecular event in the absence of cAMP indicating that the hinge region of the regulatory subunit occupies the substrate recognition site of the catalytic subunit in the holoenzyme complex. Holoenzyme formed with both the wild type and mutant regulatory subunits was susceptible to dissociation in the presence of high salt; however, only the native holoenzyme was stabilized by MgATP. In contrast to the wild type holoenzyme, the affinity of the mutant holoenzyme for cAMP was not reduced in the presence of MgATP. Holoenzyme formation also was not facilitated by MgATP.  相似文献   

17.
The major structural difference between human monoamine oxidases A (MAO A) and B (MAO B) is that MAO A has a monopartite substrate cavity of ~550 ?(3) volume and MAO B contains a dipartite cavity structure with volumes of ~290 ?(3) (entrance cavity) and ~400 ?(3) (substrate cavity). Ile199 and Tyr326 side chains separate these two cavities in MAO B. To probe the function of these gating residues, Ile199Ala and Ile199Ala-Tyr326Ala mutant forms of MAO B were investigated. Structural data on the Ile199Ala MAO B mutant show no alterations in active site geometries compared with wild-type enzyme while the Ile199Ala-Tyr326Ala MAO B mutant exhibits alterations in residues 100-103 which are part of the loop gating the entrance to the active site. Both mutant enzymes exhibit catalytic properties with increased amine K(M) but unaltered k(cat) values. The altered K(M) values on mutation are attributed to the influence of the cavity structure in the binding and subsequent deprotonation of the amine substrate. Both mutant enzymes exhibit weaker binding affinities relative to wild-type enzyme for small reversible inhibitors. Ile199Ala MAO B exhibits an increase in binding affinity for reversible MAO B specific inhibitors which bridge both cavities. The Ile199Ala-Tyr326Ala double mutant exhibits inhibitor binding properties more similar to those of MAO A than to MAO B. These results demonstrate that the bipartite cavity structure in MAO B plays an important role in substrate and inhibitor recognition to distinguish its specificities from those of MAO A and provide insights into specific reversible inhibitor design for these membrane-bound enzymes.  相似文献   

18.
In this paper we describe the construction of five mutants of a bovine liver low M(r) phosphotyrosine protein phosphatase (PTPase) expressed as a fusion protein with the maltose binding protein in E. coli. Almost no changes in the kinetic parameters were observed in the fusion protein with respect to the native PTPase. Using oligonucleotide-directed mutagenesis Cys-17, Cys-62 and Cys-145 were converted to Ser while Cys-12 was converted to both Ser and Ala. The kinetic properties of the mutants, using p-nitrophenyl phosphate as substrate, were compared with those of the normal protein fused with the maltose binding protein of E. coli; both of the Cys-12 mutants showed a complete loss of enzymatic activity while the specific activity of the Cys-17 mutant was greatly decreased (200-fold). The Cys-62 mutant showed a 2.5-fold decrease in specific activity, while the Cys-145 mutant remained almost unchanged. These data confirm the involvement of Cys-12 and Cys-17 in the catalytic site and suggest that Cys-62 and Cys-145 mutations may destabilise the structure of the enzyme.  相似文献   

19.
Cytochrome c-551, the electron donor of SoxB-type cytochrome c oxidase in thermophilic bacilli, can be over-expressed in Bacillus thermodenitrificans cells by tranformation with pSTEc551. Several mutant cytochromes c-551 were prepared by site-directed mutagenesis to this expression plasmid. Among them, several Lys residues were changed to Ala/Ser, and we found that these mutant cytochromes retained their activity as substrates, although their K(m) values were 0.04-0.12 microM, depending on the site replaced. In contrast, the C19A mutant cytochrome, which was produced in Brevibacillus choshinensis as a secretion protein, lost its activity as a substrate, suggesting that the fatty acyl-glyceryl residue covalently bound to the cysteine residue of the wild-type c-551 plays a very important role in the activity. The importance of the hydrophobic fatty acid residue for the binding of cytochrome c-551 to the oxidase was also shown by the loss of substrate activity in deacylated cytochrome c-551. These results show the importance of the hydrophobic interaction between this cytochrome and SoxB-type oxidase, despite the fact that the importance of an electrostatic interaction between cytochrome c and mitochondrial cytochrome aa(3) oxidase has already been established.  相似文献   

20.
UDP-GalNAc pyrophosphorylase (UDP-GalNAcPP; AGX1) catalyzes the synthesis of UDP-GalNAc from UTP and GalNAc-1-P. The 475-amino acid protein (57 kDa protein) also synthesizes UDP-GlcNAc at about 25% the rate of UDP-GalNAc. The cDNA for this enzyme, termed AGX1, was cloned in Escherichia coli, and expressed as an active enzyme that cross-reacted with antiserum against the original pig liver UDP-HexNAcPP. In the present study, we incubated recombinant AGX1 with N(3)-UDP-[(32)P]GlcNAc and N(3)-UDP-[(32)P]GalNAc probes to label the nucleotide-binding site. Proteolytic digestions of the labeled enzyme and analysis of the resulting peptides indicated that both photoprobes cross-linked to one 24-amino acid peptide located between residues Val(216) and Glu(240). Four amino acids in this peptide were found to be highly conserved among closely related enzymes, and each of these was individually modified to alanine. Mutation of Gly(222) to Ala in the peptide almost completely eliminated UDP-GlcNAc and UDP-GalNAc synthesis, while mutation of Gly(224) to Ala, almost completely eliminated UDP-GalNAc synthesis, but UDP-GlcNAc was only diminished by 50%. Both of these mutations also resulted in almost complete loss of the ability of the mutated proteins to cross-link N(3)-UDP-[(32)P]GlcNAc or N(3)-UDP-[(32)P]GalNAc. On the other hand, mutations of either Pro(220) or Tyr(227) to Ala did not greatly affect enzymatic activity, although there was some reduction in the ability of these proteins to cross-link the photoaffinity probes. We also mutated Gly(111) to Ala since this amino acid was reported to be necessary for catalysis (Mio, T., Yabe, T., Arisawa, M., and Yamada-Okabe, H. (1998) J. Biol. Chem. 273, 14392-14397). The Gly(111) to Ala mutant lost all enzymatic activity, but interestingly enough, this mutant protein still cross-linked the radioactive N(3)-UDP-GlcNAc although not nearly as well as the wild type. On the other hand, mutation of Arg(115) to Ala had no affect on enzymatic activity although it also reduced the amount of cross-linking of N(3)-UDP-[(32)P]GlcNAc. These studies help to define essential amino acids at or near the nucleotide-binding site and the catalytic site, as well as peptides involved in binding and catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号