首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From soil samples of different origin (field, grassland and forest soils) small numbers ofNocardin andPseudomonas spec., able to utilize benzene and phenol could be isolated. Organisms which could only utilize phenol and phenolcarboxylic acids were more numerous and consisted mainly ofArthrobacter spec. It was tested to what extent these organisms could also utilize chlorinated aromatic and cyclohexane derivatives. For the degradation studies the bacteria were precultivated on benzene or p-hydroxybenzoic acid and then the compounds used were added. These compounds were labeled by14C and their degradation rates determined by measuring the14CO2 release.Pseudomonas andNocardia spec. precultivated on benzene could also degrade the chlorinated derivatives of benzene and phenol. The monochlorinated derivates were degraded more easily than the di- and trichlorinated derivates. The chlorinated benzenes, especially in higher concentrations, were less degraded than the chlorinated phenols, but with lower concentrations their degradation rates were about similar. This was due to a higher toxicity of the benzenes. The phenol utilizingArthrobacter spec. were only able to degrade phenol and the chlorinated phenols. Benzoic and m-chlorobenzoic acid were degraded to CO2 by thePseudomonas andNocardia spec. only. The benzene utilizing pseudomonads released more CO2 from γ-pentachlorocyclohexane than from γ-hexachlorocyclohexane, but none from cyclehexane. Upon precultivation of benzene utilizing pseudomonads in glucose, the aromatic compounds were also degraded, but especially the chlorinated derivatives to a lower extent. In comparison with these soil organisms in pure culture, experiments with soil samples showed a degradation of all compounds which were used by the isolated organisms after variable induction periods. Cyclohexane was degraded slowly to CO2 by the mixed soil flora in contrast to the benzene or phenol utilizing pure cultures.  相似文献   

2.
Three strains of Pseudomonas pickettii that can grow with 2,4,6-trichlorophenol (2,4,6-TCP) as the sole source of carbon and energy were isolated from different mixed cultures of soil bacterial populations that had been acclimatized to 2,4,6-TCP. These strains released 3 mol of chloride ion from 1 mol of 2,4,6-TCP during the complete degradation of the TCP. Of these strains, P. pickettii DTP0602 in high-cell-density suspension cultures dechlorinated various chlorophenols (CPs). Cells that were preincubated with 2,4,6-TCP converted isomers of 4-CP to the corresponding chloro-p-hydroquinones, but those preincubated with 4-CP converted CPs lacking a chlorine atom(s) at the o position to isomers of chlorocatechol. The ability of DTP0602 to dechlorinate 2,4,6-TCP was induced by 2,6-dichlorophenol, 2,3,6- and 2,4,6-TCP, and 2,3,4,6-tetrachlorophenol and was repressed in the presence of succinate or glucose.  相似文献   

3.
Three strains of Pseudomonas pickettii that can grow with 2,4,6-trichlorophenol (2,4,6-TCP) as the sole source of carbon and energy were isolated from different mixed cultures of soil bacterial populations that had been acclimatized to 2,4,6-TCP. These strains released 3 mol of chloride ion from 1 mol of 2,4,6-TCP during the complete degradation of the TCP. Of these strains, P. pickettii DTP0602 in high-cell-density suspension cultures dechlorinated various chlorophenols (CPs). Cells that were preincubated with 2,4,6-TCP converted isomers of 4-CP to the corresponding chloro-p-hydroquinones, but those preincubated with 4-CP converted CPs lacking a chlorine atom(s) at the o position to isomers of chlorocatechol. The ability of DTP0602 to dechlorinate 2,4,6-TCP was induced by 2,6-dichlorophenol, 2,3,6- and 2,4,6-TCP, and 2,3,4,6-tetrachlorophenol and was repressed in the presence of succinate or glucose.  相似文献   

4.
Sphingomonas xenophaga Bayram, isolated from the activated sludge of a municipal wastewater treatment plant, was able to utilize 4-(1-ethyl-1,4-dimethylpentyl)phenol, one of the main isomers of technical nonylphenol mixtures, as a sole carbon and energy source. The isolate degraded 1 mg of 4-(1-ethyl-1,4-dimethylpentyl)phenol/ml in minimal medium within 1 week. Growth experiments with five nonylphenol isomers showed that the three isomers with quaternary benzylic carbon atoms [(1,1,2,4-tetramethylpentyl)phenol, 4-(1-ethyl-1,4-dimethylpentyl)phenol, and 4-(1,1-dimethylheptyl)phenol] served as growth substrates, whereas the isomers containing one or two hydrogen atoms in the benzylic position [4-(1-methyloctyl)phenol and 4-n-nonylphenol] did not. However, when the isomers were incubated as a mixture, all were degraded to a certain degree. Differential degradation was clearly evident, as isomers with more highly branched alkyl side chains were degraded much faster than the others. Furthermore, the C9 alcohols 2,3,5-trimethylhexan-2-ol, 3,6-dimethylheptan-3-ol, and 2-methyloctan-2-ol, derived from the three nonylphenol isomers with quaternary benzylic carbon atoms, were detected in the culture fluid by gas chromatography-mass spectrometry, but no analogous metabolites could be found originating from 4-(1-methyloctyl)phenol and 4-n-nonylphenol. We propose that 4-(1-methyloctyl)phenol and 4-n-nonylphenol were cometabolically transformed in the growth experiments with the mixture but that, unlike the other isomers, they did not participate in the reactions leading to the detachment of the alkyl moiety. This hypothesis was corroborated by the observed accumulation in the culture fluid of an as yet unidentified metabolite derived from 4-(1-methyloctyl)phenol.  相似文献   

5.
Summary An obligate syntrophic culture was selected in mineral medium with phenol as the only carbon and energy source. The consortium consisted of a short and a long rod-shaped bacterium and of low numbers of Desulfovibrio cells, and grew only in syntrophy with methanogens, e. g. Methanospirillum hungatei. Under N2/CO2, phenol was degraded via benzoate to acetate, CH4 and CO2, while in the presence of H2/CO2 benzoate was formed, but not further degraded. When 4-hydroxybenzoate was fed to the mixed culture, it was decarboxylated to phenol prior to benzoate formation and subsequent ring cleavage. Isolation of pure cultures of the two rod-shaped bacteria failed. Microscopic observations during feeding of either 4-hydroxybenzoate, phenol or benzoate implied an obligate syntrophic interdependence of the two different rod-shaped bacteria and of the methanogen. The non-motile rods formed phenol from 4-hydroxybenzoate and benzoate from phenol, requiring an as yet unknown co-substrate or co-factor, probably cross-fed by the short, motile rod. The short, motile rodshaped bacterium grew only in syntrophy with methanogens and degraded benzoate to acetate, CO2 and methane. Desulfovibrio sp., present in low numbers, apparently could not contribute to the degradation of phenol or 4-hydroxybenzoate.  相似文献   

6.
From natural samples 11 isolates able to remove trichloroethene (CCl2CHl) from an aqueousenvironment were obtained which were capable of cometabolic degradation of CCl2CHCl by an enzyme system for phenol degradation. At an initial CCl2CHCl concentration of 1 mg/L, the resting cells of particular cultures degraded 33–94% CCl2CHCl during 1 d and their transformation capacity ranged from 0.3 to 3.1 mg CCl2CHCl per g organic fraction. An analysis of a mixed phenol-fed culture with an excellent trichloroethene-degrading ability found a markedly minority isolate represented in the consortium to be responsible for this property. This culture degraded CCl2CHCl even at a low inoculum concentration and attained a transformation capacity of 14.7 mg CCl2CHCl per g. The increase in chloride concentration after degradation was quantitative when compared with the decrease in organically bound chlorine. The degree of CCl2CHCl degradation was affected by Me2S2; this substance can significantly reduce the degrading ability of some tested cultures (>60%); however, it does not cause this inhibition with others.  相似文献   

7.
Summary The anaerobic degradation of phenol under denitrifying conditions by a bacterial consortium was studied both in batch and continuous cultures. Anaerobic degradation was dependent on NOf3 p– and concentrations up to 4 mm phenol were degraded within 2–5 days. During continuous growth in a fermenter, steady states could be maintained at eight dilution rates (D) corresponding to residence times between 12.5 and 50 h. Culture wash-out occurred at D=0.084 h–1. The kinetic parameters obtained for anaerobic degradation of phenol under denitrifying conditions by the consortium were: maximam specific growth rate = 0.091 h–1; saturation constant = 4.91 mg phenol/l; true growth yield = 0.57 mg dry wt/mg phenol; maintenance coefficient = 0.013 mg phenol/mg dry wt per hour. The Haldane model inhibition constant was estimated from batch culture data giving a value of 101 mg/l. The requirement of CO2 for the anaerobic degradation of phenol with NOf3 p– indicates that phenol carboxylation to 4-hydroxybenzoate was the first step of phenol degradation by this culture. 4-Hydroxybenzoate, proposed as an intermediate of phenol carboxylation under these conditions, was detected only in continuous cultures at very low growth rates (D=0.02 h–1), but was never detected as a free intermediary metabolite either in batch or in continuous cultures. Correspondence to: N. Khoury  相似文献   

8.
Aerobic degradation of 7 mmol/L phenol in the presence of alternative carbon sources (7 mmol/L glucose or acetate or 1–2 mmol/L 2‐chlorophenol) was investigated using non‐acclimatized and acclimatized sewage sludges and enrichment cultures. The substrates represented an intermediate of phenol degradation (acetate), an independent substrate (glucose) or a “precursor‐substrate” of phenol degradation (2‐chlorophenol). Bacteria from sewage sludge, not pre‐adapted to phenol (2 mmol/L), rapidly respired acetate and glucose in the presence of phenol, whereas phenol was only bioconverted to any unknown aromatic metabolite after 24 h. In the presence of phenol and 2‐chlorophenol, no removal of both substances was observed when using the unacclimatized sludge. Sludge that was acclimatized to the degradation of phenol showed an initial preference for easily degradable co‐substrates such as glucose or acetate with only a slow concomitant respiration of phenol. Respiration of phenol increased rapidly after the co‐substrates were depleted. The highest phenol degradation rates were 51.6 mmol/L d, when phenol was the sole carbon substrate. Vice versa, phenol was preferentially respired in the presence of a less easily degradable co‐substrate such as 2‐chlorophenol at a rate of around 7 mmol/L d. Further studies with an enrichment culture that was obtained after 7 successive transfers of phenol‐adapted sludge into mineral medium with phenol as the only carbon source indicated that the acetate and glucose‐degrading capabilities were diminished or almost completely lost. In these enrichment cultures, phenol degradation was not affected by the presence of glucose, but glucose was not degraded. In contrary, the presence of acetate slightly slowed down the phenol degradation rate of the enrichment culture. Growth of the microorganisms apparently occurred at the expense of phenol and acetate respiration. The result of this work may be of practical importance in determining the feeding strategy, which is the key factor for most biological wastewater treatment systems. When acetate was present together with phenol in a wastewater, the phenol degradation rates were influenced by acetate, since acetate was an intermediate of phenol degradation. Glucose as an “independent substrate” was apparently degraded by other bacteria via acetate, and in this way it also influenced the phenol degradation rates. Glucose‐degrading bacteria could be “washed out” from the acclimatized sludge during several transfers into mineral medium with phenol as the sole carbon source. If later on, glucose was added again, it remained undegraded and did not influence phenol degradation. 2‐Chlorophenol degradation also requires other bacteria than phenol degraders.  相似文献   

9.
Laboratory degradation studies of two indigeneously produced linear alkyl benzenes byNocardia amarae MB-11 isolated from soil showed an overall degradation of linear alkyl benzenes isomers to the extent of 57–70%. Degradation of 2-phenyl isomers of linear alkyl benzenes was complete and faster than that of other phenyl position (C3–C7) isomers which were degraded to the extent of 40–72% only. Length of alkyl side chains (C10–C14) had little or no impact on the degradation pattern. Major metabolities detected were 2-, 3-and 4-phenyl butyric acids, phenyl acetic acid and cis, cis-muconic acid. Minor metabolites weretrans-cinnamic acid, 4-phenyl 3-butenoic acid and 3-phenyl pentanoic acid along with two unidentified hydroxy acids. On the basis of the formation pattern of these metabolities, three catabolic pathways of linear alkyl benzenes isomers inNocardia amarae MB-11 were postulated. All the phenyl position (C2–C7) isomers of C10, C12, and C14 linear alkyl benzenes along with 3-phenyl and 5-phenyl isomers of C11 and C13 linear alkyl benzenes were degraded viacis,cis-muconic acid pathway. Other phenyl position isomers of C11 and C13 linear alkyl benzenes with phenyl substitution at even number carbon atoms were principally degraded via phenyl acetic acid pathway whiletrans-cinnamic acid formation provided a minor pathway  相似文献   

10.
The objective of this study was to achieve a better quantitative understanding of the kinetics of 2,4,6-trichlorophenol (TCP) biodegradation by an acclimated mixed microbial culture. An aerobic mixed microbial culture, obtained from the aeration basin of the wastewater treatment plant, was acclimated in shake flasks utilizing various combinations of 2,4,6-TCP (25–100 mg l−1), phenol (300 mg l−1) and glycerol (2.5 mg l−1) as substrates. Complete primary TCP degradation and a corresponding stoichiometric release of chloride ion were observed by HPLC and IEC analytical techniques, respectively. The acclimated cultures were then used as an inoculum for bench scale experiments in a 4 l stirred-tank reactor (STR) with 2,4,6-TCP as the sole carbon/energy (C/E) source. The phenol acclimated mixed microbial culture consisted of primarily Gram positive and negative rods and was capable of degrading 2,4,6-TCP completely. None of the predicted intermediate compounds were detected by gas chromatography in the cell cytoplasm or supernatant. Based on the disappearance of 2,4,6-TCP, degradation was well modelled by zero-order kinetics which was also consistent with the observed oxygen consumption. Biodegradation rates were compared for four operating conditions including two different initial 2,4,6-TCP concentrations and two different initial biomass concentrations. While the specific rate constant was not dependent on the initial 2,4,6-TCP concentration, it did depend on the initial biomass concentration (X init). A lower biomass concentration gave a much higher zero-order specific degradation rate. This behaviour was attributed to a lower average biomass age or cell retention time (θx) for these cultures. The implications of this investigation are important for determining and predicting the potential risks associated with TCP, its degradation in the natural environment or the engineering implications for ex situ treatment of contaminated ground water or soil.  相似文献   

11.
Degradation of chlorophenols by P. chrysosporium in static cultures has been studied. The influences of mycelium acclimation, co-substrate concentration and nitrogen source on phenol degradation were analyzed. With non-acclimated mycelium the maximal concentrations degraded were 150 ppm of o-chorophenol and 100 ppm of the isomers m- and p-chlorophenol. The substituted ortho-position on the aromatic ring was the preferred attack position. Meta- and para-positions were less reactive and resulted in a slower degradation rate than the ortho position. Nevertheless, with acclimated mycelium, an increase in the ability to degrade chlorophenol and a higher reactivity in meta- and para-positions were observed (degraded chlorophenol increased by up to 70% for the o-isomer and 50% for the m- and p-isomers with respect to non-acclimated mycelium). A decrease in glucose concentration caused a decrease in chlorophenol degradation rate. Twelve days were needed for complete degradation of o-chlorophenol with 10 g/l of glucose and 22 days when glucose concentration was decreased to 2.5 g/l. The reduction of ammonium tartrate caused a greater lag time, but not a decrease in chlorophenol degradation rate. Replacement of ammonium tartrate by ammonium chloride caused a decrease in chlorophenol degradation rate.  相似文献   

12.
Microbial Degradation of Alkyl Carbazoles in Norman Wells Crude Oil   总被引:5,自引:3,他引:2       下载免费PDF全文
Norman Wells crude oil was fractionated by sequential alumina and silicic acid column chromatography methods. The resulting nitrogen-rich fraction was analyzed by gas chromatography-mass spectrometry and showed 26 alkyl (C1 to C5) carbazoles to be the predominant compounds. An oil-degrading mixed bacterial culture was enriched on carbazole to enhance its ability to degrade nitrogen heterocycles. This culture was used to inoculate a series of flasks of mineral medium and Norman Wells crude oil. Residual oil was recovered from these cultures after incubation at 25°C for various times. The nitrogen-rich fraction was analyzed by capillary gas chromatography, using a nitrogen-specific detector. Most of the C1-, C2-, and C3- carbazoles and one of the C4-isomers were degraded within 8 days. No further degradation occurred when incubation was extended to 28 days. The general order of susceptibility of the isomers to biodegradation was C1 > C2 > C3 > C4. The carbazole-enriched culture was still able to degrade n-alkanes, isoprenoids, aromatic hydrocarbons, and sulfur heterocycles in the crude soil.  相似文献   

13.
Biodegradation of xanthan by salt-tolerant aerobic microorganisms   总被引:3,自引:0,他引:3  
Summary Three salt-tolerant bacteria which degraded xanthan were isolated from various water and soil samples collected from New Jersey, Illinois, and Louisiana. The mixed culture, HD1, contained aBacillus sp. which produced an inducible enzyme(s) having the highest extracellular xanthan-degrading activity found. Xanthan alone induced the observed xanthan-degrading activity. The optimum pH and temperature for cell growth were 5–7 and 30–35°C, respectively. The optimum temperature for activity of the xanthan-degrading enzyme(s) was 35–45°C, slightly higher than the optimum growth temperature. With a cell-free enzyme preparation, the optimum pH for the reduction of solution viscosity and for the release of reducing sugar groups were different (5 and 6, respectively), suggesting the involvement of more than one enzyme for these two reactions. Products of enzymatic xanthan degradation were identified as glucose, glucuronic acid, mannose, pyruvated mannose, acetylated mannose and unidentified oligo- and polysaccharides. The weight average molecular weight of xanthan samples shifted from 6.5·106 down to 6.0·104 during 18 h of incubation with the cell-free crude enzymes. The activity of the xanthan-degrading enzyme(s) was not influenced by the presence or absence of air or by the presence of Na2S2O4 and low levels of biocides such as formaldehyde (25 ppm) and 2,2-dibromo-3-nitrilopropionamide (10 ppm). Formaldehyde at 50 ppm effectively inhibited growth of the xanthan degraders.  相似文献   

14.
Degradation of polychlorinated biphenyls by mixed microbial cultures.   总被引:2,自引:0,他引:2  
Three different enriched mixed cultures capable of degrading polychlorinated biphenylas were isolated from two soil samples and a river sediment, respectively. The predominant organisms found in all three mixed cultures were Alcaligenes odorans, Alcaligenes dentrificans, and an unidentified bacterium. The polychlorinated biphenyl isomers that were more water soluble and had lower chlorination were not only degraded at a faster rate than those that were less water soluble and had higher chlorination, but were also more completely utilized by these mixed cultures. This resulted in the presence in the environment of polychlorinated biphenyl residues consisting mainly of higher-chlorinated isomers. A form of cometabolism of polychlorinated biphenyls was also found with these cultures in the presence of acetate as the cosubstrate.  相似文献   

15.
Degradation of polychlorinated biphenyls by mixed microbial cultures.   总被引:10,自引:8,他引:2       下载免费PDF全文
Three different enriched mixed cultures capable of degrading polychlorinated biphenylas were isolated from two soil samples and a river sediment, respectively. The predominant organisms found in all three mixed cultures were Alcaligenes odorans, Alcaligenes dentrificans, and an unidentified bacterium. The polychlorinated biphenyl isomers that were more water soluble and had lower chlorination were not only degraded at a faster rate than those that were less water soluble and had higher chlorination, but were also more completely utilized by these mixed cultures. This resulted in the presence in the environment of polychlorinated biphenyl residues consisting mainly of higher-chlorinated isomers. A form of cometabolism of polychlorinated biphenyls was also found with these cultures in the presence of acetate as the cosubstrate.  相似文献   

16.
From anaerobic freshwater enrichment cultures with 3-hydroxybenzoate as sole substrate, a slightly curved rod-shaped bacterium was isolated in coculture with Desulfovibrio vulgaris as hydrogen scavenger. The new isolate degraded only 3-hydroxybenzoate or benzoate, and depended on syntrophic cooperation with a hydrogenoxidizing methanogen or sulfate reducer. 3-Hydroxybenzoate was degraded via reductive dehydroxylation to benzoate. With 2-hydroxybenzoate (salicylate), short coccoid rods were enriched from anaerobic freshwater mud samples, and were isolated in defined coculture with D. vulgaris. This isolate also fermented 3-hydroxybenzoate or benzoate in obligate syntrophy with a hydrogen-oxidizing anaerobe. The new isolates were both Gram-negative, non-sporeforming strict anaerobes. They fermented hydroxybenzoate or benzoate to acetate, CO2, and, presumably, hydrogen which was oxidized by the syntrophic partner organism. With hydroxybenzoates, but not with benzoate, Acetobacterium woodii could also serve as syntrophic partner. Other substrates such as sugars, alcohols, fatty or amino acids were not fermented. External electron acceptors such as sulfate, sulfite, nitrate, or fumarate were not reduced. In enrichment cultures with 4-hydroxybenzoate, decarboxylation to phenol was the initial step in degradation which finally led to acetate, methane and CO2.  相似文献   

17.
A mixed culture of a chlorobenzoate-(3-CBA)-degradingPseudomonas aeruginosa, strain 3mT, and a phenol/cresols-degradingPseudomonas sp., strain CP4, simultaneously and efficiently degraded mixtures of 3-CBA and phenol/cresols. However, strains 3mT and CP4 usedortho- andmeta-ring cleavage pathways, respectively. Degradation of 3-CBA was complete when the 3-CBA was equal in amount to or less than that of phenol. CP4/3mT inoculum ratios (w/w) of 1:1 or 1:2 gave the most effective degradation of both the substrates in the mixture. The mixed culture degraded equimolar mixtures of 3-CBA/phenol up to 10mm. Equimolar mixtures of 3-CBA ando-, m- orp-cresol were also degraded by the mixed culture.The authors are with the Microbiology and Bioengineering Department, Central Food Technological Research Institute, Mysore-570013, India;  相似文献   

18.
Microbial degradation of phenol was studied using batch and fedbatch cultures of acclimatized activated sludge under a wide range of phenol (0-793 mg l−1) and biomass (0.74-6.7 g l−1) initial concentrations. As cell growth continued after total phenol removal, the production and later consumption of a main metabolic intermediate was considered the step governing the biodegradation kinetics. A model that takes explicitly into account the kinetics of the intermediate was developed by introducing a specific growth rate model associated with its consumption and the incorporation of a dual-substrate inhibitory effect on phenol degradation. Biomass growth and phenol removal were adequately predicted in all the cultures. Moreover, the model-based design of the fedbatch feeding strategies allowed driving separately the phenol degradation under substrate-limitation and substrate-inhibition modes. A sensitivity analysis was also performed in order to establish the importance of the parameters in the accuracy of model predictions.  相似文献   

19.
The behavior and mechanisms of the enantioselective degradation of beta‐cypermethrin were studied in soil. The four isomers were degraded at different rates, and the enantiomer fractions of alpha‐cypermethrin and theta‐cypermethrin exceeded 0.5. Moreover, 3‐phenoxybenzoic acid, phenol, and protocatechuic acid were detected; based on the presence of these metabolites, we predicted the degradation pathway and identified the functional genes that are related to this degradation process. We established quantitative relationships between the data on degradation kinetics and functional genes; we found that the quantitative relationships between different enantiomers differed even under the same conditions, and the genes pobA and pytH played key roles in limiting the degradation rate. Data obtained using path analysis revealed that the same gene had different direct and indirect effects on the degradation of different isomers. A mechanism was successfully proposed to explain the selective degradation of chiral compounds based on the perspective of functional genes. Chirality 27:929–935, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
The degradation of the herbicide [14C]-diclofopmethyl was investigated in moist parabrown podzol soil at 22°C. Radiochemical procedures were used to monitor the herbicide breakdown. The mineralization of the uniformly labelled aromatic ring was pursued by trapping the14CO2 generated for 96 days. Diclofop-methyl was rapidly degraded in the soil with a half-life of about 8 days. The major breakdown product was the corresponding acid-diclofop, formed by a very rapid hydrolysis of the esterbond. With time the acid appeared to undergo strong binding or complexing to the soil. An intermediate 4-(2,4-dichlorophenoxy) phenol was recovered from the treated soil. Concentration of the phenoxyphenol increased upto 6 days followed by quick decline. Insecticide combination of parathion + Demeton-Smethylsulphoxide partially inhibited diclofop degradation in the soil  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号