首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micrococcus strain 12B, grown with phthalate, transformed the phthalate analog, phthalaldehydate (2-formylbenzoate), to 3,4-dihydroxyphthalaldehydate which was isolated and identified as its lactol. An 18O2 incorporation experiment indicated that a dioxygenase mechanism was involved. It is proposed by analogy, that phthalate is metabolized through cis-3,4-dihydro-3,4-dihydroxyphthalate and 3,4-dihydroxyphthalate by this bacterium.  相似文献   

2.
Utilization of phthalate esters by micrococci   总被引:5,自引:0,他引:5  
Several strains of Micrococcus have been isolated by enrichment with one of several phthalate esters as sole carbon source. They have been separated into four groups by their esterase content and nutritional characteristics. The catabolic potential for phthalate utilization found in these strains provides further support for designation of the four groups. Pathways for phthalate utilization by 4,5-dihydroxyphthalate and/or 3,4-dihydroxyphthalate and protocatechuate and/or 2,3-dihydroxybenzoate are outlined, which suggests that micrococci possess substantial potential for the catabolism of aromatic compounds.  相似文献   

3.
Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4 capable of utilizing phthalate isomers were isolated from the soil using enrichment culture technique. The strain ISP4 metabolizes isophthalate, while PPD and PP4 utilizes all three phthalate isomers (ortho-, iso- and tere-) as the sole carbon source. ISP4 utilizes isophthalate (0.1%) more rapidly (doubling time, 0.9 h) compared to PPD (4.64 h), PP4 (7.91 h) and other reported strains so far. The metabolic pathways in these isolates were initiated by dihydroxylation of phthalate isomers. Phthalate is hydroxylated to 3,4-dihydro-3,4-dihydroxyphthalate and 4,5-dihydro-4,5-dihydroxyphthalate in strains PP4 and PPD, respectively; while terephthalate is hydroxylated to 2-hydro-1,2-dihydroxyterephthalate. All three strains hydroxylate isophthalate to 4-hydro-3,4-dihydroxyisophthalate. The generated dihydroxyphthalates were subsequently metabolized to 3,4-dihydroxybenzoate (3,4-DHB) which was further metabolized by ortho ring-cleavage pathway. PP4 and PPD cells grown on phthalate, isophthalate or terephthalate showed respiration on respective phthalate isomer and the activity of corresponding ring-hydroxylating dioxygenase, suggesting the carbon source specific induction of three different ring-hydroxylating dioxygenases. We report, for the first time, the activity of isophthalate dioxygenase and its reductase component in the cell-free extracts. The enzyme showed maximum activity with reduced nicotinamide adenine dinucleotide (NADH) in the pH range 8–8.5. Cells grown on glucose failed to respire on phthalate isomers and 3,4-DHB and showed significantly low activities of the enzymes suggesting that the enzymes are inducible.  相似文献   

4.
Micrococcus sp. strain 12B was isolated by enriching for growth with dibutylphthalate as the sole carbon and energy source. A pathway for the metabolism of dibutylphthalate and phthalate by micrococcus sp. strain 12B is proposed: dibutylphthalate leads to monobutylphthalate leads to phthalate leads to 3,4-dihydro-3,4-dihydroxyphthalate leads to 3,4-dihydroxyphthalate leads to protocatechuate (3,4-dihdroxybenzoate). Protocatechuate is metabolized both by the meta-cleavage pathway through 4-carboxy-2-hydroxymuconic semialdehyde and 4-carboxy-2-hydroxymuconate to pyruvate and oxaloacetate and by the ortho-cleavage pathway to beta-ketoadipate. Dibutylphthalate- and phthalate-grown cells readily oxidized dibutylphthalate, phthalate, 3,4-dihydroxyphthalate, and protocatechuate. Extracts of cells grown with dibutylphthalate or phthalate contained the 3,4-dihydroxyphthalate decarboxylase and the enzymes of the protocatechuater 4,5-meta-cleavage pathway. Extracts of dibutylphthalate-grown cells also contained the protocatechuate ortho-cleavage pathway enzymes. The dibutylphthalate-hydrolyzing esterase and 3,4-dihydroxyphthalate decarboxylase were constitutively synthesized; phthalate-3,4-dioxygenase (and possibly the "dihydrodiol" dehydrogenase) was inducible by phthalate or a metabolite occurring before protocatechuate in the pathway; two protocatechuate oxygenases and subsequent enzymes were inducible by protocatechuate or a subsequent metabolic product. During growth at 37 degrees C, strain 12B gave clones at high frequency that had lost the ability to grow with phthalate esters. One of these nonrevertible mutants, strain 12B-Cl, lacked all of the enzymes required for the metabolism of dibutylphthalate through the protocatechuate meta-cleavage pathway. Enzymes for the metabolism of protocatechuate by the ortho-cleavage pathway were present in this strain grown with p-hydroxybenzoate or protocatechuate.  相似文献   

5.
The decarboxylation of phthalic acids was studied with Bacillus sp. strain FO, a marine mixed culture ON-7, and Pseudomonas testosteroni. The mixed culture ON-7, when grown anaerobically on phthalate but incubated aerobically with chloramphenicol, quantitatively converted phthalic acid to benzoic acid. Substituted phthalic acids were also decarboxylated: 4,5-dihydroxyphthalic acid to protocatechuic acid; 4-hydroxyphthalic and 4-chlorophthalic acids to 3-hydroxybenzoic and 3-chlorobenzoic acids, respectively; and 3-fluorophthalic acid to 2-and 3-fluorobenzoic acids. Bacillus sp. strain FO gave similar results except that 4,5-dihydroxyphthalic acid was not metabolized, and both 3- and 4-hydroxybenzoic acids were produced from 4-hydroxyphthalic acid. P. testosteroni decarboxylated 4-hydroxyphthalate (to 3-hydroxybenzoate) and 4,5-dihydroxyphthalate but not phthalic acid and halogenated phthalates. Thus, P. testosteroni and the mixed culture ON-7 possessed 4,5-dihydroxyphthalic acid decarboxylase, previously described in P. testosteroni, that metabolized 4,5-dihydroxyphthalic acid and specifically decarboxylated 4-hydroxyphthalic acid to 3-hydroxybenzoic acid. The mixed culture ON-7 and Bacillus sp. strain FO also possessed a novel decarboxylase that metabolized phthalic acid and halogenated phthalates, but not 4,5-dihydroxyphthalate, and randomly decarboxylated 4-hydroxyphthalic acid. The decarboxylation of phthalic acid is suggested to involve an initial reduction to 1,2-dihydrophthalic acid followed by oxidative decarboxylation to benzoic acid.  相似文献   

6.
The bacteriumPseudomonas sp. strain RW31 isolated from the river Elbe utilized the ammonium salt of 4-sulfophthalate (4SPA) as sole source of carbon, sulfur, nitrogen, and energy and grew also with phthalate (PA) and several other aromatic compounds as sole carbon and energy source. The xenobiotic sulfo group of 4SPA was eliminated as sulfite, which transiently accumulated in the culture supernatant up to about 10 µM and was slowly oxidized to the stoichiometrical amount of sulfate. Biodegradation routes of 4SPA as well as of PA converged into the protocatechuate pathway and from found activities for the decarboxylation of 4,5-dihydroxyphthalate we deduce this compound the first rearomaticized intermediate after initial dioxygenation. Protocatechuate then underwentmeta-cleavage mediated by a protocatechuate 4,5-dioxygenase activity which was competitively inhibited by the structurally related compound 3,4,5-trihydroxybenzoate; protocatechuate accumulated in the medium up to an about 2 mM concentration. Indications for the presence of selective transport systems are presented.  相似文献   

7.
A mutant strain of Pseudomonas testosteroni blocked in phthalate catabolism converted phthalate into 4,5-dihydroxyphthalate. The latter compound was isolated, and its physical properties were determined. A stoichiometric conversion of the compound to protocatechuate was demonstrated spectrophotometrically with crude extracts of a protocatechuate 4,5-dioxygenase-deficient mutant. Therefore, phthalate is metabolized through 4,5-dihydroxyphthalate and protocatechuate, which is further degraded by protocatechuate 4,5-dioxygenase in P. testosteroni. By using several mutants blocked in phthalate catabolism, 4,5-dihydroxyphthalate decarboxylase was shown to be induced by phthalate. A simple spectrophotometric assay for the enzyme is also reported.  相似文献   

8.
In the conversion of quinolinic acid to 6-hydroxypicolinic acid by whole cells of Alcaligenes sp. strain UK21, the enzyme reactions involved in the hydroxylation and decarboxylation of quinolinic acid were examined. Quinolinate dehydrogenase, which catalyzes the first step, the hydroxylation of quinolinic acid, was solubilized from a membrane fraction, partially purified, and characterized. The enzyme catalyzed the incorporation of oxygen atoms of H2O into the hydroxyl group. The dehydrogenase hydroxylated quinolinic acid and pyrazine-2,3-dicarboxylic acid to form 6-hydroxyquinolinic acid and 5-hydroxypyrazine-2,3-dicarboxylic acid, respectively. Phenazine methosulfate was the preferred electron acceptor for quinolinate dehydrogenase. 6-Hydroxyquinolinate decarboxylase, catalyzing the nonoxidative decarboxylation of 6-hydroxyquinolinic acid, was purified to homogeneity and characterized. The purified enzyme had a molecular mass of approximately 221 kDa and consisted of six identical subunits. The decarboxylase specifically catalyzed the decarboxylation of 6-hydroxyquinolinic acid to 6-hydroxypicolinic acid, without any co-factors. The N-terminal amino acid sequence was homologous with those of bacterial 4,5-dihydroxyphthalate decarboxylases.  相似文献   

9.
Summary Pseudomonas testosteroni M4-1, capable of using phthalate as the sole carbon and energy source, was isolated. Tn5 mutagenesis using pSUP2021 yielded mutant strains of M4-1 that are defective in phthalate metabolism and produce a dihydrodiol compound. The dihydrodiol compound produced by mutant strain M4-122 was isolated and identified as 4,5-dihydro-4,5-dihydroxyphthalate (DDP) by elementary analysis, mass analysis and nuclear magnetic resonance. Various conditions to increase the yield of DDP from phthalate were examined for mutant strain M4-122. With resting cells 6 g DDP/1 were produced. The additional of ethanol to the resting-cell reaction mixture enhanced DDP production and 10 g DDP/1 was produced from 8.3 g/1 of phthalate. Offprint requests to: T. Omori  相似文献   

10.
Eleven phthalate-degrading bacterial strains were isolated from seawater collected off the coast of Japan. The isolates were found to be most closely related to the marine bacterial genera Alteromonas, Citreicella, Marinomonas, Marinovum, Pelagibaca, Rhodovulum, Sulfitobacter, Thalassobius, Thalassococcus, Thalassospira, and Tropicibacter. For the first time, members of these genera were shown to be capable of growth on phthalate. The plate assay for visual detection of phthalate dioxygenase activity and PCR detection of a possible gene encoding 4,5-dihydroxyphthalate decarboxylase indicated that phthalate is degraded via 4,5-dihydroxyphthalate to protocatechuate in all the isolates.  相似文献   

11.
Multicomponent phenol hydroxylases (mPHs) are diiron enzymes that use molecular oxygen to hydroxylate a variety of phenolic compounds. The DNA sequence of the alpha subunit (large subunit) of mPH from 4-chlorophenol (4-CP)-degrading bacterial strain PT3 was determined. Strain PT3 was isolated from oil-contaminated soil samples adjacent to automobile workshops and oil stations after enrichment and establishment of a chlorophenol-degrading consortium. Strain PT3 was identified as a member of Pseudomonas sp. based on sequence analysis of the 16S rRNA gene fragment. The 4-CP catabolic pathway by strain PT3 was tentatively proposed to proceed via a meta-cleavage pathway after hydroxylation to the corresponding chlorocatechol. This hypothesis was supported by polymerase chain reaction (PCR) detection of the LmPH encoding sequence and UV/VIS spectrophotometric analysis of the culture filtrate showing accumulation of 5-chloro-2-hydroxymuconic semialdehyde (5-CHMS) with λmax 380. The detection of catabolic genes involved in 4-CP degradation by PCR showed the presence of both mPH and catechol 2,3-dioxygenase (C23DO). Nucleotide sequence analysis of the alpha subunit of mPH from strain PT3 revealed specific phylogenetic grouping to known mPH. The metal coordination encoding regions from strain PT3 were found to be conserved with those from the homologous dinuclear oxo-iron bacterial monooxygenases. Two DE(D)XRH motifs was detected in LmPH of strain PT3 within an approximate 100 amino acid interval, a typical arrangement characteristic of most known PHs.  相似文献   

12.
Summary Activated sludge from a sewage treatment plant in Kanpur, India, was screened for bacterial strains metabolizing p-cresol exclusively under aerobic conditions. One such isolate was identified to be belonging to the genus Pseudomonas based on morphological and physiological criteria as well as 16S ribosomal RNA gene sequence analysis. Two intermediates were identified from the culture medium during the growth phase of Pseudomonas sp. strain A that indicated that the strain degraded p-cresol via the protocatechuate (PCA) pathway. p-Cresol was rapidly converted into p-hydroxybenzaldehyde (PHB) during early growth phase, which was later utilized after p-cresol depletion. p-Hydroxybenzoate (PHBA) accumulation was observed during the later stages of exponential growth phase. Kinetic constants for the degradation of p-cresol were determined using Haldane’s model. High μmax and inhibitory constant (KI) values along with the observed accumulation of significant amounts of PHB in culture filtrates seem to indicate that the isolated Pseudomonas sp. strain A may be of potential use in biotransformations.  相似文献   

13.
Phthalate is a metabolic intermediate of the pathway of fluorene (FN) degradation via angular dioxygenation. A gene cluster responsible for the conversion of phthalate to protocatechuate was cloned from the dibenzofuran (DF)- and FN-degrading bacterium Terrabacter sp. strain DBF63 and sequenced. The genes encoding seven catabolic enzymes, oxygenase large subunit of phthalate 3,4-dioxygenase (phtA1), oxygenase small subunit of phthalate 3,4-dioxygenase (phtA2), cis-3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase (phtB), [3Fe-4S] or [4Fe-4S] type of ferredoxin (phtA3), ferredoxin reductase (phtA4), 3,4-dihydroxyphthalate decarboxylase (phtC) and putative regulatory protein (phtR), were found in the upstream region of the angular dioxygenase gene (dbfA1A2), encoded in this order. Escherichia coli carrying phtA1A2BA3A4 genes converted phthalate to 3,4-dihydroxyphthalate, and the 3,4-dihydroxyphthalate decarboxylase activity by E. coli cells carrying phtC was finally detected with the introduction of a Shine-Dalgarno sequence in the upstream region of its initiation codon. Homology analysis on the upstream region of the pht gene cluster revealed that there was an insertion sequence (IS) (ISTesp2; ORF14 and its flanking region), part of which was almost 100% identical to the orf1 and its flanking region adjacent to the extradiol dioxygenase gene ( bphC1) involved in the DF degradation of Terrabacter sp. strain DPO360 [Schmid et al. (1997) J Bacteriol 179:53-62]. This suggests that ISTesp2 plays a role in the metabolism of aromatic compounds in Terrabacter sp. strains DBF63 and DPO360.  相似文献   

14.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding β-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsΩGm and Pseudomonas sp. strain HRechΩKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatΩKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a β-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.  相似文献   

15.
The aim of this work was to isolate enzyme-producing microorganisms from the tract of the termite Reticulitermes santonensis. The microorganisms were extracted from the guts and anaerobic (CO2 or CO2/H2) and micro-aerobic atmospheres were used to stimulate growth. Three different strategies were tried out. First, the sample was spread on Petri dishes containing solid media with carboxymethylcellulose, microcrystalline cellulose or cellobiose. This technique allowed us to isolate two bacteria: Streptomyces sp. strain ABGxAviA1 and Pseudomonas sp. strain ABGxCellA. The second strategy consisted in inoculating a specific liquid medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. The samples were then spread on Petri dishes with the same specific medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. This led to the isolation of the mold Aspergillus sp. strain ABGxAviA2. Finally, the third strategy consisted in heating the first culture and spreading samples on agar plates containing rich medium. This led to the isolation of the bacterium Bacillus subtilis strain ABGx. All those steps were achieved in controlled atmospheres. The four enzyme-producing strains which were isolated were obtained by using a micro-aerobic atmosphere. Later, enzymatic assays were performed on the four strains. Streptomyces sp. strain ABGxAviA1 was found to produce only amylase, while Pseudomonas sp. strain ABGxCellA was found to produce β-glucosidase as well. Aspergillus sp. strain ABGxAviA2 showed β-glucosidase, amylase, cellulase, and xylanase activities. Finally, B. subtilis strain ABGx produced xylanase and amylase.  相似文献   

16.
DNA isolated from a greenhouse soil (Nanjing, Jiangsu Province, China) was suitable for PCR amplification of gene segment coding for the 16S rRNA. Diverse PCR products were characterized by cloning and sequencing, and analysis of bacterial colonies showed the presence over 26 phyla. The most bacteria belonged to Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria and Planctomycetes. Furthermore, after the enrichment procedure of DBP-degrading microorganisms, 4 strains were isolated from the soil sample with di-n-butyl phthalate (DBP) biodegradability, and they were identified to be Rhizobium sp., Streptomyces sp., Pseudomonas sp. and Acinetobacter sp. Analysis of the degradation products by LC-MS led to identification of metabolites of DBP in strain LMB-1 (identified as Rhizobium sp.) which suggests that DBP was degraded through β-oxidation, demethylation, de-esterification and cleavage of aromatic ring.  相似文献   

17.
Propachlor (2-chloro-N-isopropylacetanilide) is an acetamide herbicide used in preemergence. In this study, we isolated and characterized a soil bacterium, Acinetobacter strain BEM2, that was able to utilize this herbicide as the sole and limiting carbon source. Identification of the intermediates of propachlor degradation by this strain and characterization of new metabolites in the degradation of propachlor by a previously reported strain of Pseudomonas (PEM1) support two different propachlor degradation pathways. Washed-cell suspensions of strain PEM1 with propachlor accumulated N-isopropylacetanilide, acetanilide, acetamide, and catechol. Pseudomonas strain PEM1 grew on propachlor with a generation time of 3.4 h and a Ks of 0.17 ± 0.04 mM. Acinetobacter strain BEM2 grew on propachlor with a generation time of 3.1 h and a Ks of 0.3 ± 0.07 mM. Incubations with strain BEM2 resulted in accumulation of N-isopropylacetanilide, N-isopropylaniline, isopropylamine, and catechol. Both degradative pathways were inducible, and the principal product of the carbon atoms in the propachlor ring was carbon dioxide. These results and biodegradation experiments with the identified metabolites indicate that metabolism of propachlor by Pseudomonas sp. strain PEM1 proceeds through a different pathway from metabolism by Acinetobacter sp. strain BEM2.  相似文献   

18.
 Gram-positive Rhodococcus erythropolis strain S1 formed enzymes for the degradation of phthalate when grown in a phthalate-containing minimal medium. The membrane fraction prepared from phthalate-grown cells by ultrasonication converted phthalate to protocatechuate as the final product. Using two membrane-bound enzymes, phthalate 3,4-dioxygenase (PO) and 3,4-dihydro-3,4-dihydroxyphthalate 3,4-dehydrogenase (PH), prepared by solubilization of the membrane fraction, 3,4-dihydroxyphthalate was selectively obtained from phthalata. Fe2+ and Mn2+ stimulated the formation of 3,4-dihydroxyphthalate by the membrane-bound PO and PH system. Received: 27 April 1994/Received last revision: 19 August 1994/Accepted: 12 September 1994  相似文献   

19.
Two bacterial strains were isolated in the presence of naphthalene as the sole carbon and energy source from sediments of the Orbetello Lagoon, Italy, which is highly contaminated with both organic compounds and metals. 16S rRNA gene sequence analysis of the two isolates assigned the strains to the genera Paenibacillus and Pseudomonas. The effect of different contaminants on the growth behaviors of the two strains was investigated. Pseudomonas sp. ORNaP2 showed a higher tolerance to benzene, toluene, and ethylbenzene than Paenibacillus sp. ORNaP1. In addition, the toxicity of heavy metals potentially present as co-pollutants in the investigated site was tested. Here, strain Paenibacillus sp. ORNaP1 showed a higher tolerance towards arsenic, cadmium, and lead, whereas it was far more sensitive towards mercury than strain Pseudomonas sp. ORNaP2. These differences between the Gram-negative Pseudomonas and the Gram-positive Paenibacillus strain can be explained by different general adaptive response systems present in the two bacteria.  相似文献   

20.
Mycobacterium sp. strain AP1 grew with pyrene as a sole source of carbon and energy. The identification of metabolites accumulating during growth suggests that this strain initiates its attack on pyrene by either monooxygenation or dioxygenation at its C-4, C-5 positions to give trans- or cis-4,5-dihydroxy-4,5-dihydropyrene, respectively. Dehydrogenation of the latter, ortho cleavage of the resulting diol to form phenanthrene 4,5-dicarboxylic acid, and subsequent decarboxylation to phenanthrene 4-carboxylic acid lead to degradation of the phenanthrene 4-carboxylic acid via phthalate. A novel metabolite identified as 6,6′-dihydroxy-2,2′-biphenyl dicarboxylic acid demonstrates a new branch in the pathway that involves the cleavage of both central rings of pyrene. In addition to pyrene, strain AP1 utilized hexadecane, phenanthrene, and fluoranthene for growth. Pyrene-grown cells oxidized the methylenic groups of fluorene and acenaphthene and catalyzed the dihydroxylation and ortho cleavage of one of the rings of naphthalene and phenanthrene to give 2-carboxycinnamic and diphenic acids, respectively. The catabolic versatility of strain AP1 and its use of ortho cleavage mechanisms during the degradation of polycyclic aromatic hydrocarbons (PAHs) give new insight into the role that pyrene-degrading bacterial strains may play in the environmental fate of PAH mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号