首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-gated sodium channels (VGSC) have been linked to inherited forms of epilepsy. The expression and biophysical properties of VGSC in the hippocampal neuronal culture model have not been clarified. In order to evaluate mechanisms of epileptogenesis that are related to VGSC, we examined the expression and function of VGSC in the hippocampal neuronal culture model in vitro and spontaneously epileptic rats (SER) in vivo. Our data showed that the peak amplitude of transient, rapidly-inactivating Na+ current (INa,T) in model neurons was significantly increased compared with control neurons, and the activation curve was shifted to the negative potentials in model neurons in whole cell recording by patch–clamp. In addition, channel activity of persistent, non-inactivating Na+ current (INa,P) was obviously increased in the hippocampal neuronal culture model as judged by single-channel patch–clamp recording. Furthermore, VGSC subtypes NaV1.1, NaV1.2 and NaV1.3 were up-regulated at the protein expression level in model neurons and SER as assessed by Western blotting. Four subtypes of VGSC proteins in SER were clearly present throughout the hippocampus, including CA1, CA3 and dentate gyrus regions, and neurons expressing VGSC immunoreactivity were also detected in hippocampal neuronal culture model by immunofluorescence. These findings suggested that the up-regulation of voltage-gated sodium channels subtypes in neurons coincided with an increased sodium current in the hippocampal neuronal culture model, providing a possible explanation for the observed seizure discharge and enhanced excitability in epilepsy.  相似文献   

2.
Summary The temperature-sensitive paralytic mutant of Drosophila, nap ts, has been shown to have defects in axonal physiology which suggest that it codes for a component of the voltage-sensitive sodium channel. Ligand binding studies using tritiated tetrodotoxin, a sodium channel antagonist, show a decrease in the apparent number of sodium channels in nap ts, providing additional support for this hypothesis.  相似文献   

3.
4.
A cell extract prepared from the lig-ts7 mutant of Escherichia coli is able to carry out a complete round of DNA replication of colicin E1 plasmid at 25 °C. However, the apparent rate of elongation of the progeny strands at this temperature is much smaller than in an extract from the thermoresistant revertant cells. Chain elongation in the lig-ts extract is depressed by raising the incubation temperature from 25 °C to 32 °C, whereas that in the lig+ revertant extract is not. The rate of closure of the progeny strands of newly formed open circular molecules is also reduced in the lig-ts extract, even at 25 °C.The DNA pulse-labelled with the lig-ts extract for 30 seconds at 32 °C contains a large amount of short DNA fragments of approximately 7 S, in addition to DNA chains of various sizes between 7 S and 17 S (unit length). Most of these replicating molecules are converted to completely replicated closed circular molecules upon chasing with a lig+ extract. DNA-DNA hybridization experiments show that molecules replicated to various extents contain 7 S DNA fragments of both strands, but more of the L-strand component, whose 5′-to-3′ direction corresponds to the overall direction of unidirectional replication. The longer DNA chains are enriched in the H-strand component.The cell extracts used for the plasmid DNA replication have an activity which converts alkali-labile closed circular plasmid DNA containing apurinic sites to alkali-stable closed circular molecules. Addition of nicotinamide mononucleotide leads to conversion of the alkali-labile DNA to open circular molecules. In the replication system with the cell extract, however, the compound does not interfere with elongation of progeny strands. Chain elongation in the lig-ts extract at 25 °C is not significantly affected by nicotinamide mononucleotide. Thus, the 7 S DNA fragments formed with the lig-ts extract are unlikely to be generated as a result of incomplete repair of misincorporated nucleotides. We conclude that both strands of colicin E1 plasmid DNA replicate discontinuously.  相似文献   

5.
Based on experience with cell cultures of adult insect neurons, we develop a serum-free culture system for embryonic locust neurons. Influences of trophic substances on survival and neurite outgrowth of developing neurons are investigated. For the first time, a positive trophic effect of 9-cis retinoic acid (9-cis RA) was shown in vitro on embryonic neurons of an insect. We observed longer cell survival of 50 % developmental stage neurons in cultures supplemented with 0.3 nM 9-cis RA. Furthermore, an influence on neuron morphology was revealed, as the addition of 9-cis RA to cell culture medium led to an increase in the number of neurites per cell. Although an RA receptor gene, LmRXR (Locusta migratoria retinoid X receptor), was expressed in the central nervous system throughout development, the influence of 9-cis RA on neuronal survival and outgrowth was restricted to 50 % stage embryonic cells.  相似文献   

6.
Barry Ganetzky 《Genetics》1984,108(4):897-911
Two mutants of Drosophila melanogaster, para ts1 (1-53.9) and napts (2-56.2) both display similar temperature-sensitive paralysis associated with blockage in the conduction of nerve action potentials, suggesting that the two gene products have a similar function. This idea is supported by the observation that the double mutant is unconditionally lethal. Genetic analysis of this synergistic interaction has revealed the following: 1) it specifically involves the para and nap loci; (2) all para alleles interact with napts, but the strength of the interaction varies in an allele-dependent fashion; (3) lethality of the double mutant occurs during the first larval instar with parats1 but differs with other para alleles; (4) hypodosage of para + causes lethality in a napts background. These results together with previous electrophysiological, behavioral and pharmacological studies of these mutants suggest that both para and nap affect sodium channels and possibly encode different subunits.  相似文献   

7.
Deltamethrin, a pyrethroid insecticide, and BTG 502, an alkylamide insecticide, target voltage-gated sodium channels. Deltamethrin binds to a unique receptor site and causes prolonged opening of sodium channels by inhibiting deactivation and inactivation. Previous 22Na+ influx and receptor binding assays using mouse brain synaptoneurosomes showed that BTG 502 antagonized the binding and action of batrachotoxin (BTX), a site 2 sodium channel neurotoxin. However, the effect of BTG 502 has not been examined directly on sodium channels expressed in Xenopus oocytes. In this study, we examined the effect of BTG 502 on wild-type and mutant cockroach sodium channels expressed in Xenopus oocytes. Toxin competition experiments confirmed that BTG 502 antagonizes the action of BTX and possibly shares a common receptor site with BTX. However, unlike BTX which causes persistent activation of sodium channels, BTG 502 reduces the amplitude of peak sodium current. A previous study showed that BTG 502 was more toxic to pyrethroid-resistant house flies possessing a super-kdr (knockdown resistance) mechanism than to pyrethroid-susceptible house flies. However, we found that the cockroach sodium channels carrying the equivalent super-kdr mutations (M918T and L1014F) were not more sensitive to BTG 502 than the wild-type channel. Instead, a kdr mutation, F1519I, which reduces pyrethroid binding, abolished the action of BTG 502. These results provide evidence the actions of alkylamide and pyrethroid insecticides require a common sodium channel residue.  相似文献   

8.
Wang M  Rong M  Xiao Y  Liang S 《Peptides》2012,34(1):19-25
Huwentoxin-I (HWTX-I) is a 33-residue peptide isolated from the venom of Ornithoctonus huwena and could inhibit TTX-sensitive voltage-gated sodium channels and N-type calcium channels in mammalian dorsal root ganglion (DRG) neurons. However, the effects of HWTX-I on mammalian central neuronal and insect sodium channel subtypes remain unknown. In this study, we found that HWTX-I potently inhibited sodium channels in rat hippocampal and cockroach dorsal unpaired median (DUM) neurons with the IC50 values of 66.1 ± 5.2 and 4.80 ± 0.58 nM, respectively. Taken together with our previous work on DRG neurons (IC50 ≈ 55 nM), the order of sodium channel sensitivity to HWTX-I inhibition was insect central DUM ? mammalian peripheral > mammalian central neurons. HWTX-I exhibited no effect on the steady-state activation and inactivation of sodium channels in rat hippocampal and cockroach DUM neurons.  相似文献   

9.
The T4D bacteriophage gene 28 product is a component of the central plug of the tail baseplate, as shown by the following two independent lines of evidence. (i) A highly sensitive method for radioactive labeling of only tail baseplate plug components was developed. These labeled plug components were incorporated by a complementation procedure into new phage particles and were analyzed by radioautography after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three new structural proteins were found in addition to the three known tail plug proteins (i.e., gP29, gP27, and gP5). One of the three newly identified components had a molecular weight of 24,000 to 25,000 and appeared to be a product of T4D gene 28. (ii) Characterization of mutants of Escherichia coli bacteriophage T4D which produced altered gene 28 products also indicated that the gene 28 product was a viral tail component. T4D 28ts phage particles produced at the permissive temperature had altered heat labilities compared with parent T4D particles. We isolated a single-step temperature revertant of T4D 28ts and found that it produced phage particles which phenotypically resembled the original T4D particles. Since the properties of the phage baseplate components usually determine heat lability, these two changes in physical stability after two sequential single mutations in gene 28 supported the other evidence that the gene 28 product was a viral baseplate component. Also, compared with parent T4D particles, T4D 28ts and T4D 28am viral particles adsorbed at different rates to various types of host cells. In addition, T4D 28ts particles exhibited a different host range than parent T4D particles. This T4D mutant formed plaques with an extremely low efficiency on all E. coli K-12 strains tested. We found that although T4D 28ts particles adsorbed rapidly and irreversibly to the E. coli K-12 strains, as judged by gene rescue experiments, these particles were not able to inject their DNA into the E. coli K-12 strains. On the other hand, the T4D 28ts revertant had a plating efficiency on E. coli K-12 strains that was quite similar to the plating efficiency of the original parent, T4D. These properties of phage particles containing an altered gene 28 product supported the analytical finding that the gene 28 product is a structural component of the central plug of the T4D tail baseplate. They also indicated that this component plays a role in both host cell recognition and viral DNA injection.  相似文献   

10.
Chloride secretion in primary cultures of cells originating from the secretory coil of human sweat glands was investigated by electron probe X-ray microanalysis. The total intracellular Cl concentration was lowered by muscarinic agonists (carbachol and acetylcholine), as well as by the calcium ionophore A23187. The muscarinic agonists also lowered the cellular K concentration. Cl- secretion induced by these agonists could be inhibited by the chloride channel blocker NPPB. After cAMP stimulation, the frequency distribution of the Cl concentration changed from Gaussian to bimodal, indicating that cAMP induces Cl- secretion only from a subpopulation of the cells. Also ATP stimulated Cl- secretion, indicating the presence of purinergic receptors. The results suggest that some of the cells in addition to Ca2+ -regulated Cl- channels also possess cAMP-activated Cl- channels. Hence, the primary cultures still possess the Cl- transport mechanisms known to be present in intact glands. It can, however, not be excluded that some coil cells have acquired ductal characteristics during culture.  相似文献   

11.
12.
Mutations in the para gene specifically affect the expression of sodium currents in Drosophila. While 65% of wild-type embryonic neurons in culture express sodium currents, three distinct mutations in the para locus resulted in a decrease in the fraction of cells from which sodium currents could be recorded. This reduction was allele-dependent: macroscopic sodium currents were exhibited in 49% of the neurons in parats1 cultures, 35% in parats2, and only 2% in paraST76. Voltage-clamp experiments demonstrated that the parats2 mutation also affected the gating properties of sodium channels. These results provide convincing evidence that para, a gene recently shown to exhibit sequence similarity to vertebrate sodium channels alpha subunits, encodes functional sodium channels in Drosophila. The finding that one para allele (paraST76) can virtually eliminate the expression of sodium currents strongly argues that the para gene codes for the majority of sodium channels in cultured embryonic neurons.  相似文献   

13.
BackgroundVolatile pyrethroid insecticides, such as transfluthrin, have received increasing attention for their potent repellent activities in recent years for controlling human disease vectors. It has been long understood that pyrethroids kill insects by promoting activation and inhibiting inactivation of voltage-gated sodium channels. However, the mechanism of pyrethroid repellency remains poorly understood and controversial.Methodology/Principal findingsHere, we show that transfluthrin repels Aedes aegypti in a hand-in-cage assay at nonlethal concentrations as low as 1 ppm. Contrary to a previous report, transfluthrin does not elicit any electroantennogram (EAG) responses, indicating that it does not activate olfactory receptor neurons (ORNs). The 1S-cis isomer of transfluthrin, which does not activate sodium channels, does not elicit repellency. Mutations in the sodium channel gene that reduce the potency of transfluthrin on sodium channels decrease transfluthrin repellency but do not affect repellency by DEET. Furthermore, transfluthrin enhances DEET repellency.Conclusions/SignificanceThese results provide a surprising example that sodium channel activation alone is sufficient to potently repel mosquitoes. Our findings of sodium channel activation as the principal mechanism of transfluthrin repellency and potentiation of DEET repellency have broad implications in future development of a new generation of dual-target repellent formulations to more effectively repel a variety of human disease vectors.  相似文献   

14.
Oral administration of sodium pyrithione (NaP) causes hindlimb weakness in rodents, but not in primates. Previous work using Aplysia neurons has demonstrated that NaP produces a persistent influx of Ca2+ ions across the plasma membrane. To determine whether this also occurs in mammalian neurons and whether this could underlie the inter-species difference between rodents and primates, we have tested the effects of NaP on intracellular Ca2+ levels ([Ca2+]i) in rat and monkey motor neurons in vitro. Motor neurons present in spinal cord slices from rhesus monkey embryos (E37 and 56) and from rat E16 were dissected and cultured on glass coverslips. Following 2 weeks (rhesus) or 2-3 days (rat) in culture, neurons were loaded with fura-PE3/AM, and examined for [Ca2+]i changes in response to NaP. Rhesus motor neurons were identified by immunostaining for Islet-1 (MN specific antigen) and neuron specific enolase (NSE). Motor neurons from both species exhibited dose-dependent NaP-evoked increases in [Ca2+]i However, the dose-response curve for the Rhesus motor neurons was significantly shifted to the right of the rat dose-response curve, whereas the overall amplitude of the Ca2+ rise was similar in both species. As shown previously for the Aplysia neurons, the action of NaP is attenuated by SKF 96365, an inhibitor of store-operated calcium entry. In contrast the action of NaP is unaffected by nifedipine and tetrodotoxin, blockers of voltage-dependent Ca2+ and Na+ channels, respectively, or by ouabain, an inhibitor of the plasma membrane Na+/K+ ATPase. Our results indicate that the NaP-induced increase in [Ca2+]i is conserved across species and suggest that the toxicological sensitivity of rodent over primate to pyrithione could be due to the enhanced sensitivity of rodent motor neurons to NaP-evoked intracellular Ca2+ elevation.  相似文献   

15.
Spinal cord neurons were dissociated from 13-day embryonic mice and grown in culture for 1-28 days. Sodium currents of neurons in culture for 1-2 days were compared with those in culture for 2-4 weeks, using the whole-cell voltage clamp method. Rapid neurite outgrowth created space clamp limitations so that unclamped neuritic sodium action potentials prevented accurate analysis of sodium current properties. Therefore neurons were bathed in sodium-free solution and brief puffs of sodium were delivered to the cell soma so that only somatic sodium currents were recorded. Sodium currents of neurons at 1-2 days in culture had voltage-dependent activation and inactivation characteristic of these channels, both in mature cultured spinal neurons and in other preparations. However, the estimated channel density on the soma of neurons 1-2 days in culture was less than two channels per micron2. Since the available sodium conductance (as measured by action potential rise rates) increases during development of spinal cord neurons in culture (Westbrook and Brenneman, 1984), we suggest that changes in channel density and/or distribution, rather than in channel kinetics, may underlie the increase in sodium conductance.  相似文献   

16.
Persistent reovirus infection of L cells was established with a serially passaged stock of temperature-sensitive (ts) mutant C(447) containing greater than 90% defective interfering particles. Within a month after establishment of the carrier culture, the ts mutant was replaced by virus that expressed the wild-type (ts+) temperature phenotype (R. Ahmed and A. F. Graham, J. Virol. 23:250-262, 1977). To determine whether the ts+ phenotype of the virus was due to intragenic reversion or to the presence of an extragenic mutation suppressing the original ts defect, several clones were backcrossed to wild-type reovirus, and the progeny of each cross were screened for temperature sensitivity. The results indicated that the original tsC lesion had reverted. However, in two of the seven clones examined, new ts lesions were found. These new ts lesions appeared phenotypically as ts+ due to the presence of extragenic suppressor mutations. Temperature-sensitive mutants representing three different groups were rescued from one suppressed clone, indicating that this ts+ clone contained multiple ts lesions. Among the ts mutants rescued were the initial isolates of a new recombination group which we have designated H. Some of the ts mutants rescued from the suppressed clones are capable of interfering with the growth of wild-type reovirus and may play a role in maintaining the carrier state. The results of this study show that persistently infected L cells contain a genetically heterogeneous population of reovirus even though all virus clones express the ts+ phenotype. It is thus critical to distinguish between genotype and phenotype when analyzing viruses that emerge during persistent infection.  相似文献   

17.
Voltage gated sodium channels represent an important therapeutic target for a number of neurological disorders including epilepsy. Unfortunately, medicinal chemistry strategies for discovering new classes of antagonist for trans-membrane ion channels have been limited to mostly broad screening compound arrays. We have developed new sodium channel antagonist based on a propofol scaffold using the ligand based strategy of comparative molecular field analysis (CoMFA). The resulting CoMFA model was correlated and validated to provide insights into the design of new antagonists and to prioritize synthesis of these new structural analogs (compounds 4 and 5) that satisfied the steric and electrostatic model. Compounds 4 and 5 were evaluated for [3H]-batrachotoxinin-A-20-α-benzoate ([3H]-BTX-B) displacement yielding IC50’s of 22 and 5.7 μM, respectively. We further examined the potency of these two compounds to inhibit neuronal sodium currents recorded from cultured hippocampal neurons. At a concentration of 50 μM, compounds 4 and 5 tonically inhibited sodium channels currents by 59 ± 7.8% (n = 5) and 70 ± 7.5% (n = 7), respectively. This clearly demonstrates that these compounds functionally antagonize native neuronal sodium channel currents. In summary, we have shown that CoMFA can be effectively used to discover new classes of sodium channel antagonists.  相似文献   

18.
The aim of this study was to determine from macroscopic current analysis how intracellular magnesium ions, Mg i 2+ , interfere with sodium channels of mammalian neurones. It is reported here that permeation across the sodium channel is voltage- and concentration-dependently reduced by Mg i 2+ . This results in a general reduction of sodium membrane conductance and an outward sodium peak current at large positive potentials. 30 mM Mg i 2+ leads to a negative shift of voltage dependence of sodium channel gating parameters, probably due to the surface potential change of the membrane. This shift alone is, however, insufficient to explain the reduction of outward sodium currents. The blockage by Mg i 2+ is decreased upon increasing intracellular or extracellular Na+ concentration, which suggests that Mg?' interferes with sodium permeation by competitively occupying sodium channels. Using a kinetic model to describe the sodium permeation, the dissociation constant (at zero membrane potential) of Mg i 2+ for the sodium channel has been calculated to be 8.65 ± 1.51 mM, with its binding site located at 0.26 ± 0.05 electrical distance from the inner membrane. This dissociation constant is smaller than that of Na i +, which is 83.76 ± 7.60 mM with its binding site located at 0.75 ± 0.23. The low dissociation constant of Mg i 2+ reflects its high affinity for the sodium channel.  相似文献   

19.
20.
We investigated the role of the T4D bacteriophage gene 28 product in folate metabolism in infected Escherichia coli cells by using antifolate drugs and a newly devised assay for folyl polyglutamate cleavage activity. Preincubation of host E. coli cells with various sulfa drugs inhibited phage production by decreasing the burst size when the phage particles produced an altered gene 28 product (i.e., after infection under permissive conditions with T4D 28ts or T4D am28). In addition, we found that another folate analog, pyrimethamine, also inhibited T4D 28ts production and T4D 28am production, but this analog did not inhibit wild-type T4D production. A temperature-resistant revertant of T4D 28ts was not sensitive to either sulfa drugs or pyrimethamine. We developed an assay to measure the enzymatic cleavage of folyl polyglutamates. The high-molecular-weight folyl polyglutamate substrate was isolated from E. coli B cells infected with T4D am28 in the presence of labeled glutamic acid and was characterized as a folate compound containing 12 to 14 labeled glutamate residues. Extracts of uninfected bacteria liberated glutamate residues from this substrate with a pH optimum of 8.4 to 8.5. Extracts of bacteriophage T4D-infected E. coli B cells exhibited an additional new folyl polyglutamate cleavage activity with a pH optimum of about 6.4 to 6.5, which was clearly distinguished from the preexisting activity in the uninfected host cells. This new activity was induced in E. coli B cells by infection with wild-type T4D and T4D amber mutants 29, 26, 27, 51, and 10, but it was not induced under nonpermissive conditions by T4D am28 or by T4D 28ts. Mutations in gene 28 affected the properties of the induced cleavage enzyme. Wild-type T4D-induced cleavage activity was not inhibited by pyrimethamine, whereas the T4D 28ts activity induced at a permissive temperature was inhibited by this folate analog. Folyl polyglutamate cleavage activity characteristic of the activity induced in host cells by wild-type T4D or by T4D gene 28 mutants was also found in highly purified preparations of these phage ghost particles. The T4D-induced cleavage activity could be inhibited by antiserum prepared against highly purified phage baseplates. We concluded that T4D infection induced the formation of a new folyl polyglutamate cleavage enzyme and that this enzyme was coded for by T4D gene 28. Furthermore, since this gene product was a baseplate tail plug component which had both its antigenic sites and its catalytic sites exposed on the phage particle, it was apparent that this enzyme formed part of the distal surface of the phage baseplate central tail plug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号