首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The iscom--immunostimulating complex--is a highly immunogenic formulation of microbial membrane antigens. The biochemically analyzed components of the iscom are the protein and the glycoside Quil A. Continued analysis of the iscom showed that the protein moiety--the antigen--does not contribute to the iscom as a construct. Instead, cholesterol and Quil A are the essential structural components assembled together into a typical cage-like structure. A more "fluid" lipid, such as phosphatidylcholine, is needed to facilitate the incorporation of amphipathic poly- or oligopeptides into the iscom matrix.  相似文献   

2.
On the structure of immune-stimulating saponin-lipid complexes (iscoms)   总被引:5,自引:0,他引:5  
Immune-stimulating complexes (iscoms) are stable complexes of cholesterol, phospholipid and Quil A, a triterpene saponin mixture in the size range from 40 to 100 nm. They can be used as antigen carriers in subunit vaccines. In this paper it is demonstrated that iscoms are rigid, negatively charged vesicles in which small water soluble molecules like carboxyfluorescein cannot be retained. The negative zeta-potential prevents iscoms from aggregation. The chemical composition of iscoms in one dispersion varied considerably. A typical example of the composition of iscoms is cholesterol/phospholipid/Quil A = 1.0:1.2:6.2 by weight for the iscom matrix, that is iscoms without antigen, and 1.0:1.3:5.1 for antigen-containing iscoms. A hypothetical model for the structure of the iscom matrix and related structures is presented, based on analytical chemical, physico-chemical and electronmicroscopic data. In this model iscoms are considered to be multi-micellar structures, shaped and stabilized by hydrophobic interactions, electrostatic repulsion, steric factors and possibly hydrogen bonds. The individual micelles are relatively flat, ring-shaped structures, the center offering space for one of the two bulky sugar chains of the saponins.  相似文献   

3.
In the iscom, antigen is attached by hydrophobic interactions to a matrix which is built up by the adjuvant Quil A and lipids. Thus, the iscom presents antigen in multiple copies on a small particle with a built-in adjuvant. By studying the specific antibody response, in vitro proliferation and IL-2 secretion by splenocytes from mice following different in vivo treatments with iscoms and/or matrix, we attempted to distinguish between nonspecific stimulatory effects, caused by the matrix or iscoms, and specific responses to the antigens incorporated into iscoms. The results strongly suggest that matrix and also iscoms exert a nonspecific adjuvant activity by a transient high spontaneous proliferation of cells collected within 2 weeks after administration of iscoms or matrix. This high rate of proliferation was preceded by suppressed proliferation, 3 days after injection with matrix or iscom. The adjuvant component included in iscoms, i.e., the matrix, does not excert a mitogenic stimulation in vitro or influence the levels of specific antibodies in serum. Specific responses to the antigens included in iscoms were recorded both as increasing levels of serum antibodies and as iscom-induced proliferation of immune spleen cells in vitro. The recruitment of IL-2 was only related to the specific stimulation induced by the antigens in iscom.  相似文献   

4.
Immune stimulating complex (ISCOM) particles consisting of a mixture of Quil-A, cholesterol, and phospholipids were structurally characterized by small-angle x-ray scattering (SAXS). The ISCOM particles are perforated vesicles of very well-defined structures. We developed and implemented a novel (to our knowledge) modeling method based on Monte Carlo simulation integrations to describe the SAXS data. This approach is similar to the traditional modeling of SAXS data, in which a structure is assumed, the scattering intensity is calculated, and structural parameters are optimized by weighted least-squares methods when the model scattering intensity is fitted to the experimental data. SAXS data from plain ISCOM matrix particles in aqueous suspension, as well as those from complete ISCOMs (i.e., with an antigen (tetanus toxoid) incorporated) can be modeled as a polydisperse distribution of perforated bilayer vesicles with icosahedral, football, or tennis ball structures. The dominating structure is the tennis ball structure, with an outer diameter of 40 nm and with 20 holes 5-6 nm in diameter. The lipid bilayer membrane is 4.6 nm thick, with a low-electron-density, 2.0-nm-thick hydrocarbon core. Surprisingly, in the ISCOMs, the tetanus toxoid is located just below the membrane inside the particles.  相似文献   

5.
A number of recent studies have demonstrated the significance of detergent-insoluble, glycolipid-enriched membrane domains or lipid rafts, especially in regard to activation and signaling in T lymphocytes. These domains can be viewed as floating rafts composed of sphingolipids and cholesterol which sequester glycosylphosphatidylinositol (GPI)-linked proteins, such as Thy-1 and CD59. CD45, a 200-kDa transmembrane phosphatase protein, is excluded from these domains. We have found that human immunodeficiency virus type 1 (HIV-1) particles produced by infected T-cell lines acquire the GPI-linked proteins Thy-1 and CD59, as well as the ganglioside GM1, which is known to partition preferentially into lipid rafts. In contrast, despite its high expression on the cell surface, CD45 was poorly incorporated into virus particles. Confocal fluorescence microscopy revealed that HIV-1 proteins colocalized with Thy-1, CD59, GM1, and a lipid raft-specific fluorescent lipid, DiIC(16)(3), in uropods of infected Jurkat cells. CD45 did not colocalize with HIV-1 proteins and was excluded from uropods. Dot immunoassay of Triton X-100-extracted membrane fractions revealed that HIV-1 p17 matrix protein and gp41 were present in the detergent-resistant fractions and that [(3)H]myristic acid-labeled HIV Gag showed a nine-to-one enrichment in lipid rafts. We propose a model for the budding of HIV virions through lipid rafts whereby host cell cholesterol, sphingolipids, and GPI-linked proteins within these domains are incorporated into the viral envelope, perhaps as a result of preferential sorting of HIV Gag to lipid rafts.  相似文献   

6.
Nuclear pores are huge macromolecular assemblies, approximately 120 nm in diameter, that perforate the nuclear membrane and mediate nucleocytoplasmic transport. Nuclear pores are constructed from a cylindrical spoke-plug complex sandwiched between nucleoplasmic and cytoplasmic rings. The spoke-plug complex has pronounced 8-fold rotational symmetry, which is also present in the rings. Nucleocytoplasmic transport is an energy-requiring process that takes place through the centre of the pores and can accommodate particles up to about 25 nm diameter. Translocation is preceded by a separate binding step which does not require energy. Several nuclear pore proteins have been isolated and characterized. Many of these proteins contain O-linked N-acetyl glucosamine residues and may have similar modular domain structures.  相似文献   

7.
Reovirus particles were isolated from adults in laboratory colonies of the housefly, Musca domestica. These particles were spherical in outline, 57–76 nm in diameter, and were found only in hemocyte cytoplasm, where virions have been disclosed by a new technique. Virions were present in large numbers, and viral inclusion bodies were identified. The virus particles had pentagonal and hexagonal shapes resembling a simple icosahedral structure. The virus was shown to be infectious and pathogenic to adult flies through injection or by feeding them suspensions from flies that had died of the virus. Electron micrographs of midgut sections from infected flies showed that the midgut cells were packed with dark undulating threads which were not present in uninfected flies. However, no virus particles or inclusion bodies could be seen in these cells. On the basis of their association with infected flies, and the similarity to results from other studies on reoviruses and insect viruses, it is suggested that these threads are an alternative replicative form of the reovirus. When the virus suspensions from heavily infected flies were dialyzed against weak alkaline solutions, the threads showed an inner component of coiled material, 12 nm in diameter, inside an envelope with a diameter of 50–83 nm, mean 60.3 ± 7.5, composed of subunits 7–8 nm long and 7–8 nm across.  相似文献   

8.
9.
The immunostimulating complex or 'iscom' was first described 20 years ago as an antigen delivery system with powerful immunostimulating activity. Iscoms are cage-like structures, typically 40 nm in diameter, that are comprised of antigen, cholesterol, phospholipid and saponin. ISCOM-based vaccines have been shown to promote both antibody and cellular immune responses in a variety of experimental animal models. This review focuses on the evaluation of ISCOM-based vaccines in animals over the past 10 years, as well as examining the progress that has been achieved in the development of human vaccines based on ISCOM adjuvant technology.  相似文献   

10.
Complexes composed of DNA attached to the nuclear matrix and of proteins most tightly bound to DNA are visualized as globular particles 25-35 nm in diameter. Their morphology depends greatly on the isolation conditions: a Cs salts/urea combination permits the isolation while CsCl/sarcosyl destroys the particles. The preparation is shown to have the same protein content regardless of the treatment employed. The proteins of the complex are resistant to SDS and pronase treatment and to phenol/chloroform extraction while being associated with DNA.  相似文献   

11.
The ability of some triterpene glycosides of holothurians: holotoxin A1 from Apostichopus japonicus and a mixture of monosulfated triterpene glycosides from Cucumaria japonica called cucumarioside (CD) to form supramolecular complexes with cholesterol (Chol) and monogalactosyldiacylglycerol (MGDG) or phosphatidylcholine (PC) was studied. A transmission electron microscopy method was used to observe supramolecular lipid-saponin complexes formed by holotoxin A1 and CD with cholesterol in the presence of membrane lipids. The observed supramolecular complexes are tubular nanoparticles with a length of 100–300 nm, an external diameter of 10–16 nm and an internal diameter of 2–6 nm. The formation of tubular nanoparticles was more effective in the presence of MGDG than with PC. Nanoparticles forming in the presence of MGDG are shaped as a tubule, have a constant diameter and a strongly pronounced internal channel. In contrast, PC has no such properties; this lipid is unable to fully integrate in tubular nanoparticles. Based on electron-microscopy data the range of weight ratio of MGDG-Chol-CD was determined as a 1–10: 2: 3 that provided most effective formation of tubular nanoparticles. Different methods of incorporation of model antigens in complex MGDG-Chol-CD were studied. Influenza hemagglutinin and neuraminidase from commercial vaccine “Influvac” and pore forming protein YompF from Yersinia pseudotuberculosis were used as model antigens. From 54 to 72% of protein of “Influvac” vaccine and 88–92% of YompF were incorporated in supramolecular complexes depending on the method of incorporation. The loss of functional activity of hemagglutinin of vaccine “Influvac” was the result of applying ultrasonic disintegration for incorporation of this protein in complex MGDG-Chol-CD. YompF incorporation in MGDG-Chol-CD complex led to the increased diameter of tubular particles, in the same time incorporation of vaccine “Influvac” antigens produced the “cap” formation at the end of tubules. The possibility of a described supramolecular complex MGDG-Chol-CD to be a carrier for subunit bacterial and viral antigens is shown.  相似文献   

12.
A polysaccharide-rich particulate fraction was isolated from cytoplasmic extracts of Candida albicans by a procedure using differential centrifugation. The polysaccharide particles obtained after purification with deoxycholate treatment were essentially free of nitrogen and were identified chemically as polyglucosan, in which the glucosidic links were of alpha type. Both the response to amylolytic enzymes and the spectral characteristics of the iodine complexes of the polysaccharide particles were similar to those of rabbit liver glycogen. They also precipitated with concanavalin A, the glycogen value being assessed at 1.04. These data strongly indicated that the polysaccharide particles have the macromolecular structure characteristic of glycogen. The sedimentation analysis revealed that they were polydisperse, with a weight average sedimentation coefficient of 340S. In negatively stained specimens, the glycogen particles were seen to form rosette-like structures consisting of a complex unit 40 to 150 nm in diameter. Such complex particles were composed of smaller globules that were fairly uniform in size with an average diameter of 32 nm.  相似文献   

13.
A virus PBCV-1, which infects certain fresh water algae and has been shown by transmission and cryo-electron microscopy to exist as a triskaidecahedron, was imaged using atomic force microscopy (AFM). From AFM the particles have diameters of about 190nm and the overall structure is in all important respects consistent with existing models. The surface lattice of the virion is composed of trimeric capsid proteins distributed according to p3 symmetry to create a honeycomb arrangement of raised edges forming quasi-hexagonal cells. At the pentagonal vertices are five copies of a different protein forming an exact pentagon, and this has yet another unique protein in its center. The apical protein exhibits some unusual mechanical properties in that it can be made to retract into the virion interior when subjected to AFM tip pressure. When PBCV-1 virions degrade, they give rise to small, uniform, spherical, and virus like particles (VLP) consistent with T=1 or 3 icosahedral products. Also observed upon disintegration are strands of linear dsDNA. Fibers of unknown function are also occasionally seen associated with some virions.  相似文献   

14.
Two viruses, Perina nuda nucleopolyhedrovirus and a new picorna-like virus, were previously isolated from P. nuda larvae with flacherie. In this study the new picorna-like virus was characterized using physical and biochemical methods. This small virus appears to belong to the family Picornaviridae and we propose the name PnPV. PnPV can be propagated in its homogenous cell line, NTU-PN-HH. PnPV purified from the cell line resembles PnPV isolated from insects: under electron microscopy, it exhibits icosahedral symmetry, measures 30 nm in diameter, and has no envelope and no distinct surface structure in negatively stained preparations. In addition, we show here that PnPV has a buoyant density of 1.381 g/ml in cesium chloride, the viral genome was composed of one single-stranded RNA molecule with a length of 10 kb, and poly(A) tract and polyacrylamide gel electrophoresis of purified viral particles revealed three major (31.5, 29.7, and 28.4 kDa) and three minor (27. 0, 24.5, and 4.0 kDa) structural proteins.  相似文献   

15.
The majority of the protein mass of HeLa 40S heterogeneous nuclear ribonucleoprotein monoparticles is composed of multiple copies of six proteins that resolve in SDS gels as three groups of doublet bands (A1, A2; B1, B2; and C1, C2) (Beyer, A. L., M. E. Christensen, B. W. Walker, and W. M. LeStourgeon. 1977. Cell. 11: 127-138). We report here that when 40S monoparticles are exposed briefly to ribonuclease, proteins A1, C1, and C2 are solubilized coincidentally with the loss of most premessenger RNA sequences. The remaining proteins exist as tetramers of (A2)3(B1) or pentamers of (A2)3(B1)(B2). The tetramers may reassociate in highly specific ways to form either of two different structures. In 0.1 M salt approximately 12 tetramers (derived from three or four monoparticles) reassemble to form highly regular structures, which may possess dodecahedral symmetry. These structures sediment at 43S, are 20-22 nm in width, and have a mass near 2.3 million. These structures possess 450-500 bases of slowly labeled RNA, which migrates in gels as fragments 200-220 bases in length. In 9 mM salt the tetramers reassociate to form 2.0 M salt-insoluble helical filaments of indeterminant length with a pitch near 60 nm and diameter near 18 nm. If 40S monoparticles are treated briefly with nuclease-free proteases, the same proteins solubilized by nuclease (A1, C1, and C2) are preferentially cleaved. This protein cleavage is associated with the dissociation of most of the heterogeneous nuclear RNA. Proteins A2 and B1 again reassemble to form uniform, globular particles, but these sediment slightly slower than intact monoparticles. These findings indicate that proteins A1, C1, and C2 and most of the premessenger sequences occupy a peripheral position in intact monoparticles and that their homotypic and heterotypic associations are dependent on protein-RNA interactions. Protein cross-linking studies demonstrate that trimers of A1, A2, and C1 exist as the most easily stabilized homotypic association in 40S particles. This supports the 3:1 ratio (via densitometry) of the A and C proteins to the B proteins and indicates that 40S monoparticles are composed of three or four repeating units, each containing 3(A1),3(A2),1(B1),1(B2),3(C1), and 1(C2).  相似文献   

16.
The primary objectives of this study were to determine whether analogs to native discoidal apolipoprotein (apo)E-containing high-density lipoproteins (HDL) could be prepared in vitro, and if so, whether their conversion by lecithin-cholesterol acyltransferase (LCAT; EC 2.3.1.43) produced particles with properties comparable to those of core-containing, spherical, apoE-containing HDL in human plasma. Complexes composed of apoE and POPC, without and with incorporated unesterified cholesterol, were prepared by the cholate-dialysis technique. Gradient gel electrophoresis showed that these preparations contain discrete species both within (14-40 nm) and outside (10.8-14 nm) the size range of discoidal apoE-containing HDL reported in LCAT deficiency. The isolated complexes were discoidal particles whose size directly correlated with their POPC:apoE molar ratio: increasing this ratio resulted in an increase in larger complexes and a reduction in smaller ones. At all POPC:apoE molar ratios, size profiles included a major peak corresponding to a discoidal complex 14.4 nm long. Preparations with POPC:apoE molar ratios greater than 150:1 contained two distinct groups of complexes, also in the size range of discoidal apoE-containing HDL from patients with LCAT deficiency. Incorporation of unesterified cholesterol into preparations (molar ratio of 0.5:1, unesterified cholesterol:POPC) resulted in component profiles exhibiting a major peak corresponding to a discoidal complex 10.9 nm long. An increase of unesterified cholesterol and POPC (at the 0.5:1 molar ratio) in the initial mixture, increased the proportion of larger complexes in the profile. Incubation of isolated POPC-apoE discoidal complexes (mean sizes, 14.4 and 23.9 nm) with purified LCAT and a source of unesterified cholesterol converted the complexes to spherical, cholesteryl ester-containing products with mean diameters of 11.1 nm and 14.0 nm, corresponding to apoE-containing HDL found in normal plasma. Conversion of smaller cholesterol-containing discoidal complexes (mean size, 10.9 nm) under identical conditions resulted in spherical products 11.3, 13.3, and 14.7 nm across. The mean sizes of these conversion products compared favorably with those (mean diameter, 12.3 nm) of apoE-containing HDL of human plasma. This conversion of cholesterol-containing complexes is accompanied by a shift of some apoE to the LDL particle size interval. Our study indicates that apoE-containing complexes formed by the cholate-dialysis method include species similar to discoidal apoE-containing HDL and that incubation with LCAT converts most of them to spherical core-containing particles in the size range of plasma apoE-containing HDL. Plasma HDL particles containing apoE may arise in part from direct conversion of discoidal apoE-containing HDL by LCAT.  相似文献   

17.
Mature human immunodeficiency virus type 1 (HIV-1) particles contain a cone-shaped core structure consisting of the internal ribonucleoprotein complex encased in a proteinaceous shell derived from the viral capsid protein. Because of their very low stability after membrane removal, HIV-1 cores have not been purified in quantities sufficient for structural and biochemical analysis. Based on our in vitro assembly experiments, we have developed a novel method for isolation of intact mature HIV-1 cores. Concentrated virus suspensions were briefly treated with nonionic detergent and immediately centrifuged in a microcentrifuge for short periods of time. The resuspended pellet was subsequently analyzed by negative-stain and thin-section electron microscopy and by immunoelectron microscopy. Abundant cone-shaped cores as well as tubular and aberrant structures were observed. Stereo images showed that core structures preserved their three-dimensional architecture and exhibited a regular substructure. Detailed analysis of 155 cores revealed an average length of ca. 103 nm, an average diameter at the base of ca. 52 nm, and an average angle of 21.3 degrees. There was significant variability in all parameters, indicating that HIV cores are not homogeneous. Immunoblot analysis of core preparations allowed semiquantitative estimation of the relative amounts of viral and cellular proteins inside the HIV-1 core, yielding a model for the topology of various proteins inside the virion.  相似文献   

18.
Several complex enveloped viruses assemble in the membranes of the secretory pathway, such as the Golgi apparatus. Among them, bunyaviruses form immature viral particles that change their structure in a trans-Golgi-dependent manner. To identify key Golgi factors for viral structural maturation, we have purified and characterized the three viral forms assembled in infected cells, two intracellular intermediates and the extracellular mature virion. The first viral form is a pleomorphic structure with fully endo-beta-N-acetylglucosaminidase H (Endo-H)-sensitive, nonsialylated glycoproteins. The second viral intermediate is a structure with hexagonal and pentagonal contours and partially Endo-H-resistant glycoproteins. Sialic acid is incorporated into the small glycoprotein of this second viral form. Growing the virus in glycosylation-deficient cells confirmed that acquisition of Endo-H resistance but not sialylation is critical for the trans-Golgi-dependent structural maturation and release of mature viruses. Conformational changes in viral glycoproteins triggered by changes in sugar composition would then induce the assembly of a compact viral particle of angular contours. These structures would be competent for the second maturation step, taking place during exit from cells, that originates fully infectious virions.  相似文献   

19.
Studies on the Nucleocapsid Structure of a Group A Arbovirus   总被引:5,自引:3,他引:2       下载免费PDF全文
When Sindbis virus (273S) was treated with sodium desoxycholate, a nonhemagglutinating 136S particle was liberated from the virion, representing the viral nucleocapsid (core). Electron microscopically it appeared as a spherical particle 35 nm in diameter, showing ringlike morphological units 12 to 14 nm in diameter on its surface. When the one- and two-sided images of core particles were correlated, their structure could be demonstrated to have the T = 3 arrangement of 32 hexamer-pentamer morphological units within a symmetrical surface lattice. The core contained a further spherical structure (12 to 16 nm in diameter) which was designated as the central core component. Two proteins were found associated with the core, a third viral protein belonged to the hemagglutinating surface structures. The significance of these findings for virus classification is discussed.  相似文献   

20.
A unique class of lipid-poor high-density lipoprotein, pre-beta1 HDL, has been identified and shown to have distinct functional characteristics associated with intravascular cholesterol transport. In this study we have characterized the structure/function properties of poorly lipidated HDL particles and the factors that mediate their conversion into multimolecular lipoprotein particles. Studies were undertaken with homogeneous recombinant HDL particles (LpA-I) containing apolipoprotein (apo) A-I and various amounts of palmitoyloleoylphosphatidylcholine (PC) and cholesterol. Complexation of apoA-I with small amounts of PC and cholesterol results in the formation of discrete lipoprotein structures that have a hydrated diameter of about 6 nm but contain only one molecule of apoA-I (Lp1A-I). While the molecular charge and alpha-helix content of apoA-I are unaffected by lipidation, the thermodynamic stability of the protein is reduced significantly (from 2.4 to 0.9 kcal/mol of apoA-I). Evaluation of apoA-I conformation by competitive radioimmunoassay with monoclonal antibodies shows that addition of small amounts of PC and cholesterol to apoA-I significantly increases the immunoreactivity of a number of domains over the entire molecule. Increasing the ratio of PC:apoA-I to 10:1 in the Lp1A-I complex is associated with increases in the alpha-helix content and stability of apoA-I. However, incorporation of 10-15 mol of PC destabilizes the Lp1A-I complex and promotes the formation of more thermodynamically stable (1.8 kcal/mol of apoA-I) bimolecular structures (Lp2A-I) that are approximately 8 nm in diameter. The formation of an Lp2A-I particle is associated with an increased immunoreactivity of most of the epitopes studied, with the exception of one central domain (residues 98-121), which becomes significantly less exposed. This structural change parallels a significant increase in the net negative charge on the complex. Characterization of the ability of these lipoproteins to act as substrates for lecithin:cholesterol acyltransferase (LCAT) shows that unstable Lp1A-I complexes stimulate a higher rate of cholesterol esterification by LCAT than the small but more stable Lp2A-I particles (Vmax values are 5.8 and 0.3 nmol of free cholesterol esterified/h, respectively). The ability of LCAT to interact with lipid-poor apoA-I suggests that LCAT does not need to bind to the lipid interface on an HDL particle but that LCAT may directly interact with apoA-I. The data suggests that lipid-poor HDL particles may be metabolically reactive particles because they are thermodynamically unstable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号