首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding.  相似文献   

2.
Summary Citric acid was produced using Aspergillus niger immobilized on polyurethane foam in a bubble column reactor. Most of the adsorbed cells remained on the support and, as a result, high oxygen tension was maintained during the reactor operation. However, uncontrolled growth of the pellets made continuous reactor operation difficult. The citric acid productivity obtained from 15 vol.% foam particles containing immobilized cells was 0.135 g/l per hour. This productivity of immobilized cells was almost the same as that of free cells. The oxygen level dropped to half saturation in 5 days in the immobilized cell culture in contrast to 2 days in the free cell culture.  相似文献   

3.
In order to produce l-phenylalanine efficiently from acetamidocinnamic acid with immobilized microbial cells, a two-step enzyme reaction using the acetamidocinnamate amidohydrolase activity of Corynebacterium sp. C-23 cells and the aminotransferase activity of Paracoccus denitrificans pFPr-1 cells was investigated. It was found that the useage of co-immobilized Corynebacterium sp. and P. denitrificans cells with κ-carrageenan was superior to that of the mixture of immobilized Corynebacterium sp. cells and immobilized P. denitrificans cells. When the space velocity was 0.06 h−1 at 30°C, 147 mml-phenylalanine were produced with a 98% conversion ratio from acetamidocinnamic acid. The half-life of the l-phenylalanine-forming activity of the column was calculated to be ≈ 14 days at 30°C.  相似文献   

4.
Summary For the efficient production of l-alanine from ammonium fumarate using the aspartase activity of immobilized Escherichia coli cells and l-aspartate -decarboxylase activity of immobilized Pseudomonas dacunhae cells, alanine racemase and fumarase activities should be eliminated. We investigated various procedures to eliminate these side reactions, and found that both activities of intact E. coli cells could be eliminated by treating the culture broth at pH 5.0 and 45° C for 1 h, and those of intact P. dacunhae cells could be eliminated by treating the culture broth at pH 4.75 and 30° C for 1 h. Further, it was confirmed that l-alanine was efficiently produced using these two immobilized pH-treated microorganisms.  相似文献   

5.
Cells of Escherichia coli possessing aspartase activity were immobilized by capture on the surface of nonwoven cloth coated with 10 mg/g of poly (N-benzyl-4-vinylpyridinium chloride-co-styrene), a pyridinium-type polymer. Continuous operation of a fixed-bed column reactor containing 21.7 g/l of the immobilized cells produced l-aspartic acid in 95% yield from ammonium fumarate in the case where influent solution contained 0.1 mol/l of the fumarate and space velocity was 1.36 h−1 at 30°C and pH 8.9. Immobilization on the coated nonwoven cloth insignificantly affected optimal pH of the biochemical reaction. Stability of enzymic activity of the immobilized cells was much improved by use of the coated nonwoven cloth as the supporting material instead of beads of insoluble pyridinium-type resin. l-Aspartic acid was obtained in 77% yield after 160 d of continuous operation, and the initial yield was estimated to require about 500 d for halving.  相似文献   

6.
Whole cells of Pseudomonas dacunhae containing l-aspartate beta-decarboxylase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol; W. R. Grace & Co., Lexington, Mass.). The immobilized cell preparation was used to convert l-aspartic acid to l-alanine. Properties of the immobilized P. dacunhae cells containing aspartate beta-decarboxylase activity were investigated with batch reactors. Retention of enzyme activity was observed to be as much as 100% when cell lysis was allowed to occur before immobilization. The pH and temperature optima were determined to be 5.5 and 45 degrees C, respectively. Immobilized P. dacunhael-aspartate beta-decarboxylase activity was stabilized by the addition of 0.1 mM pyridoxal-5-phosphate and 0.1 mM alpha-ketoglutaric acid to a 1.7 M ammonium aspartate (pH 5.5) substrate solution. Under conditions of semicontinuous use in a batch reactor, a 2.5% loss in immobilized l-aspartate beta-decarboxylase activity was observed over a 31-day period.  相似文献   

7.
Extensive experiments were carried out to improve the productivity ofl-malic acid from fumaric acid using Brevibacterium flavum immobilized with carrageenan. The most favourable preparation for the continuous production ofl-malic acid was obtained when 16 g of B. flavum cells was entrapped in 100 ml 3.4% carrageenan gel. However, the immobilized cells produced an unwanted by-product, succinic acid. Treatment of the immobilized cells with 0.6% bile extract suppressed the side reaction and gave the highest operational stability of fumarase activity. By the immobilization of intact cells, the optimal temperature of the enzyme reaction shifted to 10°C higher, the optimal pH became broader, and the operational stability of fumarase activity increased. The effect of temperature on the stability of fumarase activity in the immobilized cell column was investigated under conditions of continuous enzyme reaction. The decay of fumarase activity during continuous enzyme reaction was expressed by an exponential relationship. The productivity of the immobilized B. flavum using carrageenan was as high as 5.2 times that of the conventional immobilized B. ammoniagenes using polyacrylamide.  相似文献   

8.
Summary Coleus blumei cells were immobilized in a column reactor packed withLuffa cylindrica pieces. Medium was fed from the top of the column using a spray system and cells maintained high viability for 52 days. Cell growth was slower but rosmarinic acid production was better compared to immobilized cells in the shake flasks.  相似文献   

9.
Efficient ATP generation is required to produce glutathione and NADP. Hence, the generation of ATP was investigated using the glycolytic pathway of yeast. Saccharomyces cerevisiae cells immobilized using polyacrylamide gel generated ATP from adenosine, consuming glucose and converting it to ethanol and carbon dioxide. Under optimal conditions, the ATP-generating activity of immobilized yeast cells was 7.0 μmol h?1 ml?1 gel. A column packed with these immobilized yeast cells was used for continuous ATP generation. The half-life of the column was 19 days at a space velocity of (SV) 0.3 h?1 at 30°C. The properties of glutathione- and NADP-producing reactions coupled with the ATP-generating reaction were investigated. Escherichia coli cells with glutathione synthesizing activity and Brevibacterium ammoniagenes cells with NAD kinase activity were immobilized in a polyacrylamide gel lattice. Under optimal conditions, the immobilized E. coli cells and immobilized B. ammoniagenes cells produced glutathione and NADP at the rates of 2.1 and 0.65 μmol h?1 ml?1 gel, respectively, adding ATP to the reaction mixture. In order to produce glutathione and NADP economically and efficiently, the glutathione- and NADP-producing reactions were finally coupled with the ATP-generating reaction catalysed by immobilized S. cerevisiae cells. To compare the productivities of glutathione and NADP, and to compare the efficiency of ATP utilization for the production of these two compounds, the two reactor systems, co-immobilized cell system and mixed immobilized cell system, were designed. As a result, these two compounds were also found to be produced by these two kinds of reactor systems. Using the data obtained, the feasibility and properties of ATP generation by immobilized yeast cells are discussed in terms of the production of glutathione and NADP.  相似文献   

10.
Naringinase from Penicillium sp. was immobilized on cellulose triacetate by the fiber entrapment method. Although the optimum pH (3.7) and optimum temperature (55°C) of the fiber-entrapped enzyme were similar to those of the native form, the immobilized enzyme had better heat stability. Kinetic studies showed that the immobilized enzyme had higher Km values than its native form. When this immobilized naringinase was successively used in a column reactor for the hydrolysis of ρ-nitrophenyl-α-l-rhamnoside or naringin in a simulated fruit juice system or grapefruit juice, the enzyme column could be operated with satisfactory stability. In addition, when the natural grapefruit juice was recycled through the column reactor, no column blocking or filtering action of the catalyst bed was observed.  相似文献   

11.
A process to obtain optically pure l-alanine has been developed using batch and continuous stirred tank reactors with a new l-aminoacylase-producing bacterium Pseudomonas sp. BA2 immobilized in calcium alginate beads coated with glutaraldehyde. The maximum production of l-alanine in a continuous stirred tank reactor was 11.26 g after 2 days of operation which is higher than that previously reported.  相似文献   

12.
Several microorganisms having higher L -histidine ammonia-lyase activity were immobilized into polyacrylamide gel lattice. The yield of enzyme activity by immobilization was highest in Achromobacter liquidum IAM 1667. As A. liquidum has urocanase activity, the cells were heat-treated at 70°C for 30 min to inactivate the urocanase. Enzymatic properties of the immobilized A. liquidum cells were investigated and compared with those of the intact cells. No difference was observed between the pH activity curve and optimal temperature for the intact and immobilized cells. The permeability of substrate or product through the cell wall was increased by immobilization of the cells. When an aqueous solution of 0.25M L -histidine (pH 9.0) containing 1mM Mg2+ was passed through a column packed with the immobilized A. liquidum cells at a flow rate of SV = 0.06 at 37°C, L -histidine was completely converted to urocanic acid. The L -histidine ammonia-lyase activity of the immobilized cell column was stable over 40 days at 37°C. From the effluent of the immobilized cell column, Urocanic acid was easily obtained in a good yield.  相似文献   

13.
The reaction mechanism and decay behavior of aspartase activity for immobilized Escherichia coli cells were investigated by using a sectional packed column. Reaction within the immobilized cell column proceeded at zero-order on substrate solutions ranging in concentration from 0.1 to 1.0M, and the initial reaction rate was found to be 1.556 × 10?2 mol/min/liter of immobilized cells. The effect of temperature on the reaction rate constant was investigated. The Arrhenius plot was straight line at temperatures below 43°C, and the activation energy for immobilized cells was calculated to be 12.36 kcal/mol. Asparatase activity in the immobilized cell column decayed exponentially and uniformly in all sections of a column. Its half-life was approximately 120 days. The rate of formation of L-aspartic acid was shown to be independent of column dimensions.  相似文献   

14.
Summary Gluconobacter suboxydans IFO 3290 was immobilized by adsorption on ceramic honeycomb monolith, and continuous production of free gluconic acid from 100 g/l glucose was carried out in one- and three-stage monolith reactors. Further oxidation of gluconic acid to keto-gluconic acid by the immobilized cells has been found to be more suppressed in the three-stage monolith reactor. This finding can be explained by the fact that, with the three-stage reactor, the opportunity to oxidize gluconic acid further was decreased because the residence time of the reaction mixture at glucose conversion above the threshold value was shorter.  相似文献   

15.
l-Phenylalanine can be selectively precipitated from a biotransformation reaction mixture as an insoluble diphenylalanine-copper complex. During the bioconversion of phenylpyruvic acid to l-phenylalanine, none of the substrates or co-products reacted with copper ions to form insoluble salts. Using immobilized cells of Pseudomonas fluorescens, l-phenylalanine produced from phenylpyruvate was precipitated in situ using copper acetate and the reaction continued by supplying fresh substrate. After 30 h, 36.5 grams of partially pure lphenylalanine were recovered from 1 liter by treatment with hydrogen sulphide. A recycle packed bed reactor was set up with the l-phenylalanine (product) in the reactor effluent continuously precipitated with copper ions. After 102h operation, 103.7 g of partially pure l-phenylalanine was recovered from the pooled precipitates. The merits of this efficient recovery method are discussed.  相似文献   

16.
The enzymatic conversion of d-xylose into xylitol by the immobilized cells of Candida pelliculosa (NADP+ dependent xylose reductase) coupled with the immobilized cells of Methanobacterium sp. HU (hydrogenase and F120-NADP+ oxidoreductase) was done using hydrogen as an electron donor of NADP+. Benzene treatment of the co-immobilized cells with a photo-crosslinkable resin prepolymer, ENT 4000, increased the permeability of NADP (H) into the cells. Besides, treatments with glutaraldehyde and hexamethylenediamine to the immubilized cells were done to enhance the stability of immobilized-cell activity. Thus, the continuous production of xylitol in a column reactor packed with the co-immobilized cells could operate stably for 2 weeks.  相似文献   

17.
The amino acid transport across the plasmalemma of Riccia fluitans rhizoid cells has been further characterized by means of current-voltage I?V) analysis. On the basis of two cyclic transport models which include six different carrier states, the question is raised, whether the electrochemical pH-gradient drives a negatively charged carrier or a positively charged alanine-proton-carrier complex across the membrane. I?V analysis shows that (1) the typical I?V characteristic of l-alanine transport follows a sigmoid curve, (2) maximal accumulation of l-alanine within the cytoplasm is reached after about 1 hour, (3) the electrically accessible cytoplasmic l-alanine concentration is limited to about 20 mM, and (4) the steady-state saturation current depends directly on external l-alanine concentration. It is concluded that (a) these results are consistent with the predictions of the models for a negatively charged carrier, and (b) that the rate-limiting step involves the translocation of the ternary complex.  相似文献   

18.
Summary Pseudomonas sp. US1 ex entrapped in calcium alginate could dehalogenate a mixture of isomeric monochlorobenzoates and 2,4-dichlorophenoxyacetic acid. Rates of dehalogenation by the immobilized cells were found to be comparable to those of free cells. Conditions for optimum dehalogenation of chloroaromatics by immobilized cells and their reusability were investigated. Preliminary attempts were made to set up a continuous system for dehalogenation of chloroaromatics using a fluidized bed column reactor. Offprint requests to: V. Modi  相似文献   

19.
The production of ethanol by Saccharomyces cerevisiae immobilized cells and its esterification with oleic acid, catalysed by a lipase from Rhizomucor miehei, was the biochemical process considered as model to illustrate the concept of extractive biocatalysis. The selection of the most suitable support for lipase immobilization was carried out. The best results for the ethanol/oleic acid esterification reaction were obtained with the lipase adsorbed on a polyamide type support, Accurel EP 700. The immobilization method was optimized in terms of immobilization pH, contact time and protein/support ratio. The better performances of the extractive fermentations of ethanol were obtained when entrapped k-carrageenan Saccharomyces cerevisiae cells and a lipase from Rhizomucor miehei, free or immobilized in Accurel EP 700, were used simultaneously. The observed reutilization capacity of the immobilized enzyme could be advantageous for its application in a continuous reactor.  相似文献   

20.
Summary Continuous production ofL-malic acid from fumaric acid using immobilized microbial cells was investigated. Several microorganisms having fumarase activity were immobilized into a polyacrylamide gel lattice. Among the microorganisms tested, immobilizedBrevibacterium ammoniagenes IAM 1645 showed the highest enzyme activity, but produced an unwanted by-product, succinic acid. Conditions for suppression of this side reaction were investigated, and bile extract treatment of immobilized cells was found to be effective.The bile extract treatment of immobilized cells also resulted in a marked increase of reaction rate forL-malic acid formation.No difference was observed between the native enzyme and immobilized cells in optimal pH and temperature of the enzyme reaction.The effect of temperature on the reaction rate and the stability of fumarase activity of an immobilized cell column were investigated under conditions of continuous enzyme reaction. The decay of enzyme activity during continuous enzyme reaction was expressed by an exponential relationship. Half-life of the fumarase activity of the immobilized cell column at 37°C was calculated to be 52.5 days.Presented at the Annual Meeting of the Society of Fermentation Technology, Japan, Osaka, Japan, October 30, 1975.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号