首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using Fura-2AM microfluorimetry, we have shown for the first time that preincubation of macrophages with methyl-β-cyclodextrin, inducing cholesterol extraction from membranes and raft disruption, leads to significant inhibition of thapsigargin-induced store-dependent Ca2+ entry in rat peritoneal macrophages. In contrast, macrophage treatment with methyl-β-cyclodextrin after Ca2+ entry mechanisms were activated by store depletion by thapsigargin application leads to potentiation of subsequent store-dependent Ca2+ entry. The results suggest that intact lipid rafts are necessary for the activation but not the maintenance of store-dependent Ca2+ entry in macrophages.  相似文献   

2.
Using Fura-2AM microfluorimetry, we have shown for the first time that preincubation of macrophages with sigma-1 receptor antagonist haloperidol leads to a significant inhibition of the store-dependent Ca2+ entry induced by endoplasmic Ca2+-ATPase inhibitors thapsigargin or cyclopiazonic acid in rat peritoneal macrophages. The results suggest the involvement of the sigma-1 receptor in the regulation of storedependent Ca2+ entry in macrophages.  相似文献   

3.
We studied store-dependent (activated by depletion of the endoplasmic reticulum, ER, store) entry of Ca2+ from the extracellular medium into neurons of the rat spinal ganglia (small- and medium-sized cells; diameter, 18 to 36 μm). Activation of ryanodine-sensitive receptors of the ER in the studied neurons superfused by Tyrode solutions containing Ca2+ or with no Ca2+ was provided by application of 10 mM caffeine. The decay phase of caffeine-induced calcium transients in a Ca2+-containing solution was significantly longer than that in a Ca2+-free solution. This fact allows us to suppose that such a phenomenon is determined by Ca2+ entry into the neuron from the extracellular medium activated by caffeine-induced depletion of the ER store. Substitution of Ca2+-free extracellular solution by Ca2+-containing Tyrode solution, after depletion of the ER stores induced by applications of 100 nM ryanodine, 200 μM ATP, or 1 μM thapsigargin, resulted in increases in the concentration of intracellular Ca2+. These observations allow us to postulate that store-dependent Ca2+ entry into the studied neurons is activated after depletion not only of the inositol trisphosphate-sensitive ER store but also of the ryanodine-sensitive store. This entry also occurs after blocking of ATPases of the ER by thapsigargin. The kinetic characteristics of the rising phase of store-dependent Ca2+ entry induced by depletion of the ER stores under the influence of various agents are dissimilar; this can be related to different mechanisms of activation of such signals and/or to a compartmental organization of the ER. Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 277–283, May–June, 2005.  相似文献   

4.
Using Fura-2AM microfluorimetry, it was shown for the first time that neuroleptic chlorpromazine causes intracellular Ca2+ concentration increase in macrophages due to Ca2+ mobilization from intracellular Ca2+ stores and subsequent Ca2+ entry from the external medium. Chlorpromazine-induced Ca2+ entry is inhibited by La3+ and 2-aminoethoxydiphenyl borate and is associated with Ca2+ store depletion.  相似文献   

5.
This review focuses on molecular interactions between calsequestrin, triadin, junctin and the ryanodine receptor in the lumen of the sarcoplasmic reticulum. These interactions modulate changes in Ca2+ release in response to changes in the Ca2+ load within the sarcoplasmic reticulum store in striated muscle and are of fundamental importance to Ca2+ homeostasis, since massive adaptive changes occur when expression of the proteins is manipulated, while mutations in calsequestrin lead to functional changes which can be fatal. We find that calsequestrin plays a different role in the heart and skeletal muscle, enhancing Ca2+ release in the heart, but depressing Ca2+ release in skeletal muscle. We also find that triadin and junctin exert independent influences on the ryanodine receptor in skeletal muscle where triadin alone modifies excitation–contraction coupling, while junctin alone supports functional interactions between calsequestrin and the ryanodine receptor.  相似文献   

6.
The influence of the neuroleptic trifluoperazine on the intracellular concentration of Ca2+ in macrophages of rats was studied using a Fura-2AM fluorescent Ca2+ probe. It was found that trifluoperazine causes a dose-dependent increase in the intracellular Ca2+ concentration associated with Ca2+ mobilization from intracellular Ca2+ stores and subsequent entry of Ca2+ into peritoneal macrophages of rats. It was also shown that inhibitors of phospholipase A2 (4-bromophenacyl bromide, prednisolone, and dexamethasone), cyclooxygenases (aspirin and indomethacin), and lipoxygenases (caffeic acid, zileuton, and baicalein) suppress Ca2+ responses induced by trifluoperazine in macrophages. The data obtained indicate the participation of enzymes and/or products of the cascade of arachidonic acid metabolism in the influence of trifluoperazine on the intracellular concentration of Ca2+ in peritoneal macrophages.  相似文献   

7.
Using Fura-2AM microfluorimetry, the effect of oxidized glutathione (GSSG) and its pharmacological analogue glutoxim on the intracellular Ca2+ concentration in rat peritoneal macrophages was investigated. It was shown that GSSG or glutoxim increase the intracellular Ca2+ concentration by inducing Ca2+ mobilization from thapsigargin-sensitive Ca2+ stores and subsequent Ca2+ entry from external medium. Dithiothreitol, which reduces S-S-bonds in proteins, completely prevents or reverses the increase of intracellular Ca2+ concentration induced by GSSG or glutoxim. This suggests that the increase of intracellular Ca2+ concentration induced by GSSG or glutoxim can be mediated by their interactions with functionally important SH-groups of proteins involved in Ca2+-signaling.Two structurally different tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate prevent or completely reverse the increase in the intracellular Ca2+ concentration induced by GSSG or glutoxim. On the contrary, tyrosine phosphatase inhibitor Na orthovanadate enhances the increase of intracellular Ca2+ concentration evoked by oxidizing agents. The data suggest that tyrosine kinases and tyrosine phosphatases are involved in the regulatory effect of GSSG and glutoxim on the intracellular Ca2+ concentration in macrophages.  相似文献   

8.
Activation of phospholipase C (PLC)-linked signaling cascades in nonexcitable cells stimulates Ca2+ release from inositol-1,4,5-trisphosphate (IP3)-sensitive intracellular Ca2+ stores and activation of Ca2+ entry via plasma membrane Ca2+ channels. The attention of investigators is currently focused on the properties and molecular basis of channels involved in Ca2+ entry into nonexcitable cells. According to current views, mammalian TRP proteins are involved in receptor-and store-dependent influx of Ca2+; however, little is known about the linkage between specific TRP proteins and endogenous channels responsible for Ca2+ entry. The aim of the present study was to elucidate the role of TRPC3 in the formation of store-dependent or receptor-operated pathways of Ca2+ entry into A431 cells. Registration of Ca2+ influx based on fluorescence measurements of intracellular Ca2+ concentrations and analysis of integral membrane currents revealed that partial inhibition of TRPC3 expression by small interfering RNA (siRNA) results in suppression of store-dependent Ca2+ entry without any effect on receptor-operated Ca2+ influx. In-depth studies of single channels revealed that TRPC3 suppression in A431 cells results in the disappearance of one type of store-operated channels and formation of a novel type of store-independent Ca2+-permeable channels. This, in turn, testifies to the crucial role of TRPC3 in normal functioning of store-operated Ca2+ channels in A431 cells.  相似文献   

9.
The state of the Ca2+ signaling system has been assessed in proliferating and in differentiating C2C12 myoblasts. Proliferating myoblasts exhibit no features of a functional system: the intracellular ATP-controlled Ca2+ store is low (perhaps only mitochondrial) and no Ca2+ entry from the medium is registered upon its exhaustion, there is no cytosolic response to KCl-induced depolarization. The Ca2+ signaling system starts to form at the early stages of differentiation (within 10 h after transfer of cells to the differentiation medium). This is seen as appearance of capacitive and voltage-dependent Ca2+ entry and its accumulation in the endoplasmic reticulum. A small contribution to the ATP-evoked rise in cytosolic Ca2+ is also made by mitochondria.  相似文献   

10.
Here we show that positive modulators (CyPPA and NS309) of Ca2+-activated K+ channels of small (SK) and intermediate (IK) conductances in cerebellar neurons decrease glutamate-evoked Ca2+ entry into neurons independently on the presence of Mg2+ in extracellular media. An analysis of neuronal viability after long-term (240 min) glutamate treatments demonstrated neuroprotective action of CyPPA and NS309. Extracellular Mg2+ did not protect neurons from apoptosis during prolonged treatment with glutamate. Activation of SK and IK channels results in local membrane hyperpolarization, which enhances Mg2+ block of NMDA receptors and reduces activation of voltage-dependent Ca2+ channels, which can explain neuroprotection caused by CyPPA or NS309. The obtained results reveal an important role Ca2+-activated K+ channels of small and intermediate conductance in the regulation of Ca2+ entry into cerebellar neurons via NMDA receptors and voltage-gated Ca2+ channels.  相似文献   

11.
Synaptically activated postsynaptic [Ca2+]i increases occur through three main pathways: Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ entry through ligand-gated channels, and Ca2+ release from internal stores. The first two pathways have been studied intensively; release from stores has been the subject of more recent investigations.Ca2+ release from stores in CNS neurons primarily occurs as a result of IP3 mobilized by activation of metabotropic glutamatergic and/or cholingergic receptors coupled to PLC. Ca2+ release is localized near spines in Purkinje cells and occurs as a wave in the primary apical dendrites of pyramidal cells in the hippocampus and cortex. The amplitude of the [Ca2+]i increase can reach several micromolar, significantly larger than the increase due to backpropagating spikes.The large amplitude, long duration, and unique location of the [Ca2+]i increases due to Ca2+ release from stores suggests that these increases can affect specific downstream signaling mechanisms in neurons.  相似文献   

12.
Exposing bovine chromaffin cells to a single 5 ns, high-voltage (5 MV/m) electric pulse stimulates Ca2+ entry into the cells via L-type voltage-gated Ca2+ channels (VGCC), resulting in the release of catecholamine. In this study, fluorescence imaging was used to monitor nanosecond pulse-induced effects on intracellular Ca2+ level ([Ca2+]i) to investigate the contribution of other types of VGCCs expressed in these cells in mediating Ca2+ entry. ω-Conotoxin GVIA and ω-agatoxin IVA, antagonists of N-type and P/Q-type VGCCs, respectively, reduced the magnitude of the rise in [Ca2+]i elicited by a 5 ns pulse. ω-conotoxin MVIIC, which blocks N- and P/Q-type VGCCs, had a similar effect. Blocking L-, N-, and P\Q-type channels simultaneously with a cocktail of VGCC inhibitors abolished the pulse-induced [Ca2+]i response of the cells, suggesting Ca2+ influx occurs only via VGCCs. Lowering extracellular K+ concentration from 5 to 2 mM or pulsing cells in Na+-free medium suppressed the pulse-induced rise in [Ca2+]i in the majority of cells. Thus, both membrane potential and Na+ entry appear to play a role in the mechanism by which nanoelectropulses evoke Ca2+ influx. However, activation of voltage-gated Na+ channels (VGSC) is not involved since tetrodotoxin (TTX) failed to block the pulse-induced rise in [Ca2+]i. These findings demonstrate that a single electric pulse of only 5 ns duration serves as a novel stimulus to open multiple types of VGCCs in chromaffin cells in a manner involving Na+ transport across the plasma membrane. Whether Na+ transport occurs via non-selective cation channels and/or through lipid nanopores remains to be determined.  相似文献   

13.
Calcium (Ca2+) plays diverse roles in all living organisms ranging from bacteria to humans. It is a structural element for bones, an essential mediator of excitation-contraction coupling, and a universal second messenger in the regulation of ion channel, enzyme and gene expression activities. In mitochondria, Ca2+ is crucial for the control of energy production and cellular responses to metabolic stress. Ca2+ uptake by the mitochondria occurs by the uniporter mechanism. The Mitochondrial Ca2+ Uniporter (MCU) protein has recently been identified as a core component responsible for mitochondrial Ca2+ uptake. MCU knockout (MCU KO) studies have identified a number of important roles played by this high capacity uptake pathway. Interestingly, this work has also shown that MCU-mediated Ca2+ uptake is not essential for vital cell functions such as muscle contraction, energy metabolism and neurotransmission. Although mitochondrial Ca2+ uptake was markedly reduced, MCU KO mitochondria still contained low but detectable levels of Ca2+. In view of the fundamental importance of Ca2+ for basic cell signalling, this finding suggests the existence of other currently unrecognized pathways for Ca2+ entry. We review the experimental evidence for the existence of alternative Ca2+ influx mechanisms and propose how these mechanisms may play an integral role in mitochondrial Ca2+ signalling.  相似文献   

14.
Using Fura-2AM microfluorimetry, we have shown for the first time that sigma-1 receptor agonist, tricyclic antidepressant amitriptyline, significantly inhibits glutoxim- and molixan-induced Ca2+-responses in rat peritoneal macrophages. The results suggest possible involvement of sigma-1 receptors in the signaling cascade induced by glutoxim or molixan and leading to intracellular Ca2+ concentration increase in macrophages.  相似文献   

15.
Our understanding of vascular endothelial cell physiology is based on studies of endothelial cells cultured from various vascular beds of different species for varying periods of time. Systematic analysis of the properties of endothelial cells from different parts of the vasculature is lacking. Here, we compare Ca2+ homeostasis in primary cultures of endothelial cells from human internal mammary artery and saphenous vein and how this is modified by hypoxia, an inevitable consequence of bypass grafting (2.5% O2, 24 h). Basal [Ca2+] i and store depletion-mediated Ca2+ entry were significantly different between the two cell types, yet agonist (ATP)–mediated mobilization from endoplasmic reticulum stores was similar. Hypoxia potentiated agonist-evoked responses in arterial, but not venous, cells but augmented store depletion-mediated Ca2+ entry only in venous cells. Clearly, Ca2+ signaling and its remodeling by hypoxia are strikingly different in arterial vs. venous endothelial cells. Our data have important implications for the interpretation of data obtained from endothelial cells of varying sources.  相似文献   

16.
Using Fura-2AM microfluorimetry, it was shown for the first time that phospholipase A2 inhibitors 4-bromophenacyl bromide and glucocorticosteroids prednisolone and dexamethasone attenuate Ca2+ responses induced by neuroleptic trifluoperazine in macrophages. The results suggest the involvement of phospholipase A2 and arachidonic acid metabolism cascade in the effect of trifluoperazine on intracellular Ca2+ concentration in macrophages.  相似文献   

17.
Using Fura-2AM microfluorimetry, we have shown for the first time that sigma-1 receptor antagonist, antipsychotic haloperidol, significantly inhibits glutoxim- and molixan-induced Ca2+-response in peritoneal macrophages. These results indicate possible involvement of sigma-1 receptors in the signal cascade induced by glutoxim or molixan and leading to intracellular Ca2+ concentration increase in macrophages.  相似文献   

18.
19.
Using Fura-2AM microfluorimetry, we have shown for the first time that 5-lipoxygenase specific inhibitor antiasthmatic agent zileuton significantly inhibits Ca2+-responses induced by glutoxim and molixan in macrophages. The results support 5-lipoxygenase involvement in the effect of glutoxim and molixan on intracellular Ca2+ concentration in macrophages and indicate the inadvisability of a combined use of drugs glutoxim and molixan and antiasthmatic agent zileuton.  相似文献   

20.
The characteristics and properties of the increase in cytosolic [Ca2+] that occurs in bovine adrenal medullary chromaffin cells on exposure to histamine have been investigated. Specifically, these experiments were conducted to determine how much external Ca2+ enters the cell through a (capacitative) Ca2+ entry pathway activated as a consequence of intracellular Ca2+ store mobilization, relative to that which enters independently of store depletion via other channels activated by histamine. In Fura-2 loaded cells continued exposure to histamine (10 μM) caused a rapid but transient increase in cytosolic [Ca2+] followed by a lower plateau that was sustained as long as external Ca2+ was present. In the absence of external Ca2+ only the initial brief transient was observed. In cells previously treated with thapsigargin (100 nM) in Ca2+-free medium to deplete the internal Ca2+ stores, histamine caused no increase in cytosolic [Ca2+] when external Ca2+ was absent. Re-introduction of external Ca2+ to thapsigargin-treated store-depleted cells caused a sustained increase in cytosolic [Ca2+] that was further increased (P < 0.0002) upon exposure to histamine. The histamine-evoked increase was prevented by the H1-receptor antagonist, mepyramine (2 μM). A comparison was made between store-dependent Ca2+ entry consequent upon store mobilization with histamine in Ca2+-free medium and plateau phase Ca2+ entry resulting from stimulation with histamine in Ca2+-containing medium. The latter was found to be approximately 3 times greater in magnitude than the former (P ? 0.0001) at the same concentration of histamine (10 μM). It is concluded that histamine causes Ca2+ entry not only via a capacitative entry pathway secondary to internal store mobilization, but also causes substantial Ca2+ entry through other pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号