首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flux of SO(2) into Leaf Cells and Cellular Acidification by SO(2)   总被引:4,自引:0,他引:4       下载免费PDF全文
A comparison of fluxes of SO2 from the atmosphere into leaves with fluxes across biomembranes revealed that, apart from the cuticle, the main barrier to SO2 entry into leaves are the stomates. SO2 fluxes into leaves can be calculated with an accuracy sufficient for many purposes on the assumption that the intracellular SO2 concentration is zero. SO2 entering green leaf cells is trapped in the cytoplasm. In the light, the products formed in its reaction with water are processed particularly in the chloroplasts. Flux of SO2 to the acidic central vacuole of leaf cells is insignificant. Intracellular acidification of barley mesophyll protoplasts by SO2 was measured by the uptake of 14C-labeled 5,5-dimethyl-oxazolidine-2,4-dione. The measured acidification was similar to the acidification calculated from known buffer capacities and the rate of SO2 influx when the H+/SO2 ratio was assumed to be 2. A comparison of photosynthesis inhibition by SO2 with calculated acidification revealed different mechanisms of inhibition at low and at high concentrations of SO2. At very low concentrations, inhibition by SO2 was even smaller than expected from calculated acidification. The data suggest that, if acidification cannot be compensated by pH-stabilizing cellular mechanisms, it is a main factor of SO2 toxicity at low SO2 levels. At high levels of SO2, anion toxicity and/or radical formation during oxidation of SO2 to sulfate may play a large role in inhibition.  相似文献   

2.
Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration1,2. Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψleaf). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance3. Leaf hydraulic conductance (Kleaf = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. Kleaf is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, Kleaf responds strongly to the internal and external leaf environment3. Kleaf can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes4, and Kleaf declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation5-10. Because Kleaf can constrain gs and photosynthetic rate across species in well watered conditions and during drought, and thus limit whole-plant performance they may possibly determine species distributions especially as droughts increase in frequency and severity11-14.We present a simple method for simultaneous determination of Kleaf and gs on excised leaves. A transpiring leaf is connected by its petiole to tubing running to a water source on a balance. The loss of water from the balance is recorded to calculate the flow rate through the leaf. When steady state transpiration (E, mmol • m-2 • s-1) is reached, gs is determined by dividing by vapor pressure deficit, and Kleaf by dividing by the water potential driving force determined using a pressure chamber (Kleaf= E /- Δψleaf, MPa)15.This method can be used to assess Kleaf responses to different irradiances and the vulnerability of Kleaf to dehydration14,16,17.  相似文献   

3.
Leaf stomatal conductance measured and analysed in the canopies of two winter wheat varieties in the field revealed that the probability of adaxial to abaxial conductance ratio followed an approximately normal distribution with a peake value of about 1.5. The ratio changed with the developmental stages being maximium at the heading stage. Leaf stomata in wheat of the upper part of the canopy were more active and showed more pronounced diurnal change of conductance than those of the lower part. Stomatal conductance decreased from top to bottom in canopy as a negative exponential function. By comparing adaxial and abaxial conductances in the apical, middle and basal parts of a leaf, the distribution of the stomatal conductances of a wheat leaf was as follows: a steady decrease from the basal part of adaxial, through the middle and apical parts of the adaxial surface turning to the apical part of abaxial, and then the middle and lastly, the basal part of abaxial. Based on values of the correlation coefficients among the various stomatal conductance and average stomatal conductance, the authors suggested that optimal apical measurement of stomatal conductance would be at the middle and apical parts and that of abaxial would be at middle and basal parts.  相似文献   

4.
When photon flux density incident on attached leaves of Zea mays L. was varied from the equivalent of 0.12 of full sunlight to full sunlight, leaf conductance to CO2 transfer, g, changed in proportion to the change in rate of CO2, assimilation, A, with the result that intercellular partial pressure of CO2 remained almost constant. The proportionality was the same as that previously found in g and A measured at one photon flux density in plants of Zea mays L. grown at different levels of mineral nutrition, light intensities, and ambient partial pressures of CO2. In shade-grown Phaseolus vulgaris L. plants, A as photon flux density was increased from about 0.12 up to about 0.5 full sunlight, the proportionality being almost the same in plants grown at low and at high light intensity.

When photon flux density incident on the adaxial and abaxial surfaces of the isolateral leaves of Eucalyptus pauciflora Sieb. ex Spreng was varied, g and A also varied proportionally. The leaf conductance in a particular surface was affected by the photon flux density at the opposite surface to a greater extent than was expected on the basis of transmittance. The results indicated that stomata may, in some way, be sensitive to the photon flux absorbed within the leaf as a whole.

  相似文献   

5.
Plants of Zea mays were grown with different concentrations of nitrate (0.6, 4, 12, and 24 millimolar) and phosphate (0.04, 0.13, 0.53, and 1.33 millimolar) supplied to the roots, photon flux densities (0.12, 0.5, and 2 millimoles per square meter per second), and ambient partial pressures of CO2 (305 and 610 microbars). Differences in mineral nutrition and irradiance led to a large variation in rate of CO2 assimilation per unit leaf area (A, 11 to 58 micromoles per square meter per second) when measured under standard conditions. The variation was shown, with the plants that had received different amounts of nitrate, to be related to variations in the nitrogen and chlorophyll contents, and phosphoenolpyruvate and ribulose-1,5-bisphosphate carboxylase activities per unit leaf area. Irrespective of growth treatment, A and leaf conductance to CO2 transfer (g), measured under standard conditions were in almost constant proportion, implying that intercellular partial pressure of CO2 (pi), was almost constant at 95 microbars. The same proportionality was maintained as A and g increased in an initially nitrogen-deficient plant that had been supplied with abundant nitrate. It was shown that pi measured at a given ambient partial pressure was not affected by the ambient partial pressure at which the plants had been grown, although it was different when measured at different ambient partial pressures. This suggests that the close coupling between A and g in these experiments is not associated with sensitivity of stomata to change in pi.

Similar, though less comprehensive, experiments were done with Gossypium hirsutum, and yielded similar conclusions, except that the proportionality between A and g at normal ambient partial pressure of CO2 implied Pi ≈ 200 microbars.

  相似文献   

6.
The resistance to diffusion of CO2 from the intercellular airspaces within the leaf through the mesophyll to the sites of carboxylation during photosynthesis was measured using three different techniques. The three techniques include a method based on discrimination against the heavy stable isotope of carbon, 13C, and two modeling methods. The methods rely upon different assumptions, but the estimates of mesophyll conductance were similar with all three methods. The mesophyll conductance of leaves from a number of species was about 1.4 times the stomatal conductance for CO2 diffusion determined in unstressed plants at high light. The relatively low CO2 partial pressure inside chloroplasts of plants with a low mesophyll conductance did not lead to enhanced O2 sensitivity of photosynthesis because the low conductance caused a significant drop in the chloroplast CO2 partial pressure upon switching to low O2. We found no correlation between mesophyll conductance and the ratio of internal leaf area to leaf surface area and only a weak correlation between mesophyll conductance and the proportion of leaf volume occupied by air. Mesophyll conductance was independent of CO2 and O2 partial pressure during the measurement, indicating that a true physical parameter, independent of biochemical effects, was being measured. No evidence for CO2-accumulating mechanisms was found. Some plants, notably Citrus aurantium and Simmondsia chinensis, had very low conductances that limit the rate of photosynthesis these plants can attain at atmospheric CO2 level.  相似文献   

7.
Oxidation versus Reductive Detoxification of SO(2) by Chloroplasts   总被引:2,自引:2,他引:0       下载免费PDF全文
Intact chloroplasts isolated from spinach (Spinacia oleracea L. cv Yates) both oxidized and reduced added sulfite in the light. Oxidation was fast only when endogenous superoxide dismutase was inhibited by cyanide. It was largely suppressed by scavengers of oxygen radicals. After addition of O-acetylserine, chloroplasts reduced sulfite to cysteine and exhibited sulfite-dependent oxygen evolution. Cysteine synthesis from sulfite was faster than from sulfate. The results are discussed in relation to species-specific differences in the phytotoxicity of SO2.  相似文献   

8.
Rates of CO2 assimilation and leaf conductances to CO2 transfer were measured in plants of Zea mays during a period of 14 days in which the plants were not rewatered, and leaf water potential decreased from −0.5 to −8.0 bar. At any given ambient partial pressure of CO2, water stress reduced rate of assimilation and leaf conductance similarly, so that intercellular partial pressure of CO2 remained almost constant. At normal ambient partial pressure of CO2, the intercellular partial pressure of CO2 was estimated to be 95 microbars. This is the same as had been estimated in plants of Zea mays grown with various levels of nitrogen supply, phosphate supply and irradiance, and in plants of Zea mays examined at different irradiances.

After leaves of Phaseolus vulgaris L. and Eucalyptus pauciflora Sieb. ex Spreng had been exposed to high irradiance in an atmosphere of CO2-free N2 with 10 millibars O2, rates of assimilation and leaf conductances measured in standard conditions had decreased in similar proportions, so that intercellular partial pressure of CO2 remained almost unchanged. As the conductance of each epidermis that had not been directly irradiated had declined as much as that in the opposite, irradiated surface it was hypothesized that conductance may have been influenced by photoinhibition within the mesophyll tissue.

  相似文献   

9.
Studies of avian vocal development without exposure to conspecific song have been conducted in many passerine species, and the resultant isolate song is often interpreted to represent an expression of the genetic code for conspecific song. There is wide recognition that vocal learning exists in oscine songbirds, but vocal learning has only been thoroughly investigated in a few model species, resulting in a narrow view of birdsong learning. By extracting acoustic signals from published spectrograms, we have reexamined the findings of isolate studies with a universally applicable semi‐automated quantitative analysis regimen. When song features were analyzed in light of three different production aspects (respiratory, syringeal, and central programming of sequence), all three show marked interspecific variability in how close isolate song features are to normal. This implies that song learning mechanisms are more variable than is commonly recognized. Our results suggest that the interspecific variation shows no readily observable pattern reflecting phylogeny, which has implications for understanding the mechanisms behind the evolution of avian vocal communication. We emphasize that song learning in passerines provides an excellent opportunity to investigate the evolution of a complex, plastic trait from a phylogenetic perspective.  相似文献   

10.
NH3 exchange between oilseed rape (Brassica napus) plants and the atmosphere was examined at realistic ambient NH3 levels under controlled environmental conditions. Different leaf conductances to NH3 diffusion were obtained by changing leaf temperature (10 to 40[deg]C), light intensity (0 to 600 [mu]mol m-2 s-1), and air humidity (20 to 80%), respectively. NH3 adsorption to the cuticle with subsequent NH3 transport through the epidermis had no significant effect on the uptake of atmospheric NH3, even at 80% relative air humidity. NH3 fluxes increased linearly with leaf conductance when light intensities were increased from 0 to 600 [mu]mol m-2 s-1. Increasing leaf temperatures from 10 to 35[deg]C caused an exponential increase in NH3 emission from plants exposed to low ambient NH3 concentrations, indicating that leaf conductance was not the only factor responding to the temperature increase. The exponential relationship between NH3 emission and temperature was closely matched by the temperature dependence of the mole fraction of gaseous NH3 above the leaf apoplast (NH3 compensation point), as calculated on the basis of NH4+ and H+ concentrations in the leaf apoplast at the different leaf temperatures. NH3 fumigation experiments showed that an increase in leaf temperature may cause a plant to switch from being a strong sink for atmospheric NH3 to being a significant NH3 source. In addition to leaf temperature, the size of the NH3 compensation point depended on plant N status and was related to plant ontogeny.  相似文献   

11.
叶肉导度和叶片导水率是影响光合作用的两个重要过程,叶肉导度通过影响从气孔下腔到Rubisco酶位点的二氧化碳浓度梯度直接影响光合作用,而叶片导水率则通过影响水分供应或气孔行为来影响光合作用,然而对这两个生理过程之间的协同性研究较少。本研究选择9种红树林植物为研究对象,探讨盐生环境下植物叶肉导度和叶片导水率的协同性及其与叶片解剖结构特征之间的相关性。结果表明,9种红树林植物叶片导水率(0.78~5.83 mmol·m~(-2)·s~(-1)·MPa-1)、叶肉导度(0.06~0.36 mol·m~(-2)·s~(-1))、最大光合速率(7.23~23.71μmol·m~(-2)·s~(-1))等特征的差别较大;叶肉导度与最大光合速率呈显著正相关,而与比叶重无显著相关性,其原因是由于比叶重与叶片厚度、叶片密度不存在相关性;叶脉密度与气孔密度呈较强的相关性,说明红树林植物叶片水分运输与散失相关的叶片结构之间存在协同关系;叶片导水率不受叶脉密度影响,并且与叶肉导度、最大光合速率也不存在相关性,这很可能与红树林植物叶片的肉质化、有发达的储水组织有关,体现了红树林植物叶片结构和功能的特殊性。  相似文献   

12.
何萍  金继运 《Acta Botanica Sinica》1999,41(11):1221-1225
通过离体玉米(ZeamaysL.)叶片培养和叶肉质膜微囊45Ca2 吸收等实验,探索春玉米叶片衰老过程中激素变化、Ca2 跨膜运输及膜脂过氧化三者之间的联系。结果认为,玉米叶片衰老的可能过程首先是内源激素含量变化,继而影响到Ca2 跨膜运输,进而导致膜脂过氧化,由此引起叶绿素和蛋白质降解。  相似文献   

13.
Abstract We investigated how the distribution of precipitation over a growing season influences the coupling of carbon and water cycle components in a semiarid floodplain woodland dominated by the deep-rooted velvet mesquite (Prosopis velutina). Gross ecosystem production (GEP) and ecosystem respiration (R eco) were frequently uncoupled because of their different sensitivities to growing season rainfall. Soon after the first monsoon rains, R eco was high and was not proportional to slight increases in GEP. During the wettest month of the growing season (July), the system experienced a net carbon loss equivalent to 46% of the carbon accumulated over the 6-month study period (114 g C m−2; May–October). It appears that a large CO2 efflux and a rapid water loss following precipitation early in the growing season and a later CO2 gain is a defining characteristic of seasonally dry ecosystems. The relative contribution of plant transpiration (T) to total evapotranspiration (ET) (T/ET) was 0.90 for the entire growing season, with T/ET reaching a value of 1 during dry conditions and dropping to as low as 0.65 when the soil surface was wet. The evaporation fraction (E) was equivalent to 31% of the precipitation received during the study period (253 mm) whereas trees and understory vegetation transpired 38 and 31%, respectively, of this water source. The water-use efficiency of the vegetation (GEP/T) was higher later in the growing season when the C4 grassy understory was fully developed. The influence of rain on net ecosystem production (NEP) can be interpreted as the proportion of precipitation that is transpired by the plant community; the water-use efficiency of the vegetation and the precipitation fraction that is lost by evaporation.  相似文献   

14.
The conductance for CO2 diffusion in the mesophyll of leaves can limit photosynthesis. We have studied two methods for determining the mesophyll conductance to CO2 diffusion in leaves. We generated an ideal set of photosynthesis rates over a range of partial pressures of CO2 in the stroma and studied the effect of altering the mesophyll diffusion conductance on the measured response of photosynthesis to intercellular CO2 partial pressure. We used the ideal data set to test the sensitivity of the two methods to small errors in the parameters used to determine mesophyll conductance. The two methods were also used to determine mesophyll conductance of several leaves using measured rather than ideal data sets. It is concluded that both methods can be used to determine mesophyll conductance and each method has particular strengths. We believe both methods will prove useful in the future.  相似文献   

15.
A technique for studying variation in the accumulation of abscisicacid (ABA) in response to drought stress is described. Two experiments,each testing 26 spring wheat genotypes, were carried out usingpot grown plants in controlled environment cabinets with nutrientsolution culture, though the results of only one experimentare described in detail. Plants were subjected to water stressby withholding water as the fifth or sixth leaf on the mainstem was emerging. Two stressed plants of each genotype wereharvested 5 and 7 days after the treatment commenced and measurementsof leaf water potential, stomatal conductance and ABA concentrationwere taken. There was considerable genotypic variation in the rate at whichwater potential decreased, partly explained by variation inplant size. Inia 66 (a genotype common to both experiments)had consistently much lower water potentials than the othergenotypes. Stomatal conductances of all genotypes decreasedrapidly and after 5 and 7 days they were negatively correlatedwith the changes in water potential. ABA concentrations varied considerably between genotypes afterboth 5 and 7 days without water, the variation being associatedwith genotypic differences in water potential on these occasions.The overall relationship between ABA concentration and waterpotential was highly significant. Significant differences betweenthe slopes of the regressions for individual genotypes werefound. The cultivar Sirius accumulated the most ABA at any waterpotential and Pelissier, Wascana and Hybrid 46 accumulated theleast. The significance for drought resistance of variation in ABAaccumulation is discussed. Triticum aestivum L. ABA, wheat, absasic acid, leaf water potential, stomatal conductance  相似文献   

16.
Capuchin monkeys (Cebus) are one of the genera with the widest distribution among Neotropical primates (New World Monkeys, Platyrrhini), accompanied by an elevated genetic, phenotypic, behavioral, morphological, and ecological diversity, both at the interspecific and population levels. Despite being one of the most studied primate genera, this high diversity has led to a particularly complex and controversial taxonomy. In this contribution, we explored the patterns of skull size and shape variation among the southernmost distributed populations of Cebus using three-dimensional geometric morphometric techniques. Results showed a marked morphological differentiation (in size and shape) between previously recognized species (C. nigritus and southern C. libidinosus), and also among C. libidinosus populations, which were quantitatively related with the geographic distance between them. This pattern supports a differentiation between the northwestern Argentina and southern Bolivia and Paraguay forms. Other taxonomic implications are also discussed.  相似文献   

17.
The hydraulic conductivity in the presence of dimethyl sulfoxide Me(2)SO (L(p)(Me(2)SO)), Me(2)SO (P(Me(2)SO)) permeability and reflection coefficient (sigma) of immature (germinal vesicle; GV) and mature (metaphase II; MII) rat oocytes were determined at various temperatures. A temperature controlled micropipette perfusion technique was used to conduct experiments at five different temperatures (30, 20, 10, 4, and -3 degrees C). Kedem and Katchalsky membrane transport theory was used to describe the cell volume kinetics. The cell volumetric changes of oocytes were calculated from the measurement of two oocyte diameters, assuming a spherical shape. The activation energies (E(a)) of L(p)(Me(2)SO) and P(Me(2)SO) were calculated using the Arrhenius equation. Activation energies of L(p)(Me(2)SO) for GV and MII oocytes were 34.30 Kcal/mol and 16.29 Kcal/mol, respectively; while the corresponding E(a)s of P(Me(2)SO) were 19.87 Kcal/mol and 21.85 Kcal/mol, respectively. These permeability parameters were then used to calculate cell water loss in rat oocytes during cooling at subzero temperatures. Based on these values, the predicted optimal cooling rate required to maintain extra- and intracellular water in near equilibrium for rat GV stage oocytes was found to be between 0.05 degrees C/min and 0. 025; while for rat MII oocytes, the corresponding cooling rate was 1 degrees C/min. These data suggest that standard cooling rates used for mouse oocytes (e.g., 0.5-1 degrees C/min) can also be employed to cryopreserve rat MII oocytes. However, the corresponding cooling rate required to avoid damage must be significantly slower for the GV stage rat oocyte. J. Exp. Zool. 286:523-533, 2000.  相似文献   

18.
The hypothesis that soil water potential (s) is better correlatedto heliotropic leaf orientation, photosaturated photosyntheticCO2 assimilation and stomatal conductance during periods oflimited water availability than is bulk leaf water potential(1) was examined in greenhouse-grown soybean (Glycine max) plants,submitted to a progressive drought. Paired plants were exposedto either 1000 or 100 µmol m–2 s–1 photonflux densities (PFD) for 45–60 mins. The higher irradianceinduced short-term decreases in 1, due to increased transpiration,while l in the plant exposed to low PFD did not decrease. Thesechanges in 1 occurred independently of changes in soil waterstatus. Concurrent to the light treatments, a single attachedleaf from each of the two plants was isolated from the restof the plant by shading, and the pulvinus of its terminal leafletwas exposed to a perpendicular PFD of 500 µmol m–2S–1. Leaf movement of this leaflet was recorded in responseto this light, until a stable leaflet angle was achieved. Valuesof s and l (before and after light treatment), and photosaturatedrates of photosynthesis and stomatal conductance, were thenmeasured on these leaves. Leaflet angle and gas exchange werebetter correlated with s (r2 = 0.50, 0.50 and 0.57 for angle,photosynthesis and conductance, respectively) than with l especiallywhen l was the result of short-term, high-light induced changesin leaf water status (r2 = 0.36, 0.32 and 0.49, for the sameparameters). Leaflet angle was also correlated with stomatalconductance (r2 = 0.61) and photosynthetic rate (r2 = 0.60),suggesting a close association between leaf orientation, leafmetabolism and soil water availability. Glycine max (L.) Merr. cv. Essex, soybean, heliotropism, water potential, photosynthesis, stomatal conductance, solar tracking  相似文献   

19.
Lauer MJ  Boyer JS 《Plant physiology》1992,98(4):1310-1316
Observations of nonuniform photosynthesis across leaves cast doubt on internal CO2 partial pressures (pi) calculated on the assumption of uniformity and can lead to incorrect conclusions about the stomatal control of photosynthesis. The problem can be avoided by measuring pi directly because the assumptions of uniformity are not necessary. We therefore developed a method that allowed pi to be measured continuously in situ for days at a time under growth conditions and used it to investigate intact leaves of sunflower (Helianthus annuus L.), soybean (Glycine max L. Merr.), and bush bean (Phaseolus vulgaris L.) subjected to high or low leaf water potentials (ψw) or high concentrations of abscisic acid (ABA). The leaves maintained a relatively constant differential (Δp) between ambient CO2 and measured pi throughout the light period when water was supplied. When water was withheld, ψw decreased and the stomata began to close, but measured pi increased until the leaf reached a ψw of −1.76 (bush bean), −2.12 (sunflower) or −3.10 (soybean) megapascals, at which point Δp = 0. The increasing pi indicated that stomata did not inhibit CO2 uptake and a Δp of zero indicated that CO2 uptake became zero despite the high availability of CO2 inside the leaf. In contrast, when sunflower leaves at high ψw were treated with ABA, pi did not increase and instead decreased rapidly and steadily for up to 8 hours even as ψw increased, as expected if ABA treatment primarily affected stomatal conductance. The accumulating CO2 at low ψw and contrasting response to ABA indicates that photosynthetic biochemistry limited photosynthesis at low ψw but not at high ABA.  相似文献   

20.
Intergeneric, interspecific, and intraspecific genetic variation of the 310-bp 3-end region of the mitochondrial gene of cytochrome oxidase I (COI) has been assessed in ladybirds (Coleoptera: Coccinnellidae). The phylogenetic distances between eight species of ladybirds have been determined. Mitochondrial DNA (mtDNA) nucleotide sequences have been compared in Adalia bipunctata L. differing in the elytron and pronotum colors that have been sampled from several geographically remote populations. The taxonomic statuses of two morphs from the genus Adalia, A. bipunctata bipunctata and A. bipunctata fasciatopunctata, have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号