首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyruvate Carboxylase Activity in Primary Cultures of Astrocytes and Neurons   总被引:19,自引:17,他引:2  
Abstract: The activity of the pyruvate carboxylase was determined in brains of newborn and adult mice as well as primary cultures of astrocytes, of cerebral cortex neurons, and of cerebellar granule cells. The activity was found to be 0.25 ± 0.14, 1.24 ± 0.07, and 1.75 ± 0.13 nmol · min−1· mg−1 protein in, respectively, neonatal brain, adult brain, and astrocytes. Neither of the two types of neurons showed any detectable enzyme activity (i.e., < 0.05 nmol · min−1· mg−1). It is therefore concluded that pyruvate carboxylase is an astrocytic enzyme.  相似文献   

2.
Abstract: Synthesis, uptake, release, and oxidative metabolism of citrate were investigated in neurons and astrocytes cultured from cerebral cortex or cerebellum. In addition, the possible role of citrate as a donor of the carbon skeleton for biosynthesis of neurotransmitter glutamate was studied. All cell types expressed the enzyme citrate synthase at a high activity, the cerebellar granule neurons containing the enzyme at a higher activity than that found in the astrocytes from the two brain regions or the cortical neurons. Saturable citrate uptake could not be detected in any of the cell types, but the astrocytes, and, in particular, those of cerebellar origin, had a very active de novo synthesis and release of citrate (~70 nmol × h?1× mg of protein?1). The rate of release of citrate from neurons was <5% of this value. Using [14C]citrate it could be shown that citrate was oxidatively metabolized to 14CO2 at a modest rate (~1 nmol × n?1× mg?1 of protein) with slightly higher rates in astrocytes compared with neurons. Experiments designed to investigate the ability of exogenously supplied citrate to serve as a precursor for synthesis of transmitter glutamate in cerebellar granule neurons failed to demonstrate this. Rather than citrate serving this purpose it may be suggested that astrocytically released citrate may regulate the extracellular concentration of Ca2+ and Mg2+ by chelation, thereby modulating neuronal excitability.  相似文献   

3.
为探讨简便、高效的大脑皮质星形胶质细胞体外培养方法,本研究取新生24 h内的ICR小鼠大脑皮层,采用物理方法将其分成约1 mm^3,震荡过滤后进行培养。通过拍照的方式记录原代培养1 d、3 d、7 d、14 d、21 d、28 d、35 d和原代培养14 d后再传代培养14 d(记为P2-14 d)细胞形态;通过实时定量PCR和Western blotting比较原代培养1周、2周、3周、4周、5周和原代培养2周后再传代培养2周(即P2-2)的星形胶质细胞内胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)基因和蛋白水平变化。选取GFAP、S100-β和谷氨酸转运蛋白(excitatory amino acid transporter 1,EAAT1)标记星形胶质细胞,微管相关蛋白(microtubuleassociated protein 2,MAP-2)、离子钙接头蛋白-1(ionized calcium-binding adapter molecule 1,Iba-1)和髓鞘相关糖蛋白(myelin associated glycoprotein,MAG)抗体分别标记神经元、小胶质细胞和少突胶质细胞。通过免疫荧光染色鉴定细胞种类及纯度。研究结果显示细胞生长良好,原代培养4周星形胶质细胞内GFAP比2周、3周、5周和传代培养2周的细胞更加稳定。经免疫荧光鉴定,星形胶质细胞纯度在95%以上。本实验采用相对较简单经济的方法培养出高纯度且生理状态相对较稳定的原代星形胶质细胞,该细胞模型不仅可以用于星形胶质细胞生理功能研究,还可以用于中枢神经系统相关疾病的体外研究。  相似文献   

4.
Inhibition of net uptake of 42K by different concentrations of ouabain was studied in primary cultures of astrocytes and in primary cultures of neurons in order to investigate whether there is a pronounced difference between ouabain sensitivity in the two cell types and to determine the genuine magnitudes of the ouabain-sensitive and the ouabain-resistant potassium uptakes. In morphologically differentiated astrocytes, obtained after treatment with dibutyryl cyclic AMP (dBcAMP), the sensitivity to ouabain was slightly lower than in neurons, but astrocytes which had not been treated with dBcAMP showed sensitivity similar to the neurons (which likewise were not treated). In the presence of elevated potassium concentrations (12 and 24 mM) ouabain sensitivity was decreased, although only by a factor of 2-3. Accordingly, maximum inhibition of the uptake required under all conditions studied, at most, 1.0 mM ouabain. Like total uptake, this ouabain-sensitive uptake was several times less intense in neurons than in astrocytes, where it reached its maximum value at an external potassium concentration of 12 mM. Subtraction of the ouabain-sensitive uptake from the total uptake revealed a considerable ouabain-resistant uptake. This ouabain-resistant uptake was studied in detail in the astrocytes, where it was found to increase with increasing potassium concentration over the whole concentration range 3-24 mM and to exceed substantially the maximum amount that can be accumulated by diffusion.  相似文献   

5.
[3H]Flunitrazepam binds to intact and homogenized mouse astrocytes and neurons in primary cultures. In intact cells, the binding is to a single, high-affinity, saturable population of benzodiazepine binding sites with a KD of 7 nM and Bmax of 6,033 fmol/mg protein in astrocytic cells and a KD of 5 nM and Bmax of 924 fmol/mg protein in neurons. After homogenization, the Bmax values decrease drastically in both cell types, but most in astrocytes. The temperature and time dependency are different for the two cell types, with a faster association and dissociation in astrocytes than in neurons and a greater temperature sensitivity in the astrocytes. Moreover, flunitrazepam binding sites on neuronal and astrocytic cells have different pharmacological profiles. In intact astrocytic cells, Ro 5-4864 (Ki = 4 nM) is the most potent displacing compound, followed by diazepam (Ki = 6 nM) and clonazepam (Ki = 600 nM). In intact neurons, the relative order of potency of these three compounds is different: diazepam (Ki = 7 nM) is the most potent, followed by clonazepam (Ki = 26 nM) and Ro 5-4864, which has little effect. After homogenization the potency of diazepam decreases. We conclude that both neuronal and astrocytic cells possess high-affinity [3H]flunitrazepam binding sites. The pharmacological profile and kinetic characteristics differ between the two cell types and are further altered by homogenization.  相似文献   

6.
Abstract: Amyloid precursor protein (APP) gives rise by proteolytic processing to the amyloid β peptide (Aβ) found abundantly in cerebral senile plaques of individuals with Alzheimer's disease. APP is highly expressed in the brain. To assess the source of cerebral Aβ, the metabolism of APP was investigated in the major cell types of the newborn rat cerebral cortex by pulse/chase labeling and immunoprecipitation of the APP and APP metabolic fragments. We describe a novel C-terminally truncated APP isoform that appears to be made only in neurons. The synthesis, degradation, and metabolism of APP were quantified by phosphorimaging in neurons, astrocytes, and microglia. The results show that although little APP is metabolized through the amyloidogenic pathways in each of the three cultures, neurons appear to generate more Aβ than astrocytes or microglia.  相似文献   

7.
8.
14CO2 production and incorporation of label into proteins from the labeled branched-chain amino acids, leucine, valine, and isoleucine, were determined in primary cultures of neurons and of undifferentiated and differentiated astrocytes from mouse cerebral cortex in the absence and presence of 3 mM ammonium chloride. Production of 14CO2 from [1-14C]leucine and [1-14C]valine was larger than 14CO2 production from [U-14C]leucine and [U-14C]valine in both astrocytes and neurons. In most cases more 14CO2 was produced in astrocytes than in neurons. Incorporation of labeled branched-chain amino acids into proteins varied with the cell type and with the amino acid. Addition of 3 mM ammonium chloride greatly suppressed 14CO2 production from [1-14C]-labeled branched chain amino acids but had little effect on 14CO2 production from [U-14C]-labeled branched-chain amino acids in astrocytes. Ammonium ion, at this concentration, suppressed the incorporation of label from all three branched-chain amino acids into proteins of astrocytes. In contrast, ammonium ion had very little effect on the metabolism (oxidation and incorporation into proteins) of these amino acids in neurons. The possible implications of these findings are discussed, especially regarding whether they signify variations in metabolic fluxes and/or in magnitudes of precursor pools.  相似文献   

9.
Astrocyte cultures were prepared from cerebral cortex of new-born and 7-day-old mice and additionally, the cultures from new-born animals were passaged as secondary cultures. The cultures were characterized by immunostaining for the astrocyte markers glutamine synthetase (GS), glial fibrillary acidic protein, and the glutamate transporters EAAT1 and EAAT2. The cultures prepared from 7-day-old animals were additionally characterized metabolically using (13)C-labeled glucose and glutamate as well as (15)N-labeled glutamate as substrates. All types of cultures exhibited pronounced immunostaining of the astrocyte marker proteins. The metabolic pattern of the cultures from 7-day-old animals of the labeled substrates was comparable to that seen previously in astrocyte cultures prepared from new-born mouse brain showing pronounced glycolytic and oxidative metabolism of glucose. Glutamate was metabolized both via the GS pathway and oxidatively via the tricarboxylic acid cycle as expected. Additionally, glutamate underwent pronounced transamination to aspartate and alanine and the intracellular pools of alanine and pyruvate exhibited compartmentation. Altogether the results show that cultures prepared from cerebral cortex of 7-day-old mice have metabolic and functional properties indistinguishable from those of classical astrocyte cultures prepared from neocortex of new-born animals. This provides flexibility with regard to preparation and use of these cultures for a variety of purposes.  相似文献   

10.
Both ammonia and beta-methylene-DL-aspartate (beta-MA), an irreversible inhibitor of aspartate aminotransferase activity and thus of the malate-aspartate shuttle, were found previously to decrease oxidative metabolism in cerebral cortex slices. In the present work, the possibility that ammonia and beta-MA affect energy metabolism by a common mechanism (i.e., via inhibition of the malate-aspartate shuttle) was investigated using primary cultures of neurons and astrocytes. Incubation of astrocytes for 30 min with 5 mM beta-MA resulted in a decreased production of 14CO2 from [U-14C]glucose, but did not affect 14CO2 production from [2-14C]pyruvate. Conversely, incubation of astrocytes with 3 mM ammonium chloride resulted in decreased 14CO2 production from [2-14C]pyruvate, but 14CO2 production from [U-14C]glucose was not significantly affected. Ammonium chloride had no significant effect on 14CO2 production from either [U-14C]glucose or [2-14]pyruvate by neurons. However, incubation of neurons with beta-MA or beta-MA plus ammonium chloride resulted in a approximately 45% decrease of 14CO2 production from both [U-14C]glucose and [2-14C]pyruvate. A 2-h incubation of astrocytes with beta-MA resulted in no change in ATP levels, but a 35% decrease in phosphocreatine. Similar treatment of neurons resulted in greater than 50% decrease in ATP, but had little effect on phosphocreatine. beta-MA also caused a decrease in glutamate and aspartate content of neurons, but not of astrocytes. The different metabolic responses of neurons and astrocytes towards beta-MA were probably not due to a differential inhibition of aspartate aminotransferase which was inhibited by approximately 45% in astrocytes and by approximately 55% in neurons.  相似文献   

11.
Abstract: Local cerebral glucose utilization was measured by the [14C]2-deoxy- d -glucose method in conscious control and hyperketonemic rats. Hyperketonemia was induced by 3 days of starvation or by infusion of 3- hydroxybutyrate in fed rats. These treatments produced combined blood ketone body concentrations (acetoacetate + 3-hydroxybutyrate) of from 1.2 to 2.4 mM. Neither treatment significantly affected glucose utilization in any of the 15 brain regions studied. These observations indicate that hyperketonemia in resting, conscious rats does not interfere with brain uptake and phosphorylation of glucose.  相似文献   

12.
Cerebellar granule cells were cocultured with astrocytes from either cerebral cortex or cerebellum in two different systems. In one system the cells were plated next to each other only sharing the culture medium (separated cocultures) and in the other system the granule cells were plated on top of a preformed layer of astrocytes (sandwich cocultures). Using astrocytes from cerebellum, granule cells developed morphologically and functionally showing a characteristic high activity of the glutamate synthesizing enzyme aspartate aminotransferase (AAT) as well as a high stimulus-coupled transmitter release regardless of the culture system, i.e., granule cells could grow on top of cerebellar astrocytes as well as next to these cells. In the case of cerebral cortex astrocytes it was found that cerebellar granule cells did not develop (11% survival) when seeded on top of these astrocytes. This was indicated by the morphological appearance of the cultures as well as by a negligible difference between the AAT activity in sandwich cocultures and astrocytes cultured alone. On the other hand, granule cells in separated cocultures with cerebral cortex astrocytes exhibited a normal morphology and a high activity of AAT as well as a large stimulus-coupled transmitter release. Cerebellar and cortical astrocytes expressed the astrocyte specific enzyme glutamine synthetase in a glucocorticoid-inducible form regardless of the culture system. The results show that under conditions of direct contact between granule cells and astrocytes, regional specificity exists with regard to neuron-glia contacts. This specificity does not seem to involve soluble factors present in the culture medium because in separated cocultures the cerebellar granule cells developed normally regardless of the regional origin of the astrocytes.  相似文献   

13.
14.
Abstract: The role of carnitine palmitoyltransferase I (CPT-I) in the control of ketogenesis was studied in primary cultures of rat astrocytes. Ketone bodies were the major product of [14C]palmitate oxidation by cultured astrocytes, whereas CO2 made a minor contribution to the total oxidation products. Using tetradecylglycidate as a specific, cell-permeable inhibitor of CPT-I, a flux control coefficient of 0.77 ± 0.07 was calculated for CPT-I over the flux of [14C]palmitate to ketone bodies. CPT-I from astrocytes was sensitive to malonyl-CoA (IC50 = 3.4 ± 0.8 µ M ) and cross-reacted on western blots with an antibody raised against liver CPT-I. On the other hand, astrocytes expressed significant acetyl-CoA carboxylase (ACC) activity, and consequently they contained considerable amounts of malonyl-CoA. Western blot analysis of ACC isoforms showed that ACC in astrocytes—like in neurons, liver, and white adipose tissue—mostly comprised the 265-kDa isoform, whereas the 280-kDa isoform—which was highly expressed in skeletal muscle—showed much lower abundance. Forskolin was used as a tool to study the modulation of the ketogenic pathway in astrocytes. Thus, forskolin decreased in parallel ACC activity and intracellular malonyl-CoA levels, whereas it stimulated CPT-I activity and [14C]palmitate oxidation to both ketone bodies and CO2. Results show that in cultured astrocytes (a) CPT-I exerts a very high degree of control over ketogenesis from palmitate, (b) the ACC/malonyl-CoA/CPT-I system is similar to that of liver, and (c) the ACC/malonyl-CoA/CPT-I system is subject to regulation by cyclic AMP.  相似文献   

15.
Abstract: Type A and type B monoamine oxidase (MAO) activities were determined in mouse brain and in primary cultures of mouse astrocytes. Thirty-one-day-old astrocyte cultures exhibited predominantly type A MAO activity. In cultures of the same age, treated with 0.25 mM dibutyryl cyclic AMP under the same culturing conditions, 30% type B MAO was expressed, although dibutyryl cyclic AMP up to 1 mM does not affect MAO activity in vitro. The specific activity of type B MAO increased significantly in older cultures, while type A MAO changed only slightly.  相似文献   

16.
Glucose transport systems in cultured neuronal cells and astrocytes of rats were characterized by measuring the uptake of 2-deoxy-D-[3H]glucose ([3H]2-DG) into the cells. Various sugars inhibited 2-DG uptake by neuronal cells and astrocytes similarly, a finding indicating that the substrate specificities of the transporters in the two types of cells were almost the same. However, the Km values for 2-DG of neuronal cells and astrocytes were 1.7 and 0.36 mM, respectively. The uptake of 2-DG was strongly inhibited by cytochalasin B. Nucleosides, such as adenosine, inosine, and uridine, inhibited 2-DG uptake competitively in both neuronal cells and astrocytes. The uptake by both types of cells were also inhibited by forskolin, but not by cyclic AMP, an observation suggesting that forskolin bound directly to the transporters to cause inhibition. Its inhibition was competitive in astrocytes and noncompetitive in neuronal cells. Astrocytes contained a glucose transporter with a subunit molecular weight of 45K, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after photoaffinity labeling using [3H]cytochalasin B as a probe.  相似文献   

17.
The effects of arachidonic acid on glutamate and gamma-aminobutyric acid (GABA) uptake were studied in primary cultures of astrocytes and neurons prepared from rat cerebral cortex. The uptake rates of glutamate and GABA in astrocytic cultures were 10.4 nmol/mg protein/min and 0.125 nmol/mg protein/min, respectively. The uptake rates of glutamate and GABA in neuronal cultures were 3.37 nmol/mg protein/min and 1.53 nmol/mg protein/min. Arachidonic acid inhibited glutamate uptake in both astrocytes and neurons. The inhibitory effect was observed within 10 min of incubation with arachidonic acid and reached approximately 80% within 120 min in both types of culture. The arachidonic acid effect was not only time-dependent, but also dose-related. Arachidonic acid, at concentrations of 0.015 and 0.03 mumol/mg protein, significantly inhibited glutamate uptake in neurons, whereas 20 times higher concentrations were required for astrocytes. The effects of arachidonic acid were not as deleterious on GABA uptake as on glutamate uptake in both astrocytes and neurons. In astrocytes, GABA uptake was not affected by any of the doses of arachidonic acid studied (0.015-0.6 mumol/mg protein). In neuronal cultures, GABA uptake was inhibited, but not to the same degree observed with glutamate uptake. Lower doses of arachidonic acid (0.03 and 0.015 mumol/mg protein) did not affect neuronal GABA uptake. Other polyunsaturated fatty acids, such as docosahexaenoic acid, affected amino acid uptake in a manner similar to arachidonic acid in both astrocytes and neurons. However, saturated fatty acids, such as palmitic acid, exerted no such effect. The significance of the arachidonic acid-induced inhibition of neurotransmitter uptake in cultured brain cells in various pathological states is discussed.  相似文献   

18.
The aim was to define a primary culture system enriched in neurons using a defined culture medium, and characterize the model system as to cellular morphology and neuronal phenotypes. We found that these primary neuron enriched cultures from either newborn rat cerebral cortex or hippocampus contain small GABAergic and large glutamatergic neurons as well as astrocytes and microglia. Astrocytes in these cultures are morphologically differentiated with long, slender processes and interact with soluble factors responsible for induction and expression of the glutamate transporter GLT-1. The cultures achieve the highest expression of the vesicular glutamate transporter 1 (VGLUT1) and GLT-1 after 20 days in vitro. Conditioned media from these neuron enriched cultures also induced GLT-1 expression in primary astrocytic cultures, which were free from neurons. The amount of glutamatergic neurons guides the morphological maturation of astrocytes and GLT-1 expression both in the neuron enriched cultures and in the conditioned media supplemented astrocytic cultures. Interestingly, these cultures were not influenced or activated by the inflammatory stimulus lipopolysaccharide. This suggests that soluble factors from neurons protect microglia and astrocytes to become inflammatory reactive. In conclusion we have developed a well characterized culture model system enriched in neurons, taken from newborn rats and cultured in defined media. The neurons express different neuronal phenotypes. Such a model system is valuable when studying interactions between neurons and glial cells.  相似文献   

19.
Histamine stimulates cyclic AMP accumulation in astrocyte-enriched and neuronal primary cultures from rat brain in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine. The response in the astrocyte cultures (Emax = 304 +/- 44% over basal, EC50 = 43 +/- 5 microM) was much higher than in neuronal cultures (Emax = 24 +/- 2%, EC50 = 14 +/- 7 microM). The histamine effect in astrocytes was competitively inhibited by the H2 antagonists cimetidine (Ki = 1.1 +/- 0.2 microM) and ranitidine (Ki = 46 +/- 10 nM) but was insensitive to the H1 antagonist mepyramine (1 microM). The two selective H2 agonists impromidine and dimaprit behaved as partial agonists and showed relative potencies (139 and 0.5, respectively) consistent with an interaction with H2 receptors. The more selective H1 agonist 2-thiazolylethylamine (0.01-1 mM) did not potentiate the response to impromidine (10 microM). Thus, in contrast to what is generally observed in intact cell preparations from brain, the histamine-induced cyclic AMP accumulation in astroglial cells is mediated solely by H2 receptors. The small effect shown in neuronal cultures also appears to be mediated by H2 receptors.  相似文献   

20.
Metabolic Fate of 14C-Labeled Glutamate in Astrocytes in Primary Cultures   总被引:2,自引:0,他引:2  
The metabolic fate of L-[U-14C]- and L-[1-14C]glutamate was studied in primary cultures of mouse astrocytes. Conversion of the uniformly labeled compound to glutamine and aspartate was followed by determination of specific activities after dansylation with [3H]dansyl chloride and subsequent thin layer chromatography of the dansylated amino acids. Metabolic fluxes were calculated from the alterations of specific activities and the pool sizes, which were likewise measured by a dansylation method. Formation of 14CO2 from [1-14C]glutamate was determined by the trapping of CO2 in hyamine hydroxide in a gas-tight chamber, which is, in the known absence of glutamate decarboxylase activity in the cultured astrocytes, an unequivocal expression of the metabolic flux via alpha-ketoglutarate to CO2 and succinyl-CoA. The metabolic fluxes determined by these procedures amounted to 2.4 nmol/min/mg protein for glutamine synthesis, 1.1 nmol/min/mg protein for aspartate production, and 4.1 nmol/min/mg protein for formation and subsequent decarboxylation of alpha-ketoglutarate. The latter process was unaffected by virtually complete inhibition of glutamate-oxaloacetic transaminase with aminooxyacetic acid, indicating that the formation of alpha-ketoglutarate occurs as an oxidative deamination rather than as a transamination. This suggests that the formation of alpha-ketoglutarate from glutamate represents a net degradation, not an isotopic exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号