首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nah SS  Choi IY  Yoo B  Kim YG  Moon HB  Lee CK 《FEBS letters》2007,581(9):1928-1932
We investigated the effects of advanced glycation end products (AGE) which accumulate in articular cartilage with age in human osteoarthritic chondrocytes. We found AGE-BSA significantly increased MMP-1, -3, and -13, and TNF-alpha in a dose-dependent manner. AGE-BSA-stimulated JNK, p38, and ERK and NF-kappaB activity. The stimulatory effect of AGE-BSA on MMP-1, -3, and -13 were reversed by treatment with specific JNK, p38 inhibitors, suggesting JNK and p38 are involved in AGE-BSA-induced MMPs and TNF-alpha. We also observed that NF-kappaB is involved in AGE-BSA-induced TNF-alpha. Pretreatment with soluble receptor for AGE (sRAGE) also reduced AGE-stimulated MMPs and TNF-alpha, implicating the involvement of receptor for AGE (RAGE). In conclusion, accumulation of AGE may have a role in the development of osteoarthritis by increasing MMP-1, -3, and -13, and TNF-alpha.  相似文献   

2.
Interactions between advanced glycation endproducts (AGE) and the receptor for AGE (RAGE) have been implicated in the development of diabetic vascular complications. RAGE has two N-glycosylation sites in and near the AGE-binding domain, and G82S mutation in the second N-glycosylation motif was recently reported in human. In this study, we examined whether de-N-glycosylation or G82S of RAGE affect its ability to bind AGE and cellular response to AGE. Recombinant wild-type, de-N-glycosylation and G82S RAGE proteins were produced in COS-7 cells, purified and assayed for ligand-binding abilities. De-N-glycosylation at N81 and G82S mutation decreased Kd for glycolaldehyde-derived AGE to three orders of magnitude lower levels compared with wild-type. AGE-induced upregulation of VEGF mRNA was significantly augmented in endothelial cell-derived ECV304 cells expressing de-N-glycosylated and G82S RAGE when compared with wild-type expressor. Exposure to low glucose resulted in the appearance of RAGE proteins of deglycosylated size in wild-type RAGE-expressing cells and significantly enhanced glycolaldehyde-derived AGE-induced VEGF mRNA expression. De-N-glycosylation or G82S mutation of RAGE increases affinity for AGE ligands, and may sensitize cells or conditions with it to AGE.  相似文献   

3.
Several observational studies have shown that estrogen replacement therapy decreases cardiovascular mortality and morbidity in postmenopausal women. However, The Women's Health Initiative (WHI) study has found that women receiving estrogen plus progestin had a significantly higher risk of breast cancer, coronary heart disease, stroke, and pulmonary embolus. In the present study, we examined whether estrogen prevents mechanisms that relate to plaque formation by inhibiting monocyte adhesion to endothelial cells. ECV304 cells, an endothelial cell line that normally expresses minimal estrogen receptor (ER)alpha, were transfected with an ERalpha expression plasmid. Treatment with tumor necrosis factor (TNF)-alpha increased expression of vascular cell adhesion molecule (VCAM)-1 mRNA, activation of nuclear factor-kappaB (NF-kappaB), and U937 cell adhesion in ECV304 cells. These effects of TNF-alpha were not significantly inhibited by pretreatment of native ECV304 cells with 17beta-estradiol (E(2)). In ECV304 cells overexpressing ERalpha, E(2) significantly inhibited the effects of TNF-alpha on NF-kappaB activation, VCAM-1 expression, and U937 cell adhesion. These findings suggest E(2) suppresses inflammatory cell adhesion to vascular endothelial cells that possess functional estrogen receptors. The mechanism of suppression may involve inhibition of NF-kappaB-mediated up-regulation of VCAM-1 expression induced by atherogenic stimuli. E(2) may prevent plaque formation, as first stage of atheroscrelosis through inhibiting adhesion monocytes to endothelial cell. Actions of estrogen replacement therapy can be assessed in terms of densities of functional ERalpha.  相似文献   

4.
Advanced glycation end product (AGE)-their receptor (RAGE) and angiotensin II (AII) are implicated in diabetic retinopathy. However, a crosstalk between the two is not fully understood. In vivo, AGE injection stimulated RAGE expression in the eye of spontaneously hypertensive rats, which was blocked by an AII-type 1 receptor blocker, telmisartan. In vitro, AII-type 1 receptor-mediated reactive oxygen species generation elicited RAGE gene expression in pericytes through NF-kappaB activation. Further, AII augmented AGE-induced pericyte apoptosis, the earliest hallmark of diabetic retinopathy. Our present study may implicate a crosstalk between AGE-RAGE system and AII in diabetic retinopathy.  相似文献   

5.
We hypothesized that impaired nitric oxide (NO)-dependent dilation (endothelial dysfunction) in type 2 diabetes results, in part, from elevated production of superoxide (O(2)(*-)) induced by the interaction of advanced glycation end products (AGE)/receptor for AGE (RAGE) and TNF-alpha signaling. We assessed the role of AGE/RAGE and TNF-alpha signaling in endothelial dysfunction in type 2 diabetic (Lepr(db)) mice by evaluation of endothelial function in isolated coronary resistance vessels of normal control (nondiabetic, m Lepr(db)) and diabetic mice. Although dilation of vessels to the endothelium-independent vasodilator sodium nitroprusside (SNP) was not different between diabetic and control mice, dilation to the endothelium-dependent agonist acetylcholine (ACh) was reduced in diabetic vs. control mice. The activation of RAGE with RAGE agonist S100b eliminated SNP-potentiated dilation to ACh in Lepr(db) mice. Administration of a soluble form of RAGE (sRAGE) partially restored dilation in diabetic mice but did not affect dilation in control mice. The expression of RAGE in coronary arterioles was markedly increased in diabetic vs. control mice. We also observed in diabetic mice that augmented RAGE signaling augmented expression of TNF-alpha, because this increase was attenuated by sRAGE or NF-kappaB inhibitor MG132. Protein and mRNA expression of NAD(P)H oxidase subunits including NOX-2, p22(phox), and p40(phox) increased in diabetic compared with control mice. sRAGE significantly inhibited the expression of NAD(P)H oxidase in diabetic mice. These results indicate that AGE/RAGE signaling plays a pivotal role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes.  相似文献   

6.
7.
8.
Recent studies demonstrated the beneficial role of atorvastatin in reducing the risk of cardiovascular morbidity and mortality in patients with diabetes mellitus and/or metabolic syndrome. To investigate the mechanisms underlying the anti-atheroscleroic action of atorvastatin, we examined the expression of the receptor for advanced glycation end products (RAGE) and its downstream target gene, monocyte chemoattractant protein-1 (MCP-1) using real-time PCR. In in vitro studies, exposure to high glucose or AGE induced oxidative stress and activation of the AGE/RAGE system in human umbilical vein endothelial cells. Treatment of the cells with atorvastatin significantly released the oxidative stress by restoring the levels of glutathione and inhibited the RAGE upregulation. In diabetic Goto Kakisaki (GK) rats fed with a high-fat diet for 12 weeks, RAGE and MCP-1 were upregulated in the aortas, and there was a significant correlation between RAGE and MCP-1 mRNA abundance (r = 0.482, P = 0.031). Treatment with atorvastatin (20 mg/kg qd) significantly downregulated the expression of RAGE and MCP-1. These data thus demonstrate a novel “pleiotropic” activity of atorvastatin in reducing the risk of cardiovascular diseases by targeting RAGE expression.  相似文献   

9.
10.
Recent studies suggested that interruption of the interaction of advanced glycation end products (AGEs), with the signal-transducing receptor receptor for AGE (RAGE), by administration of the soluble, extracellular ligand-binding domain of RAGE, reversed vascular hyperpermeability and suppressed accelerated atherosclerosis in diabetic rodents. Since the precise molecular target of soluble RAGE in those settings was not elucidated, we tested the hypothesis that predominant specific AGEs within the tissues in disorders such as diabetes and renal failure, N(epsilon)-(carboxymethyl)lysine (CML) adducts, are ligands of RAGE. We demonstrate here that physiologically relevant CML modifications of proteins engage cellular RAGE, thereby activating key cell signaling pathways such as NF-kappaB and modulating gene expression. Thus, CML-RAGE interaction triggers processes intimately linked to accelerated vascular and inflammatory complications that typify disorders in which inflammation is an established component.  相似文献   

11.
Advanced glycation end products (AGEs) play a causative role in the complications involved with diabetes mellitus (DM). Nowadays, DM with hypothyroidism (DM-hypothyroidism) is indicative of an ascended tendency in the combined morbidity. In this study, we examine the role of the receptor (RAGE) played for AGEs in thyroid hormone (TH) secretion via the silent information regulator 1 (SIRT1)/nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) pathway. Blood samples were collected from patients with type 2 DM (T2DM)-hypothyroidism and from patients with T2DM, followed by detection of serum AGEs level. The underlying regulatory mechanisms of RAGE were analyzed in association with the treatment of high glucose, siRNA against RAGE, AGE, SIRT1, or Nrf2 vector in normal immortalized thyroid Nthy-ori 3-1 cells. Serum of patients with T2DM-hypothyroidism indicated promoted levels of AGEs vs those with just T2DM. Both AGEs and high glucose triggered cellular damage, increased oxidative stress, as well as displayed a decreased survival rate along with TH secretion in the Nthy-ori 3-1 cells. Moreover, AGEs and high glucose also led to RAGE upregulation, both SIRT1 and NRF2 downregulation, and the decreased expression of TH secretion–related proteins in Nthy-ori 3-1 cells. Notably, these alternations induced by the AGEs can be reserved by silencing RAGE or upregulating either SIRT1 or Nrf2, indicating a mechanism of regulating TH secretion through the SIRT1/Nrf2 pathway. Collectively, our data proposed that AGEs and high glucose exerted a potent effect on cellular damage and TH deficiency in Nthy-ori 3-1 cells through the RAGE upregulation as well as SIRT1/Nrf2 pathway inactivation. This mechanism may underlie the occurrence of DM-hypothyroidism.  相似文献   

12.
Glycation reactions resulting in the generation and accumulation of advanced glycation endproducts (AGEs) are potential mechanisms by which bone protein may be altered in vivo. AGEs accumulate in the bone increasingly with age come into close contact with osteoblasts or osteoclasts. The direct effect of AGEs on bone cells has not been thoroughly investigated. This study aimed to examine whether glycated bovine serum albumin (AGE - BSA) as an AGE modulate the mRNA expression of various genes in primary human osteoblast cultures. The following parameters were included: RAGE (receptor for AGEs), alkaline phosphatase, osteocalcin, osterix and RANKL (receptor activator of nuclear factor-kappaB ligand). Primary human osteoblast cultures were obtained from bone specimens of six patients with osteoarthrosis. Human osteoblasts were treated in AGE - BSA or control-BSA (non-glycated BSA) containing medium (5 mg/ml each) over a time course of seven days. After RT-PCR the mRNA expression was measured by real-time PCR. Related to control - BSA exposure, the mRNA expression of RAGE, RANKL and osterix increased during AGE - BSA treament. For alkaline phosphatase and osteocalcin a tendency of down-regulation was found. In summary, the study presents evidence that advanced glycation end products accumulated in bone alter osteoblasts by activation the AGE - RAGE pathway (RAGE mRNA up-regulation), inducing enhanced osteoclastogenesis (RANKL mRNA up-regulation) and impaired matrix mineralization (down-regulation of alkaline phosphatase and osteocalcin mRNA). Thus, AGEs may play a functional role in the development of bone diseases (e.g. osteoporosis).  相似文献   

13.
Accelerated formation of advanced glycation/lipoxidation and endproducts (AGEs/ALEs) has been implicated in the pathogenesis of various diabetic complications. Several natural and synthetic compounds have been proposed and tested as inhibitors of AGE/ALE formation. We have previously reported the therapeutic effects of several new AGE/ALE inhibitors on the prevention of nephropathy and dyslipidemia in streptozotocin (STZ)-induced diabetic rats. In this study, we investigated the effects of various concentrations of a compound, LR-90, on the progression of renal disease and its effects on AGE and receptor for AGE (RAGE) protein expression on the kidneys of diabetic STZ-rats. Diabetic male Sprague–Dawley rats were treated with or without LR-90 (0, 5, 20, 25, and 50 mg/l of drinking water). After 32 weeks, body weight, glycemic status, renal function, and plasma lipids were measured. Kidney histopathology and AGE/ALE accumulation and RAGE protein expression in tissues were also determined. In vitro studies were also performed to determine the possible mechanism of action of LR-90 in inhibiting AGE formation and AGE-protein cross-linking. LR-90 protected the diabetic kidneys by inhibiting the increase in urinary albumin-to-creatinine ratio and ameliorated hyperlipidemia in diabetic rats in a concentration-dependent fashion without any effects on hyperglycemia. LR-90 treatment also reduced kidney AGE/ALE accumulation and RAGE protein expression in a concentration-dependent manner. In vitro, LR-90 exhibited general antioxidant properties by inhibiting metal-catalyzed reactions and reactive oxygen species (·OH radical) and reactive carbonyl species (methlyglyoxal, glyoxal) generations without any effect on pyridoxal 5′ phosphate. The compound also prevents AGE-protein cross-linking reactions. These findings demonstrate the bioefficacy of LR-90 in treating nephropathy and hyperlipidemia in diabetic animals by inhibiting AGE accumulation, RAGE protein expression, and protein oxidation in the diabetic kidney. Additionally, our study suggests that LR-90 may be useful also to delay the onset and progression of diabetic atherosclerosis as the compound can inhibit the expression of RAGE and inflammation-related pathology, as well as prevent lipid peroxidation reactions.  相似文献   

14.
Advanced glycation end-products (AGE) are a group of heterogeneous molecules found in higher levels during diabetes, end stage renal failure and aging. Vascular alteration is correlated with their accumulation as during retinopathy or glomerulosclerosis. Glycation of extracellular matrix proteins is associated with diabetic angiopathy. AGE stimulate endothelial cell via the interaction with the receptor RAGE, leading to an inflammatory state with increased adhesion molecule expression, chemoattractant factor and tissue factor production. RAGE activation by AGE triggers reactive oxygen species production by NADPH oxydase. Agents that inhibit AGE formation, stimulate their degradation or neutralize their binding to RAGE represent new approaches to limit the deleterious activities of AGE.  相似文献   

15.
16.
Type 1 diabetes mellitus is known to be associated with reduced bone mass and increased bone fractures. This is thought to be due to a decrease in osteoblastic bone formation rather than an increase in osteoclastic bone resorption, but the precise mechanism is unknown. In this study, we examined whether or not high glucose or advanced glycation end-products (AGEs), which play key roles in the pathogenesis and complications of diabetes, affect the differentiation of osteoblastic MC3T3-E1 cells. First, MC3T3-E1 cells were incubated in media containing either 22 mM glucose, 22 mM mannitol, 300 microg/ml AGE2, or 300 microg/ml AGE3. Each of these agents alone did not affect the mineralization of the cells by von Kossa staining and Alizarin red staining. However, high glucose but not mannitol or AGEs markedly increased mRNA expression of AGE receptor (RAGE) by real-time PCR. Next, we examined the combined effects of high glucose and AGEs on the differentiation of MC3T3-E1 cells. The combination of 22 mM glucose and 300 microg/ml AGE2 significantly inhibited the mineralization of MC3T3-E1 cells, and 22 mM glucose in combination with either 300 microg/ml AGE2 or AGE3 apparently decreased osteocalcin mRNA expression. These results suggest that high glucose or AGEs alone might have no effect on osteoblastic differentiation, but their combination could additionally or synergistically inhibit osteoblastic mineralization through glucose-induced increase in RAGE expression.  相似文献   

17.
Advanced glycation end products (AGEs)-their receptor (RAGE) axis plays a central role in the pathogenesis of diabetic microangiopathy. Since the pathophysiological crosstalk between the AGEs-RAGE system and angiotensin II has also been associated with diabetic microangiopathy, we examined here whether and how telmisartan, a unique angiotensin II type 1 receptor blocker (ARB) with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity, could inhibit the AGEs-elicited endothelial cell injury by suppressing RAGE expression in vitro. Telmisartan suppressed RAGE expression at both mRNA and protein levels in human cultured microvascular endothelial cells (ECs), which were prevented by GW9662, an inhibitor of PPAR-gamma. Further, telmisartan was found to inhibit up-regulation of mRNA levels for monocyte chemoattractant protein-1, intercellular adhesion molecule-1 and vascular endothelial growth factor in AGEs-exposed ECs. These results suggest that telmisartan inhibits the AGEs-elicited EC injury by down-regulating RAGE expression via PPAR-gamma activation. Our present study provides a unique beneficial aspect of telmisartan. Specifically, it could work as an anti-inflammatory agent against AGEs via PPAR-gamma activation and may play a protective role against diabetic microangiopathy.  相似文献   

18.
Advanced glycation end products (AGEs) accumulate during aging and to higher extents under pathological conditions such as diabetes. Since we previously showed that mast cells expressed the AGE-binding protein, receptor for AGEs (RAGE) on their cell surface, we examined whether AGE affected mast cell survival. Herein, we demonstrate that mast cells undergo apoptosis in response to AGE. Glycated albumin (GA), an AGE, but not stimulation with the high-affinity IgE receptor (FcepsilonRI), can induce mast cell death, as measured by annexin V/propidium iodide double-staining. GA (> or =0.1 mg/ml) exhibited this pro-apoptotic activity in a concentration-dependent manner. GA and FcepsilonRI stimulation increased the cytosolic Ca(2+) levels to a similar extent, whereas GA, but not FcepsilonRI stimulation, caused mitochondrial Ca(2+) overload and membrane potential collapse, resulting in mitochondrial integrity disruption, cytochrome c release and caspase-3/7 activation. In addition, GA, but not FcepsilonRI stimulation, induced extracellular release of superoxide from mitochondria, and this release played a key role in the disruption of Ca(2+) homeostasis. Knockdown of RAGE expression using small interfering RNA abolished GA-induced apoptosis, mitochondrial Ca(2+) overload, and superoxide release, demonstrating that RAGE mediates the GA-induced mitochondrial death pathway. AGE-induced mast cell apoptosis may contribute to the immunocompromised and inflammatory conditions.  相似文献   

19.
20.
晚期糖化终产物诱导内皮细胞通透性增高   总被引:6,自引:0,他引:6  
Guo XH  Huang QB  Chen B  Wang SY  Hou FF  Fu N 《生理学报》2005,57(2):205-210
本文探讨了晚期糖化终产物(advanrced glycation end products,AGEs)修饰蛋白对内皮细胞通透性及细胞骨架肌动蛋白的形态学影响,以及特异的AGEs受体(receptors for AGEs,RAGE)、氧化应激和p38 MAPK通路在此病理过程中的作用。用不同浓度的AGEs修饰人血清白蛋白(AGE-HSA)与人脐静脉内皮细胞株ECV304在体外共同培养不同时间,并设立对照组进行比较,采用TRITC荧光标记白蛋白漏出法测定单层内皮细胞的通透系数Pa值,荧光染色法示细胞骨架的形态学改变。与对照组相比,AGE-HSA以时间和剂量依赖的方式引起单层内皮细胞通透性的升高及细胞骨架肌动蛋白F-actin形态的改变;可溶性RAGE的抗体(anti-RAGE IgG)、NADPH氧化酶抑制剂(apocynin)及p38抑制剂SB203580均可减轻AGEs对内皮细胞屏障功能和形态的影响。结果提示,AGEs修饰蛋白对单层内皮细胞通透性及骨架重排的作用可能通过与内皮细胞上的RAGE结合,引起细胞内的氧化应激,并激活p38 MAPK通路所介导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号