首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The mammalian secondary palate forms from two shelves of mesenchyme sheathed in a single-layered epithelium. These shelves meet during embryogenesis to form the midline epithelial seam (MES). Failure of MES degradation prevents mesenchymal confluence and results in a cleft palate. Previous studies indicated that MES cells undergo features of epithelial-to-mesenchymal transition (EMT) and may become migratory as part of the fusion mechanism. To detect MES cell movement over the course of fusion, we imaged the midline of fusing embryonic ephrin-B2/GFP mouse palates in real time using two-photon microscopy. These mice express an ephrin-B2-driven green fluorescent protein (GFP) that labels the palatal epithelium nuclei and persists in those cells through the time window necessary for fusion. We observed collective migration of MES cells toward the oral surface of the palatal shelf over 48 hr of imaging, and we confirmed histologically that the imaged palates had fused by the end of the imaged period. We previously reported that ephrin reverse signaling in the MES is required for palatal fusion. We therefore added recombinant EphA4/Fc protein to block this signaling in imaged palates. The blockage inhibited fusion, as expected, but did not change the observed migration of GFP-labeled cells. Thus, we uncoupled migration and fusion. Our data reveal that palatal MES cells undergo a collective, unidirectional movement during palatal fusion and that ephrin reverse signaling, though required for fusion, controls aspects of the fusion mechanism independent of migration.  相似文献   

2.
In mammals, the adhesion and fusion of the palatal shelves are essential mechanisms in the development of the secondary palate. Failure of any of these processes leads to the formation of cleft palate. The mechanisms underlying palatal shelf adhesion are poorly understood, although the presence of filopodia on the apical surfaces of the superficial medial edge epithelial (MEE) cells seems to play an important role in the adhesion of the opposing MEE. We demonstrate here the appearance of chondroitin sulphate proteoglycan (CSPG) on the apical surface of MEE cells only immediately prior to contact between the palatal shelves. This apical CSPG has a functional role in palatal shelf adhesion, as either the alteration of CSPG synthesis by β-d-Xyloside or its specific digestion by chondroitinase AC strikingly alters the in vitro adhesion of palatal shelves. We also demonstrate the absence of this apical CSPG in the clefted palates of transforming growth factor beta 3 (TGF-β3) null mutant mice, and its induction, together with palatal shelf adhesion, when TGF-β3 is added to TGF-β3 null mutant palatal shelves in culture. When chick palatal shelves (that do not adherein vivo nor express TGF-β3, nor CSPG in the MEE) are cultured in vitro, they do not express CSPG and partially adhere, but when TGF-β3 is added to the media, they express CSPG and their adhesion increases strikingly. We therefore conclude that the expression of CSPG on the apical surface of MEE cells is a key factor in palatal shelf adhesion and that this expression is regulated by TGF-β3.  相似文献   

3.
In mammals, the adhesion and fusion of the palatal shelves are essential mechanisms in the development of the secondary palate. Failure of any of these processes leads to the formation of cleft palate. The mechanisms underlying palatal shelf adhesion are poorly understood, although the presence of filopodia on the apical surfaces of the superficial medial edge epithelial (MEE) cells seems to play an important role in the adhesion of the opposing MEE. We demonstrate here the appearance of chondroitin sulphate proteoglycan (CSPG) on the apical surface of MEE cells only immediately prior to contact between the palatal shelves. This apical CSPG has a functional role in palatal shelf adhesion, as either the alteration of CSPG synthesis by beta-D-Xyloside or its specific digestion by chondroitinase AC strikingly alters the in vitro adhesion of palatal shelves. We also demonstrate the absence of this apical CSPG in the clefted palates of transforming growth factor beta 3 (TGF-beta(3)) null mutant mice, and its induction, together with palatal shelf adhesion, when TGF-beta(3) is added to TGF-beta(3) null mutant palatal shelves in culture. When chick palatal shelves (that do not adherein vivo nor express TGF-beta(3), nor CSPG in the MEE) are cultured in vitro, they do not express CSPG and partially adhere, but when TGF-beta(3) is added to the media, they express CSPG and their adhesion increases strikingly. We therefore conclude that the expression of CSPG on the apical surface of MEE cells is a key factor in palatal shelf adhesion and that this expression is regulated by TGF-beta(3).  相似文献   

4.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent organic pollutant that is strongly associated with a number of human diseases and birth defects, including cleft palate. Transforming growth factor (TGF) plays a significant role during mammalian palatogenesis. However, the epigenetic mechanism of transforming growth factors in the process of TCDD-induced cleft palate is unclear. The purpose of this research was to investigate the relationship and potential mechanism between TGF-β2/3 promoter DNA methylation and Smad signaling during TCDD-induced cleft palate. Pregnant C57BL/6N mice were exposed to 64 µg/kg TCDD on gestational day 10 (GD10) to establish the cleft palate model and palatal tissues of embryos were collected on GD13, GD14, and GD15 for subsequent experiments. TGF-β2/3 mRNA expression, TGF-β2/3 promoter methylation, and Smad signaling molecules expression were assessed in the palate of the two groups. The results showed that the incidence of cleft palate was 94.7% in the TCDD-treated group whereas no cleft palate was found in the control group. TCDD-treated group altered specific CpG sites of TGF-β2/3 promoter methylation. Compared to the control group, the proliferation of mouse embryonic palate mesenchymal stromal cells (MEPM), the expressions of TGF-β2/3, p-Smad2, and Smad4 were all reduced, while the expression of Smad7 was significantly increased in the atAR group. Smad signaling was downregulated by TCDD. Therefore, we suggest that TGF-β2/3 promoter methylation and Smad signaling may be involved in TCDD-induced cleft palate formation in fetal mice.  相似文献   

5.
TGF‐β3, TβR‐I, and TGF‐β‐activated Smad2 has been suggested to be a series of signaling molecules for secondary palate fusion. In this article, we show that a gene induced by TGF‐β, βig‐h3, is coincidentally expressed with TGF‐β3 in medial edge epithelial (MEE) cells undergoing apoptosis during normal palatal fusion. βig‐h3 was also highly expressed in the areas of post‐weaning mammary gland cells and developing phalangeal joints in which TGF‐β3 or BMP‐4‐induced apoptosis occurs, respectively. Blocking of βig‐h3 expression in E12.5 embryos with antisense oligodeoxynucleotides (ODN) resulted in cleft of the secondary palate in 84% of the treated mice that were born. Moreover, the antisense ODN treatment resulted in a failure of apoptosis in the MEE between palatal shelves in physical contact in organ culture. We conclude that βig‐h3 expression in the MEE is stimulated by TGF‐β3, causes cell death, and consequently results in complete fusion of the apposed palatal shelves. J. Cell. Biochem. 107: 818–825, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
TGF-beta1 is an apoptogenic agent for mammary epithelial cells (MEC). The molecular mechanism of the TGF-beta1-induced apoptosis remains, however, obscure. In the present study we used laser scanning cytometry, confocal microscopy and immunogold electron microscopy to analyze the expression, aggregation and co-localization of caspase-8, Bid, Bax and VDAC-1. These proteins are regarded as the most important factors involved in the regulatory phase of TGF-beta1-induced apoptosis. Apoptosis in HC11 mouse MEC manifested with a simultaneous increase in expression and subcellular aggregation of caspase-8, Bid, Bax and VDAC-1. Confocal microscopy revealed a strong pattern of co-localization of examined proteins during both early and late apoptosis. Experiments with double- and triple-staining immunoelectron microscopy showed a co-localization of Bax/Bid, caspase-8/Bax/Bid, and Bax/VDAC-1, on the membranes of mitochondria, Golgi apparatus, rough endoplasmic reticulum, nuclear envelope, nuclear pore, and within the nucleus. In conclusion, the observed pattern of changes in aggregation and subcellular localization of caspase-8, Bid, Bax and VDAC-1 during TGF-beta1-induced apoptosis in HC11 mouse MEC suggests an interaction between these proteins and formation of multimeric complexes on organellar membranes, thus controlling their permeability for intracellular mediators of apoptosis.  相似文献   

8.
Goodrich ME  McGee DW 《Cytokine》1998,10(12):948-955
Intestinal epithelial cells (IEC) secrete a variety of cytokines and, because of their close proximity to B cells in the lamina propria, may affect local antibody production via these cytokines. However, studies have not yet addressed which and to what extent these IEC-derived cytokines may affect B cell antibody production. In this study, rat mesenteric lymph node B cells were cultured with culture supernatants from the rat IEC-6 intestinal epithelial cell line to determine their effect on immunoglobulin (Ig) secretion. Unstimulated IEC-6 cells were found to secrete sufficient levels of IL-6 to enhance IgA, IgG and IgM secretion by unstimulated B cells. However, culture of lipopolysaccharide (LPS)-stimulated B cells with the unstimulated IEC-6 supernatant resulted in an enhancement of IgA secretion while IgM secretion was significantly suppressed. Depletion of the IEC-6 supernatant using cytokine specific antibodies revealed that both interleukin 6 (IL-6) and transforming growth factor beta (TGF-beta) were responsible for the enhanced IgA secretion while TGF-beta suppressed IgM secretion. More importantly, culture supernatants from LPS stimulated IEC-6 cells contained enhanced levels of IL-6 which enhanced both IgG and IgA production and partially overcame the suppressive effect of TGF-beta on IgM secretion. These results suggest that intestinal epithelial cells may secrete IL-6 and TGF-beta to regulate local B cell antibody secretion and their effect may be highly dependent upon the activation state of the epithelial cells.  相似文献   

9.
Enhanced expression of transforming growth factor-β1(TGF-β1) demonstrated in human colonic mucosa of patients with ulcerative colitis (UC), indicates its possible significance in the pathogenesis of this disease. The aim of this study was to evaluate plasma TGF-β1concentration in patients with different degrees of colonic mucosal injury, as a possible indicator of ulcerative colitis activity. TGF-β1concentration was measured with an enzyme immunoassay (EIA) in plasma of 45 patients with endoscopically confirmed UC. Values observed in UC patients (40.5±15.9 ng/ml) were significantly higher than in healthy people (18.3±11.6 ng/ml) and higher than in patients with irritable colon syndrome (ICS), (20.5±13.6 ng/ml). The highest plasma TGF-β1(58.6±112.1 ng/ml) was in patients with the severe UC course. TGF-β1level analysed in all UC patients revealed significant positive correlation with scored degree of mucosal injury (r=0.396;P<0.01). Among other possible laboratory markers of the disease activity, only C-reactive protein concentration demonstrated significant correlation. Enhanced production of TGF-β1can be related to inflammation activity. Measurement of plasma TGF-β1may be considered as a biomarker of the disease activity.  相似文献   

10.
Tgf-beta3-induced palatal fusion is mediated by Alk-5/Smad pathway   总被引:5,自引:0,他引:5  
Cleft palate is among the most common birth defects in humans, caused by a failure in the complex multistep developmental process of palatogenesis. It has been recently shown that transforming growth factor beta3 (Tgf-beta3) is an absolute requirement for successful palatal fusion, both in mice and humans. However, very little is known about the mechanisms of Tgf-beta3 signaling during this process. Here we show that putative Tgf-beta type I receptors, Alk-1, Alk-2, and Alk-5, are all endogenously expressed in the palatal epithelium. Activation of Alk-5 in the Tgf-beta3 (-/-) palatal epithelium is able to rescue palatal fusion, whereas inactivation of Alk-5 in the wild-type palatal epithelium prevents palatal fusion. The effect of Alk-2 is similar, but less pronounced. The induction of fusion by activation of Alk-5 or Alk-2 is stronger in the posterior parts of the palates at the embryonic day 14 (E14), while their activation at E13.5 also restores anterior fusion, reflecting the natural anterior-posterior direction of palate maturation in vivo. We also show that Smad2 is endogenously activated in the palatal midline epithelial seam (MES) during the fusion process. By using a mutant Alk-5 receptor that is an active kinase but is unable to activate Smads, we show that activation of Smad-independent Tgf-beta responses is not sufficient to induce fusion of shelves deficient in Tgf-beta3. Based on these observations, we conclude that the Smad2-dependent Alk-5 signaling pathway is dominant in palatal fusion driven by Tgf-beta3.  相似文献   

11.
Growth plate chondrocytes produce proteoglycan-rich type II collagen extracellular matrix (ECM). During cell maturation and hypertrophy, ECM is reorganized via a process regulated by 1α,25(OH)2D3 and involving matrix metalloproteinases (MMPs), including MMP-3 and MMP-2. 1α,25(OH)2D3 regulates MMP incorporation into matrix vesicles (MVs), where they are stored until released. Like plasma membranes (PM), MVs contain the 1α,25(OH)2D3-binding protein ERp60, phospholipase A2 (PLA2), and caveolin-1, but appear to lack nuclear Vitamin D receptors (VDRs). Chondrocytes produce 1α,25(OH)2D3 (10−8 M), which binds ERp60, activating PLA2, and resulting lysophospholipids lead to MV membrane disorganization, releasing active MMPs. MV MMP-3 activates TGF-β1 stored in the ECM as large latent TGF-β1 complexes, consisting of latent TGF-β1 binding protein, latency associated peptide, and latent TGF-β1. Others have shown that MMP-2 specifically activates TGF-β2. TGF-β1 regulates 1α,25(OH)2D3-production, providing a mechanism for local control of growth factor activation. 1α,25(OH)2D3 activates PKCα in the PM via ERp60-signaling through PLA2, lysophospholipid production, and PLCβ. It also regulates distribution of phospholipids and PKC isoforms between MVs and PMs, enriching the MVs in PKCζ. Direct activation of MMP-3 in MVs requires ERp60. However, when MVs are treated with 1α,25(OH)2D3, PKCζ activity is decreased and PKCα is unaffected, suggesting a more complex feedback mechanism, potentially involving MV lipid signaling.  相似文献   

12.
Tgfb3, a member of the TGF-beta superfamily, is tightly regulated, both spatially and temporally, during embryogenesis. Previous mouse knockout studies have demonstrated that Tgfb3 is absolutely required for normal palatal fusion and pulmonary development. We have generated a novel tool to ablate genes in Tgfb3-expressing cells by targeting the promoterless Cre-pgk-Neo cassette into exon 1 of the mouse Tgfb3 gene, which generates a functionally null Tgfb3 allele. Using the Rosa26 reporter assay, we demonstrate that Cre-induced recombination was already induced at embryonal day 10 (E10) in the ventricular myocardium, limb buds, and otic vesicles. At E14, robust recombination was detected in the prefusion palatal epithelium. Deletion of the TGF-beta type I receptor Alk5 (Tgfbr1) specifically in Tgfb3 expressing cells using the Tgfb3-Cre driver line lead to a cleft palate phenotype similar to that seen in conventional Tgfb3 null mutants. In addition, Alk5/ Tgfb3-Cre mice displayed hydrocephalus, and severe intracranial bleeding due to germinal matrix hemorrhage.  相似文献   

13.
Transforming growth factor beta (TGF-beta) proteins play important roles in morphogenesis of many craniofacial tissues; however, detailed biological mechanisms of TGF-beta action, particularly in vivo, are still poorly understood. Here, we deleted the TGF-beta type I receptor gene Alk5 specifically in the embryonic ectodermal and neural crest cell lineages. Failure in signaling via this receptor, either in the epithelium or in the mesenchyme, caused severe craniofacial defects including cleft palate. Moreover, the facial phenotypes of neural crest-specific Alk5 mutants included devastating facial cleft and appeared significantly more severe than the defects seen in corresponding mutants lacking the TGF-beta type II receptor (TGFbetaRII), a prototypical binding partner of ALK5. Our data indicate that ALK5 plays unique, non-redundant cell-autonomous roles during facial development. Remarkable divergence between Tgfbr2 and Alk5 phenotypes, together with our biochemical in vitro data, imply that (1) ALK5 mediates signaling of a diverse set of ligands not limited to the three isoforms of TGF-beta, and (2) ALK5 acts also in conjunction with type II receptors other than TGFbetaRII.  相似文献   

14.
The cytokines tumor necrosis factor alpha (TNF alpha), granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), and interleukin 1 (IL 1) all caused an upregulation of C3b receptors (CR1) on neutrophils that ranged from around 76% (G-CSF and IL 1) to 93% (TNF alpha and GM-CSF) of the upregulation obtained by pretreatment of the neutrophils with the chemotactic peptide FMLP. However, only TNF alpha and G-CSF caused a significant increase in phagocytosis of opsonized microspheres. Platelet derived growth factor, interleukin 2, and transforming growth factor beta had no effect on either of these parameters. The mediators platelet activating factor (PAF) and leukotriene B4 (LTB4) both caused a large upregulation of CR1 (93% and 80%, respectively, of the FMLP-mediated value); however, only PAF caused a significant enhancement of phagocytosis by the neutrophils. Prostaglandin E2 and thromboxane B2 had no effect on these parameters. Considerable individual variation was observed among some of the untreated and mediator-treated neutrophil preparations regarding CR1 expression and phagocytosis. The upregulation of CR1 and associated increase in phagocytic capacity of neutrophils caused by certain cytokines and other mediators may be important in host defense. Also the lack of enhancement of phagocytosis accompanying an upregulation of CR1 is unusual and may have important implications regarding the cellular mechanisms of phagocytosis by neutrophils.  相似文献   

15.
The objective of this study was to investigate hormonal and TGF-β1 characterizations of delayed parturition in the SCNT recipients (Korean native beef cattle: Hanwoo). The SCNT blastocysts produced by Hanwoo fetal fibroblast cells were transferred into the synchronized Hanwoo recipients. The artificially inseminated Hanwoo recipients (AI-R) were used as control. All AI-R were labored by natural delivery. The SCNT recipients (SCNT-R) with no signs of delivery were operated by Caesarean section. The blood and placentomes were collected during parturition. The weight of placentomes in SCNT-R (n = 12, 301 ± 41.22 g) was significantly higher than that of AI-R (n = 10, 204.8 ± 24.89 g) (p < 0.05). There were significantly lower E2 (p < 0.05) or higher P4 (p < 0.01) and TGF-β1 (p < 0.01) levels in the SCNT-R compared to that of AI-R, respectively. The SCNT-R showed a higher placentomal TGF-β1 protein level compared to that of AI-R (p < 0.01). Interestingly, the TGF-β1 protein level in SCNT-R with normal delivery was dramatically decreased as same as AI-R, but it was highly maintained in C-sec at days 250 of pregnancy in AI-R. These results suggest that delayed parturition in clone calving may be associated with persistence of elevated TGF-beta-1 expression in late pregnancy.  相似文献   

16.
17.
AimTumor necrosis factor α (TNF-α) influences the pathogenesis of lung-fibrosis and carcinogenesis in normal cells. Polymorphisms of this gene are suggested to be associated with susceptibility to lung-diseases. Additionally TNF-α is postulated to play a significant role in regulating. Transforming growth factor (TGF-β1) expression Therefore we investigated if the TNF-α or TGF-β1 gene expression level is different within the ?308 TNF-α genotypes.MethodsQuantitative Real-time PCR of TNF-α and TGF-β1 was performed in 178 Germans. Calculations of expression were made with the 2?ΔΔCT method. Detection of the ?308 promoter polymorphism of the TNF-α gene was performed by rapid capillary PCR with melting curve analysis.ResultsThe relative TNF-α mRNA expression revealed significant differences between the TNF-α ?308 homozygote wild-type G/G (0.00079 ± 0.00011; n = 113) and the heterozygote genotype G/A (0.0005 ± 0.00008; n = 52; p = 0.030) as well as between homozygote wild-type G/G and the homozygote mutant A/A (0.00029 ± 0.00009; n = 5; p = 0.004). The relative TGF-β mRNA expression showed, similar to TNF-α, the highest mRNA expression was seen within the TNF-α ?308 homozygote wild-types, while the lowest mRNA expression lay within the homozygote mutant-types.ConclusionOur findings suggest that the G-allele of TNF-α ?308 is associated with a significantly higher TNF-α mRNA expression compared to the A-allele and that this also reflects in TGF-β expression. Therefore we support the thesis that TGF-β is regulated by TNF-α.  相似文献   

18.

Background

Pro-inflammatory cytokines possess osteoclastogenic or anti-osteoclastogenic activities. They influence osteoclasts directly or via the receptor activator of nuclear factor κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) system. Recent evidence suggests that inflammation may play a role in osteoporosis (OP) and osteoarthritis (OA). We aimed therefore to determine whether there is a difference between both groups: first, in the expression of the osteoclastogenic and anti-osteoclastogenic cytokines, second, in correlation of these cytokines with bone mineral density (BMD) and levels of bone turnover markers (BTM) and third, in correlation between the expression of these cytokines and osteoclast specific genes and RANK/RANKL/OPG genes.

Methods

Human bone samples from 54 age and sex matched patients with OP or OA were collected during hip arthroplasty surgery. The expression of 25 genes encoding pro-inflammatory cytokines, their receptors, osteoclast specific genes and RANK/RANKL/OPG genes was measured using quantitative real-time PCR. Total hip, femoral neck and lumbar spine BMD and BTM in blood samples were measured. The comparison between OP and OA was assessed using Student''s t-test or Mann-Whitney U test and correlations between gene expression, BMD and BTM were determined using nonparametric correlation.

Results

The results demonstrated a higher expression of interleukin (IL)-6 and IL-1α in OP, and interferon (IFN)-γ in OA (p < 0.0005). Negative correlations of total hip BMD with tumor necrosis factor-α (TNF-α) in OA and with RANKL/RANK in OP were found (p < 0.05). Significant correlations with BTM were shown for IL-1α and IFN-γ in OP (rho = 0.608 and -0.634) and for TNF-α, IL-6 and transforming growth factor-β1 (TGF-β1) in OA (rho = 0.591, -0.521 and 0.636). Results showed OP specific negative correlations (IFN-γ with ITGB3, IFN-β1 with CTSK, tartrate resistant acid phosphatase (TRAP), CALCR, RANK, RANKL, IL-1α with CTSK, OPG, IL-17A with CALCR) and positive (TGF-β1 with CTSK, TRAP, RANK), and OA specific negative (IL-1α with osteoclast associated immunoglobulin-like receptor (OSCAR), TNF-α with RANK, RANKL, OPG) and positive (IL-6 with RANK, RANKL, OPG) correlations.

Conclusions

Our results demonstrate that the relationship between osteoclastogenic and anti-osteoclastogenic pro-inflammatory cytokines differs in human OP and OA bone and could present an important factor for characteristics of OP and OA bone phenotypes.  相似文献   

19.
Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) are typical proinflammatory cytokines that influence various cellular functions, including metabolism of the extracellular matrix. We examined the roles of IL-1beta and TNF-alpha in basement membrane formation in an in vitro model of alveolar epithelial tissue composed of alveolar epithelial cells and pulmonary fibroblasts. Formation of the basement membrane by immortalized rat alveolar type II epithelial (SV40-T2) cells, which ordinarily do not form a continuous basement membrane, was dose-dependently upregulated in the presence of 2 ng/ml IL-1beta or 5 ng/ml TNF-alpha. IL-1beta or TNF-alpha alone induced increased secretion of type IV collagen, laminin-1, and nidogen-1/entactin, all of which contributed to this upregulation. In contrast, while SV40-T2 cells cultured with a fibroblasts-embedded type I collagen gel were able to form a continuous basement membrane, they failed to form a continuous basement membrane in the presence of IL-1beta or TNF-alpha. Fibroblasts treated with IL-1beta or TNF-alpha secreted matrix metalloproteinase (MMP)-9 and MMP-2, and these MMPs inhibited basement membrane formation and degraded the basement membrane architecture. Neither IL-1beta- nor TNF-alpha-treated SV40-T2 cells increased the secretion of MMP-9 and MMP-2. These results suggest that IL-1beta participates in basement membrane formation in two ways. One is the induction of MMP-2 and MMP-9 secretion by fibroblasts, which inhibits basement membrane formation, and the other is induction of basement membrane component secretion from alveolar epithelial cells to enhance basement membrane formation.  相似文献   

20.
Malignant transformation is highly associated with altered expression of cell surface N-linked oligosaccharides. These changes concern integrins, a family of cell surface glycoproteins involved in the attachment and migration of cells on various extracellular matrix proteins. The integrin alpha3beta1 is particularly interesting because of its role in migration and invasion of several types of metastatic tumours. In this study, alpha3beta1 from human bladder T24 carcinoma cells was purified and treated with peptide N-glycosidase F. Then the N-glycans of the alpha3 and beta1 subunits were characterized using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). In alpha3beta1 integrin the presence of high-mannose, hybrid and predominantly complex type N-oligosaccharides was shown. Unlike to normal epithelium cells, in both subunits of alpha3beta1 integrin from cancer cells, the sialylated tetraantennary complex type glycan Hex7HexNAc6FucSia4 was present. In a direct ligand binding assay, desialylated alpha3beta1 integrin exhibited significantly higher fibronectin-binding capability than untreated integrin, providing evidence that sialic acids play a direct role in ligand-receptor interaction. Moreover, alpha3beta1 integrin was shown to take part in T24 cell migration on fibronectin: anti-alpha3 antibodies induced ca 30% inhibition of wound closure. Treatment of T24 cells with swainsonine reduced the rate of bladder carcinoma cell migration by 16%, indicating the role of beta1,6 branched complex type glycans in this process. Our data show that alpha3beta1 integrin function may be altered by glycosylation, that both subunits contribute to these changes, and that glycosylation may be considered a newly found mechanism in the regulation of integrin function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号