首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyses an important step in isoprenoid biosynthesis in plants. In Hevea brasiliensis, HMGR is encoded by a small gene family comprised of three members, hmg1, hmg2 and hmg3. We have previously described hmg1 and hmg2 (Plant Mol Biol 16: 567–577, 1991). Here we report the isolation and characterization of hmg3 genomic and cDNA clones. In comparison to hmg1 which is more highly expressed in laticifers than in leaves, the level of hmg3 mRNA level is equally abundant in laticifers and leaves. In situ hybridization experiments showed that the expression of hmg3 is not cell-type specific while hmg1 is expressed predominantly in the laticifers. Primer-extension experiments using laticifer RNA showed that hmg1 is induced by ethylene while hmg3 expression remains constitutive. The hmg3 promoter, like the promoters of most house-keeping genes, lacks a TATA box. Our results suggest that hmg1 is likely to encode the enzyme involved in rubber biosynthesis while hmg3 is possibly involved in isoprenoid biosynthesis of a housekeeping nature.  相似文献   

2.
3.
The pivotal event for sterol-induced degradation of the cholesterol biosynthetic enzyme HMG-CoA reductase is binding of its membrane domain to Insig proteins in the endoplasmic reticulum. Insigs are carriers for gp78, an E3 ubiquitin ligase that marks reductase for proteasomal degradation. We report here the isolation of mutant Chinese hamster ovary cell lines, designated SRD-16, -17, and -18, in which sterol-induced ubiquitination and degradation of reductase are severely impaired. These cells were produced by chemical mutagenesis and selection with SR-12813, a compound that mimics sterols in stimulating ubiquitination and degradation of reductase. Each SRD cell line was found to contain a point mutation in one reductase allele, resulting in substitutions of aspartate for serine-60 (SRD-16), arginine for glycine-87 (SRD-17), and proline for alanine-333 (SRD-18). Sterols failed to promote ubiquitination and degradation of these reductase mutants, owing to their decreased affinity for Insigs. Thus, three different point mutations in reductase, all of which localize to the membrane domain, disrupt Insig binding and abolish sterol-accelerated degradation of the enzyme.  相似文献   

4.
5.
Wounded tuber tissue of potato ( Solanum tuberosum L. cv. Gloria) exposed to the monoterpene S-carvone did show neither suberization nor cambium layer formation, whereas these processes started after 2–4 days in control tissue. Suberized tissue was clearly visible 24 days after the start of the S-carvone treatment, when the concentrations of S-carvone and its bioconversion products in the tissue were almost zero and cambium layer formation had not yet started. The inhibition of wound healing coincided with a lack of induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, EC 1.1.1.34). The wounded potato tissue used as control, showed a transient induction of HMGR activity.
In S-carvone treated tissue, the activities of GR (glutathione reductase, EC 1.6.4.2) and AP (ascorbate peroxidase, EC 1.11.1.11) were induced, and the level of glutathione increased four- to five-fold.  相似文献   

6.
Short-term treatment of potato tuber (Solanum tuberosum L.) discs with CdCl2 changed glutathione reductase (GR) activity depending on cadmium ions concentrations, kind of tuber and time of incubation. The increase of GR activity at 10 and 100 μmol·dcm−3 of CdCl2 solutions was marked in less resistant tissues of cv. Bintje after 24 hrs, and was slight in more resistant tissues of cv. Bzura after 72 hrs. At 1 mmol·dcm−3 concentration of CdCl2 rapid and total inactivation in both kind of tissues was observed, which disappeared after a few days. However this elevation was faster in more resistant tissues. These inhibition effects come from the inactivation process of GR by cadmium. The values of KI for cadmium and KM for GSSG of GR from potato tuber tissues indicated that enzyme from more resistant tissues possessed lower affinity to toxic metal and higher affinity to substrate.  相似文献   

7.
【目的】3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)是保幼激素(JH)合成途径的限速酶。麦红吸浆虫Sitodiplosis mosellana是一种典型的专性幼虫滞育昆虫。本研究旨在探讨HMGR基因在麦红吸浆虫滞育和发育变态过程中的作用。【方法】通过RT-PCR和RACE技术克隆麦红吸浆虫滞育前幼虫HMGR基因全长cDNA序列;利用生物信息学软件分析HMGR基因核苷酸和其编码的蛋白氨基酸序列特性;采用qPCR技术测定其在麦红吸浆虫滞育不同时期3龄幼虫及不同发育阶段(1-2龄幼虫、预蛹、初蛹、中蛹和后蛹以及雌雄成虫)中的mRNA表达水平。【结果】克隆获得一条麦红吸浆虫HMGR基因全长cDNA序列,命名为SmHMGR(GenBank登录号: MG876766)。该基因全长2 548 bp,其中开放阅读框长2 328 bp,编码775个氨基酸,预测的蛋白分子量为84.16 kD,理论等电点为8.29。序列分析发现该基因编码的蛋白具有HMGR蛋白家族典型的HMG-CoA-reductase-classⅠ催化功能域及其他保守功能基序;序列比对和系统发育分析表明,SmHMGR与达氏按蚊Anopheles darling等长角亚目(Nematocera)昆虫HMGR的相似性最高、亲缘关系最近。SmHMGR在麦红吸浆虫滞育前的3龄早期幼虫中表达量显著升高,进入滞育后一直维持较高水平,并在滞育后静息阶段的当年12月至翌年1月达到最高。SmHMGR在蛹期表达量低于幼虫期,预蛹期表达量最低;在雌成虫中表达量显著高于在蛹和雄成虫中的表达量。【结论】SmHMGR的表达与麦红吸浆虫发育密切相关,可能在滞育诱导、维持及滞育后静息状态的维持及生殖中发挥作用,其表达量的降低可能参与了幼虫到蛹的变态。  相似文献   

8.
Rat liver microsomes and microsomal extracts contain an enzymic activity which competes with 3-hydroxy-3-methylglutaryl coenzyme A reductase for 3-hydroxy-3-methylglutaryl coenzyme A. The presence of this activity in enzyme preparations causes errors in the determination of reductase activity and its properties. This contaminant can be removed by gel filtration using Bio-Gel A 1.5m, by washing the microsomes, or by incubating the microsomal extract at 37 °C. The Km's of the reductase (free of this competing enzymic activity) for d-3-hydroxy-3-methylglutaryl coenzyme A and NADPH are 1.3 and 26 μm, respectively.  相似文献   

9.
Cultured C-6 glial and neuroblastoma cells were utilized to study the effect of the unnatural amino alcohol, N-isopropylethanolamine, on the microsomal enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase. Growth of both cell types in the presence of the compound was accompanied in 24 hr by a decrease in reductase activity to 25–35% of activity in control cells. The effect was accompanied by a comparable decrease in the rate of cholesterol synthesis. However, no comparable change occurred in cell growth, fatty acid synthetase activity, or in total protein synthesis from [3H]leucine. The data suggest that the polar head groups of microsomal membrane phospholipids play an important role in the regulation of reductase activity.  相似文献   

10.
The effects of compactin, a specific inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on the growth of alfalfa seedlings in vivo and the rhizogenesis of pepper explants in vitro were investigated. Compactin added to the agar medium inhibited the elongation of roots and hypocotyls of etiolated alfalfa seedlings. The growth inhibition was accompanied by strict inhibition of sterol synthesis. Addition of mevalonic acid, the direct product of 3-hydroxy-3-methylglutaryl coenzyme A reductase, together with compactin relieved the growth inhibition. The sterol level in the seedlings was also protected against the lowering effect of compactin. Similarly, the rhizogenetic process of cultured explants of pepper was inhibited by compactin and relieved by mevalonic acid. Several isoprenoid end products were tested in combination with compactin to determine which compounds, if any, might be limiting for growth. Exogenously supplied isoprenoids failed to relieve the growth inhibition of seedlings. In contrast, they partly relieved the growth inhibition of explants, suggesting their important role in plant growth. During the course of these experiments, it was also found that brassinolide caused remarkable growth inhibition and twisting of alfalfa seedlings.  相似文献   

11.
12.
Summary 1. The relationships among the mevalonic acid (MVA) forming enzyme, 3-hydroxy-3-methylglutaryl coenzyme A (CoA) reductase, cell growth and differentiation, and the cytotoxic effects of the reductase inhibitor lovastatin were studied in PC-12 cells, exposed to growth factors.2. When added individually, nerve growth factor (NGF), basic fibroblast growth factor, and epidermal growth factor induce an increase in HMG-CoA reductase activity in cells grown in serum-containing medium. In the presence of serum, the effect of NGF on HMG-CoA reductase is persistent.3. Short-term serum starvation and long-term NGF treatment, in combination, have an additive effect, resulting in a high reductase activity.4. Unlike serum and MVA, which downregulate levels of HMG-CoA reductase by accelerating its degradation, NGF upregulates reductase by slowing the rate of its degradation. This mechanism, however, appears to operate only in the presence of serum, as after prolonged growth with NGF in serum-free medium, cells have a low reductase activity.5. PC-12 cells grown in the absence of NGF are highly sensitive to lovastatin (25 µM) and more than 70% of the cells die after 48 hr. NGF confers lovastatin resistance on cells grown in the presence or in the absence of serum (only 30–40% cell death after 48 hr with lovastatin).6. NGF-induced resistance on lovastatin develops with time and is apparent only in the well-differentiated PC-12 cells whether or not the cells express a high reductase activity.7. Thus, levels of HMG-CoA reductase activity and lovastatin resistance in PC-12 cells are not directly correlated, though clearly inversed lovastatin cytotoxicity and elevated reductase activities are expressed during the period of cell proliferation.8. These data suggest that fully differentiated neuronal cells may not be affected by prolonged high doses of lovastatin.  相似文献   

13.
细胞分裂素、赤霉素、脱落酸、叶绿素、萜类等类异戊二烯物质,是植物中广泛存在的一类代谢产物,在植物生长发育过程中起着非常重要的作用。一些萜类化合物作为药物的合成前体或有效的药用成分在工农业及医药生产上具有重要的经济价值。类异戊二烯物质主要通过甲羟戊酸代谢途径中的一系列酶催化合成,其中,3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase, HMGR)是该代谢途径中的第一个关键限速酶,能够将3-羟基-3-甲基戊二酰辅酶A转化成中间代谢产物甲羟戊酸。对植物HMGR基因的克隆、酶结构和功能分析、基因组织表达及调控等方面进行了综述,旨在为其在重要农作物的遗传改良、代谢产物工程植物创制以及植物亲缘关系分析中的应用等研究提供理论依据。  相似文献   

14.
15.
Ness GC  Holland RC 《FEBS letters》2005,579(14):3126-3130
In contrast with the accelerated degradation observed in tumor cells in response to sterols, hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase turnover in whole animals was not increased by dietary cholesterol. Furthermore, treating rats with lovastatin to lower hepatic cholesterol levels did not decrease the rate of degradation. The half-life remained in the 6 h range. Co-immunoprecipitation studies revealed that the amount of ubiquitin associated with the reductase was entirely dependent upon the amount of microsomal protein subjected to immunoprecipitation. The results indicate that in liver, neither the rate of reductase protein degradation nor the ubiquitin-proteasome system appear to play roles in mediating changes in HMG-CoA reductase protein levels in response to dietary cholesterol.  相似文献   

16.
Differential expression within a family of novel wound-induced genes in potato   总被引:23,自引:0,他引:23  
Summary Wounding in higher plants leads to an increased synthesis of specific messenger RNAs. A cDNA clone complementary to a wound-induced message from potato tubers was used to isolate a lambda clone from a genomic library of Salanum tuberosum var. Maris Piper. DNA sequence analysis has shown that this single genomic clone contains two novel wound-induced genes, called win1 and win2, organised in close tandem array. The coding sequences of these two genes are highly homologous and are interrupted by a single intron. However, the sequences of the introns and flanking regions have diverged widely. Win1 and win2 encode cysteine-rich proteins of 200 and 211 amino-acids, respectively, which show striking homologies to several chitin-binding proteins. Southern analysis of genomic DNA has shown that win1 and win2 are members of a small multi-gene family which is estimated to have a minimum of five members per haploid genome of Maris Piper and appears to be conserved within the Solanaceae. We have shown by Northern analysis and S1 mapping that the two genes exhibit differential organ-specific expression after the wounding of a potato plant.  相似文献   

17.
Transgenic alfalfa plants harboring a gene fusion between the soybean leghemoglobin (lbc3) promoter region and the chloramphenicol acetyl transferase (cat) gene were used to determine the influence of rhizobial mutants on lb gene expression in nodules. The promoter region of the Sesbania rostrata glb3 (Srglb3) leghemoglobin gene was examined for the presence of conserved motifs homologous to binding site 1 and 2 of the soybean lbc3 promoter region, found to interact with a trans-acting factor present in soybean nodule nuclear extracts (Jensen EO, Marcker KA, Schell J, de Bruijn FJ, EMBO J 7: 1265–1271, 1988). Subfragments of the S. rostrata glb3 (Srglb3) promoter region were examined for binding to trans-acting factors from nodule nuclear extracts. In addition to the binding sites previously identified (Metz BA, Welters P, Hoffmann HJ, Jensen EO, Schell J, de Bruijn FJ, Mol Gen Genet 214: 181–191), several other sites were found to interact with trans-acting factors. In most cases the same trans-acting factor(s) were shown to be involved. One fragment (202) was found to bind specifically to a different factor (protein) which was extremely heat-resistant (100°C). The appearance of this factor was shown to be developmentally regulated since the expected protein-DNA complexes were first observed around 12 days after infection, concomitant with the production of leghemoglobin proteins. Fragments of the Srglb3 5 upstream region were fused to the -glucuronidase reporter gene with its own CAAT and TATA box region or those of the cauliflower mosaic virus 35S and nopaline synthase (nos) promoters. These constructs were used to generate transgenic Lotus corniculatus plants and their expression was measured in different plant tissues. The Srglb3 CAAT and TATA box region was found to be required for nodule-specific expression and several upstream enhancer-type regions were identified.  相似文献   

18.
We have isolated a cDNA encoding transaldolase, an enzyme of the pentose-phosphate pathway, from potato (Solanum tuberosum). The 1.5 kb cDNA encodes a protein of 438 amino acid residues with a molecular mass of 47.8 kDa. When the potato cDNA was expressed in Escherichia coli a 45 kDa protein with transaldolase activity was produced. The first 62 amino acids of the deduced amino acid sequence represent an apparent plastid transit sequence. While the potato transaldolase has considerable similarity to the enzyme from cyanobacteria and Mycobacterium leprae, similarity to the conserved transaldolase enzymes from humans, E. coli and Saccharomyces cerevisiae is more limited. Northern analysis indicated that the transaldolase mRNA accumulated in tubers in response to wounding. Probing the RNA from various potato tissues indicated that the transaldolase mRNA accumulation to higher levels in the stem of mature potato plants than in either leaves or tubers. These data are consistent with a role for this enzyme in lignin biosynthesis.  相似文献   

19.
20.
A genomic DNA clone encoding an aspartic proteinase inhibitor of potato was isolated from a lambda EMBL3 phage library using the aspartic proteinase inhibitor cDNA as a hybridization probe. The gene has all characteristic sequences normally found in eucaryotic genes. Typical CAAT and TATA box sequences were found in the 5-upstream region. In this part are also two putative regulatory AGGA box sequences located. In the genomic sequence there are no intron sequences interrupting the coding region. An open reading frame of the gene encodes a precursor protein of 217 amino acids which shows high percent identity with the aspartic proteinase inhibitor cDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号