首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mendes S  Newton J  Reid RJ  Zuur AF  Pierce GJ 《Oecologia》2007,151(4):605-615
Teeth from male sperm whales (Physeter macrocephalus) stranded in the North-eastern Atlantic were used to determine whether chronological profiles of stable isotope ratios of C (δ13C) and N (δ15N) across dentine growth layers could be used to detect known ontogenetic benchmarks in movements and trophic ecology. Profiles showed a general decrease in δ13C (median = 1.91‰) and an increase in δ15N (median = 2.42‰) with age. A marked decline in δ13C occurred for all 11 teeth around 9–10 years and again for six individuals around 20 years. After the early twenties the δ13C continued to decline with age for all teeth. These results are consistent with males segregating from natal groups in low latitudes with the onset of puberty between 4 and 15 years and gradually dispersing pole-ward into 13C-depleted temperate waters. Penetration into further depleted, productive high latitudes after the age of 20 might facilitate the spurt of accelerated growth rate observed around this age. Breeding migrations back to lower latitudes were not reflected in the δ13C profiles possibly due to being short compared to the time spent feeding in high latitudes. The timings of marked isotopic change in the δ15N profiles reflect those of the δ13C profiles, suggesting a link between dietary changes and movements. The observed increase in δ15N with age is likely to be caused by a trophic level increase as males grow in size, probably feeding on larger prey. An additional explanation could be that, in the higher latitudes of the North Atlantic, the main prey source is the high trophic level squid Gonatus fabricii. Also, the lower latitudes from where males disperse are depleted in basal 15N. Profiles of δ13C and δ15N in sperm whale teeth gathered from different regions, sexes, and periods in time, could provide a unique way to understand the ecology of this species across different oceans.  相似文献   

2.
Compound-specific stable isotope analysis (CSIA) of amino acids is a new method that enables estimates of trophic position for consumers in food webs. We examined the nitrogen isotopic composition (δ15N) of amino acids of Japanese social insects (three bee, three wasp, and four hornet species) to evaluate the potential of CSIA of amino acids in studies of terrestrial food webs. For wasps, we also examined samples at different growth stages (ranging from egg to adult) to assess the effect of metamorphosis on CSIA estimates of trophic position. The δ15N values of bulk tissues for Japanese social insects are only weakly correlated with the biologically expected trophic positions. In contrast, the trophic positions estimated from the δ15N values of amino acids (yielding values of between 2.0 and 2.3 for bees, between 2.8 and 3.3 for wasps, and between 3.5 and 4.1 for hornets) are consistent with the biologically expected trophic positions for these insects (i.e., 2.0 for bees, 3.0 for wasps, and 3.0–4.0 for hornets). Although large variability is observed among the δ15N values of individual amino acids (e.g., ranging from 3.0 to 14.9‰ for phenylalanine), no significant change is observed in the trophic position during wasp metamorphosis. Thus, the CSIA of amino acids is a powerful tool for investigating not only aquatic food webs but also terrestrial food webs with predatory insects.  相似文献   

3.
When using stable isotopes as dietary tracers it is essential to consider effects of nutritional state on isotopic fractionation. While starvation is known to induce enrichment of 15N in body tissues, effects of moderate food restriction on isotope signatures have rarely been tested. We conducted two experiments to investigate effects of a 50–55% reduction in food intake on δ15N and δ13C values in blood cells and whole blood of tufted puffin chicks, a species that exhibits a variety of adaptive responses to nutritional deficits. We found that blood from puffin chicks fed ad libitum became enriched in 15N and 13C compared to food-restricted chicks. Our results show that 15N enrichment is not always associated with food deprivation and argue effects of growth on diet–tissue fractionation of nitrogen stable isotopes (Δ15N) need to be considered in stable isotope studies. The decrease in δ13C of whole blood and blood cells in restricted birds is likely due to incorporation of carbon from 13C-depleted lipids into proteins. Effects of nutritional restriction on δ15N and δ13C values were relatively small in both experiments (δ15N: 0.77 and 0.41‰, δ13C: 0.20 and 0.25‰) compared to effects of ecological processes, indicating physiological effects do not preclude the use of carbon and nitrogen stable isotopes in studies of seabird ecology. Nevertheless, our results demonstrate that physiological processes affect nitrogen and carbon stable isotopes in growing birds and we caution isotope ecologists to consider these effects to avoid drawing spurious conclusions.  相似文献   

4.
Carbon and nitrogen stable isotopes are frequently used to study energy sources and food web structure in ecosystems, and more recently, to study the effects of anthropogenic stress on aquatic ecosystems. We investigated the effect of nutrient enrichment on δ13C and δ15N in fine (FPOM), coarse (CPOM) particulate organic matter, periphyton, invertebrates and fish in nine boreal streams in south-central Sweden. In addition, we analysed the diet of benthic consumers using stable isotope data. Increases in δ15N of periphyton (R 2 = 0.88), CPOM (0.78), invertebrates (0.92) and fish (0.89) were related to nutrient enrichment. In contrast, δ13C signatures did not change along the nutrient gradient. Our results show that δ15N has potential as a sensitive indicator of nutrient enrichment in boreal streams. Carbon and nitrogen isotopes failed to elucidate putative diets of selected aquatic consumers. Indeed, comparison of low- and high-impact sites showed that δ13C of many consumers were found outside the ranges of basal resource δ13C. Moreover, ranges of basal resource δ13C and δ15N overlapped at both low and high sites, making discrimination between the importance of allochthonous and autochthonous production difficult. Our findings show that a fractionation rate of 3.4‰ is not always be appropriate to assess trophic interactions, suggesting that more studies are needed on fractionation rates along gradients of impairment. Handling editor: M. Power  相似文献   

5.
Stable isotopes of carbon (δ13C) and nitrogen (δ15N) often have unique values among lake habitats (e.g. benthic, littoral, pelagic), providing a widely used tool for measuring the structure and energy flow in aquatic food webs. However, there has been little recognition of the spatial and temporal variabilities of these isotopes within habitats of aquatic ecosystems. To address this, δ13C and δ15N were measured in seston, zebra mussels (Dreissena polymorpha) and young-of-year (YOY) yellow (Perca flavescens), and white perch (Morone americana) collected from four sites across the offshore habitat of the western basin of Lake Erie during June–September 2009. Values of δ13C and δ15N showed significant spatial and temporal variations, with month accounting for >50% of the variation, for both stable isotopes and all the species except seston. Such variation in isotope values has the potential to significantly influence or confound interpretation of stable isotopes in measures, such as trophic position (TP) which use lower trophic level organisms as their baseline. For example, TP was found to vary up to 0.7 for yellow and white perch (TP = δ15Nfish − δ15Nzebra mussel/diet-tissue fractionation factor) depending on the zebra mussel data used (e.g., from a different location or a different collection month). As the use of stable isotopes continues to move from qualitative to more quantitative measures of trophic structure, food web research must recognize the importance of stable isotopes' variability in lower trophic level organisms, especially in large lake systems.  相似文献   

6.
Studies of food webs often employ stable isotopic approaches to infer trophic position and interaction strength without consideration of spatio-temporal variation in resource assimilation by constituent species. Using results from laboratory diet manipulations and monthly sampling of field populations, we illustrate how nitrogen isotopes may be used to quantify spatio-temporal variation in resource assimilation in ants. First, we determined nitrogen enrichment using a controlled laboratory experiment with the invasive Argentine ant (Linepithema humile). After 12 weeks, worker δ15N values from colonies fed an animal-based diet had δ15N values that were 5.51% greater compared to colonies fed a plant-based diet. The shift in δ15N values in response to the experimental diet occurred within 10 weeks. We next reared Argentine ant colonies with or without access to honeydew-producing aphids and found that after 8 weeks workers from colonies without access to aphids had δ15N values that were 6.31% larger compared to colonies with access to honeydew. Second, we sampled field populations over a 1-year period to quantify spatio-temporal variability in isotopic ratios of L. humile and those of a common native ant (Solenopsis xyloni). Samples from free-living colonies revealed that fluctuations in δ15N were 1.6–2.4‰ for L. humile and 1.8–2.9‰ for S. xyloni. Variation was also detected among L. humile castes: time averaged means of δ15N varied from 1.2 to 2.5‰ depending on the site, with δ15N values for queens ≥ workers > brood. The estimated trophic positions of L. humile and S. xyloni were similar within a site; however, trophic position for each species differed significantly at larger spatial scales. While stable isotopes are clearly useful for examining the trophic ecology of arthropod communities, our results suggest that caution is warranted when making ecological interpretations when stable isotope collections come from single time periods or life stages.  相似文献   

7.
Trophic patterns of omnivorous freshwater shrimps, Exopalaemon modestus and Macrobrachium nipponensis, were investigated in two shallow eutrophic lakes by using stable isotope analysis. δ15N and δ13C of M. nipponensis and E. modestus increased with increasing body weight, which might be attributed to larger individuals ingesting organisms that feed higher up the food chain and/or increased assimilation of benthic food items with enriched isotopic signatures. Of the freshwater shrimps occurring in the studied lakes, those from Lake Taihu had significantly elevated δ15N and δ13C values (4.3‰ and 1.8‰, respectively) compared with those from the less eutrophic Lake Chaohu, indicating that the isotopic signature might partially reflect the trophic states of their habitats. Mixing model results suggested that the benthic food web provides the primary carbon source for both shrimp species, and that E. modestus assimilated relatively more pelagic food sources than M. nipponensis in these lakes. Handling editor: S. Wellekens  相似文献   

8.
The use of stable isotopes to investigate animal diets, habitat use, and trophic level requires understanding the rate at which animals incorporate the 13C and 15N from their diets and the factors that determine the magnitude of the difference in isotopic composition between the animal’s diet and that of its tissues. We determined the contribution of growth and catabolic turnover to the rate of 13C and 15N incorporation into several tissues that can be sampled non-invasively (skin, scute, whole blood, red blood cells, and plasma solutes) in two age classes of a rapidly growing ectotherm (loggerhead turtles, Caretta caretta). We found significant differences in C and N incorporation rates and isotopic discrimination factors (Δ13C = δ13Ctissues − δ13Cdiet and Δ15N = δ15Ntissues − δ15Ndiet) among tissues and between age classes. Growth explained from 26 to 100% of the total rate of incorporation in hatchling turtles and from 15 to 52% of the total rate of incorporation in juvenile turtles. Because growth contributed significantly to the rate of isotopic incorporation, variation in rates among tissues was lower than reported in previous studies. The contribution of growth can homogenize the rate of isotopic incorporation and limit the application of stable isotopes to identify dietary changes at contrasting time scales and to determine the timing of diet shifts. The isotopic discrimination factor of nitrogen ranged from −0.64 to 1.77‰ in the turtles’ tissues. These values are lower than the commonly assumed average 3.4‰ discrimination factors reported for whole body and muscle isotopic analyses. The increasing reliance on non-invasive and non-destructive sampling in animal isotopic ecology requires that we recognize and understand why different tissues differ in isotopic discrimination factors.  相似文献   

9.
Investigations into trophic ecology and aquatic food web resolution are increasingly accomplished through stable isotope analysis. The incorporation of dietary and metabolic changes over time results in variations in isotope signatures and turnover rates of producers and consumers at tissue, individual, population and species levels. Consequently, the elucidation of trophic relationships in aquatic systems depends on establishing standard isotope values and tissue turnover rates for the level in question. This study investigated the effect of diet and food quality on isotopic signatures of four mussel tissues: adductor muscle, gonad, gill and mantle tissue from the brown mussel Perna perna. In the laboratory, mussels were fed one of the two isotopically distinct diets for 3 months. Although not all results were significant, overall δ13C ratios in adductor, mantle and gill tissues gradually approached food source signatures in both diets. PERMANOVA analyses revealed significant changes over time in tissue δ13C (mantle and gill) with both diets and in δ15N (all tissues) and C:N ratios (mantle and gill) for one diet only. The percentage of replaced carbon isotopes were calculated for the 3 month period and differed among tissues and between diets. The tissue with the highest and lowest amount of replaced isotopes over 81 days were mantle tissue on the kelp diet (33.89%) and adductor tissue on the fish food diet (4.14%), respectively. Percentages could not be calculated for any tissue in either diet for δ15N due to the lack of significant change in tissue nitrogen. Fractionation patterns in tissues for both diets can be linked to nutritional stress, suggesting that consumer isotopic signatures are strongly dependent on food quality, which can significantly affect the degree of isotopic enrichment within a trophic level.  相似文献   

10.
We provide preliminary carbon (δ13C) and nitrogen (δ15N) stable isotope assessment of the Greenland halibut (Reinhardtius hippoglossoides) diet in Cumberland Sound, with focus on two possible prey sources: pelagic represented by capelin (Mallotus villosus) and epibenthic represented by shrimp (Lebbeus polaris). The δ13C for the Greenland halibut stock indicated a pelagic carbon source in Cumberland Sound while stable isotope mixing models, IsoSource and MixSIR, indicated a 99% dietary composition of capelin relative to the shrimp. The δ15N did not vary across Greenland halibut size ranges and placed them at a fourth trophic position relative to a primary herbivore. This study provides the starting point for more elaborate Cumberland Sound research on the local Greenland halibut feeding ecology by confirming pelagic feeding and establishing relative trophic position as well as identifying stable isotopes as a useful tool for the study of diet in cold water fish species.  相似文献   

11.
Aberle N  Malzahn AM 《Oecologia》2007,154(2):291-303
Stable isotope signatures of primary producers display high inter- and intraspecific variation. This is assigned to species-specific differences in isotope fractionation and variable abiotic conditions, e.g., temperature, and nutrient and light availability. As consumers reflect the isotopic signature of their food source, such variations have direct impacts on the ecological interpretation of stable isotope data. To elucidate the variability of isotope fractionation at the primary producer level and the transfer of the signal through food webs, we used a standardised marine tri-trophic system in which the primary producers were manipulated while the two consumer levels were kept constant. These manipulations were (1) different algal species grown under identical conditions to address interspecific variability and (2) a single algal species cultivated under different nutrient regimes to address nutrient-dependent variability. Our experiments resulted in strong interspecific variation between different algal species (Thalassiosira weissflogii, Dunaliella salina, and Rhodomonas salina) and nutrient-dependent shifts in stable isotope signatures in response to nutrient limitation of R. salina. The trophic enrichment in 15N and 13C of primary and secondary consumers (nauplii of Acartia tonsa and larval herring) showed strong deviations from the postulated degree of 1.0‰ enrichment in δ13C and 3.4‰ enrichment in δ15N. Surprisingly, nauplii of A. tonsa tended to keep “isotopic homeostasis” in terms of δ15N, a pattern not described in the literature so far. Our results suggest that the diets’ nutritional composition and food quality as well as the stoichiometric needs of consumers significantly affect the degree of trophic enrichment and that these mechanisms must be considered in ecological studies, especially when lower trophic levels, where variability is highest, are concerned.  相似文献   

12.
Stable isotopes can be used to elucidate ecological relationships in community and trophic studies. Findings are calibrated against baselines, e.g. from a producer or primary consumer, assumed to act as a reference to the isotopic context created by spatio-temporal attributes such as geography, climate, nutrient, and energy sources. The ability of an organism to accurately represent a community base depends on how, and over what time-scale, it assimilates ambient materials. Freshwater mussels have served as references for trophic studies of freshwater communities and as indicators of change in nutrient pollution load or source. Their suitability as reference animals has not yet been fully explored, however. We conducted a series of studies examining the suitability of freshwater mussels as isotopic baselines, using their ability to reflect variation in ambient nutrient loads as a case scenario. (1) We analyzed bivalve foot tissue δ15N and δ13C from 22 stream reaches in the Piedmont region of North Carolina, USA to show that compositions varied substantially among locations. Site mean bivalve δ13C values correlated with site ambient particulate organic matter (POM) δ13C values, and site mean bivalve δ15N values correlated with site ambient water dissolved δ15N-NO3 values. (2) Similarity of results among sample types demonstrated that the minimally invasive hemolymph sample is a suitable substitute for foot tissue in δ15N analyses, and that small sample sizes generate means representative of a larger population. Both findings can help minimize the impact of sampling on imperiled freshwater mussel populations. (3) In a bivalve transplantation study we showed that hemolymph δ15N compositions responded to a shift in ambient dissolved δ15N-NO3, although slowly. The tissue turnover time for bivalve hemolymph was 113 days. We conclude that bivalves serve best as biomonitors of chronic, rather than acute, fluctuations in stream nutrient loads, and provide initial evidence of their suitability as time-integrated isotopic baselines for community studies.  相似文献   

13.
Insects are the most diverse organisms and often the most abundant animals in some ecosystems. Despite the importance of their functional roles and of the knowledge for conservation, the trophic ecology of many insect species is not fully understood. In this review, I present how stable carbon (C) and nitrogen (N) isotopes have been used to reveal the trophic ecology of insects over the last 30 years. The isotopic studies on insects have used differences in C isotope ratios between C3 and C4 plants, along vertical profiles of temperate and tropical forest stands, and between terrestrial and aquatic resources. These differences enable exploration of the relative importance of the food resources, as well as movement and dispersal of insects across habitats. The 13C‐enrichment (approximately 3‰) caused by saprotrophic fungi can allow the estimation of the importance of fungi in insect diets. Stable N isotopes have revealed food resource partitioning across diverse insect species above and belowground. Detritivorous insects often show a large trophic enrichment in 13C (up to 3‰) and 15N (up to 10‰) relative to the food substrates, soil organic matter. These values are greater than those commonly used for estimation of trophic level. This enrichment likely reflects the prevalence of soil microbial processes, such as fungal development and humification, influencing the isotopic signatures of diets in detritivores. Isotope analysis can become an essential tool in the exploration of insect trophic ecology in terms of biogeochemical C and N cycles, including trophic interactions, plant physiological and soil microbial processes.  相似文献   

14.
To understand the year-round ecology of seabirds it is necessary not only to study the birds in their breeding grounds, but also to gain information about their movements during the inter-breeding period. Especially for the smaller procellariiform species, such studies are still scarce, mainly due to methodological problems. The recovery rates of banded birds are low and satellite tracking devices still far too heavy to equip these small birds. Here, we present data on foraging areas of Wilson’s storm-petrel Oceanites oceanicus inferred from stable isotope analysis. We compared ratios of δ13C and δ15N between different life-history stages and between the breeding and inter-breeding period. Samples of adult and chick feathers, chick down and egg-white were taken between 1996 and 2005 on King-George-Island, South Shetland Islands. δ13C values can be clearly distinguished between the breeding and inter-breeding period. During the inter-breeding period, most pre-breeders foraged in the same area as breeders, but four pre-breeders were found to forage in latitudes north of the Subtropical Front. In the 2002 inter-breeding period adult birds wintered further north than in 2003, which is in line with the different locations of food rich frontal systems in these years. We show that isotope ratios of both δ13C and δ15N increase from egg white, over chick down to chick feathers. We suggest that this isotopic change, due to a change in both foraging location and diet between egg production and chick feeding, may be used to trace the shift from the use of maternal resources from the egg to the uptake of nutrients from the diet.  相似文献   

15.
Lake Ellesmere (Te Waihora) is a nationally important coastal brackish lake in New Zealand, however degradation in water quality and loss of submerged macrophytes over past decades have raised concerns in regards to the declining status of the lake’s commercial and customary fisheries, predominantly targeted at shortfin eels (Anguilla australis). We investigated foodweb dynamics and trophic linkages to shortfin eels in Lake Ellesmere using a combination of abundance assessments, dietary studies, and stable isotope analyses. Data from our study are compared with historical data sets on benthic invertebrate community composition and shortfin eel diets to trace changes in the trophic linkages to top predators that have occurred since the late 1960s. Stable isotope analyses indicate that the foodweb is predominantly driven by epipelic and phytoplankton derived carbon sources, although it was difficult to discriminate between these two carbon pools because of wind-driven resuspension of lake sediments. Comparison of our survey results with historical data sets indicates a clear shift in benthic biota from being dominated by phytofaunal species such as Potamopyrgus antipodarum (comprising 90% of total invertebrate biomass) during the 1960s, to now being almost entirely comprised of subterranean species such as Chironomus zealandicus and oligochaetes (together comprising 82% of total invertebrate biomass). This shift in benthic communities has resulted in significant changes in the size-specific diet of juvenile shortfin eels (<400 mm) from those reported for Lake Ellesmere during the mid 1970s, with Chironomus larvae now comprising 65% of the diets of juvenile eels, whereas historically P. antipodarum was the dominant food item (>30% of total biomass). This shift towards foraging on smaller sediment-dwelling species could have implications for juvenile eel bioenergetics, and may help explain why juvenile shortfin growth rates have significantly decreased in past decades. Juvenile shortfins now appear to switch to foraging on preyfish (mainly common bullies, Gobiomorphus cotidianus) at a smaller size (≈400 mm) than historically recorded (>500 mm). Dietary and stable isotope signatures indicated that small shortfins (100–299 mm) have considerable overlap in trophic position (δ13C = −20.4‰, δ15N = 13.6‰) with common bullies (δ13C = −20.5‰, δ15N = 13.7‰), the dominant fish in Lake Ellesmere (92% of total abundance CPUE), potentially indicating that these two species may directly compete for food resources. These findings again highlighted the importance of C. zealandicus in sustaining the fish populations of the lake. Handling editor: S. Declerck  相似文献   

16.
Logan J  Haas H  Deegan L  Gaines E 《Oecologia》2006,147(3):391-395
Nitrogen stable isotopes are frequently used in ecological studies to estimate trophic position and determine movement patterns. Knowledge of tissue-specific turnover and nitrogen discrimination for the study organisms is important for accurate interpretation of isotopic data. We measured δ15 N turnover in liver and muscle tissue in juvenile mummichogs, Fundulus heteroclitus, following a laboratory diet switch. Liver tissue turned over significantly faster than muscle tissue suggesting the potential for a multiple tissue stable isotope approach to study movement and trophic position over different time scales; metabolism contributed significantly to isotopic turnover for both liver and muscle. Nitrogen diet-tissue discrimination was estimated at between 0.0 and 1.2‰ for liver and –1.0 and 0.2‰ for muscle. This is the first experiment to demonstrate a significant variation in δ15 N turnover between liver and muscle tissues in a fish species.  相似文献   

17.
The purpose of this study was to assess if there was trophic niche overlap of silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) in four large freshwater ecosystems from southern China using stable carbon and nitrogen isotopes (δ13C and δ15N). Multivariate analysis of variance (MANOVA) on the δ13C and δ15N values measured from muscle tissue indicates trophic niche overlap in one unproductive and one highly productive large system and trophic niche segregation in two systems with moderate watershed size and productivity. For these two coexisting planktivorous fish, which were hitherto believed to occupy different trophic niches, this study demonstrated that the degree of their trophic niche overlap varied according to ecosystem properties.  相似文献   

18.
Since 2006, the known distribution of Hemimysis anomala has greatly expanded in the Great Lakes ecosystem, with, to date, 45 sites of occurrence among 91 monitored sites, located in four of the Great Lakes and the upper St. Lawrence River. By means of carbon and nitrogen stable isotopes, a first assessment of the feeding ecology of Hemimysis was completed. The δ13C values of 18 individuals collected in Lake Erie (Port Mainland) on a single date (Sept. 23, 2008) ranged from −30.2 to −24.5‰, indicating that Hemimysis could feed on multiple carbon sources including pelagic and littoral autochthonous and terrestrial carbon. In Lake Erie, variation in δ13C was related to δ15N, indicating the importance of food source for determining the trophic position of Hemimysis. The δ15N signatures of individuals were strongly related to their C/N ratios, suggesting that variations in the nutritional value of Hemimysis may depend on trophic position. Isotopic variation among individuals in Lake Erie was complemented by temporal variation in Lake Ontario. Monthly changes (from June to December 2008) in carbon isotope signatures were observed and related to changes in water temperature, highlighting the variations in the baseline prey signatures that fuel Hemimysis diets. The observed variation in stable isotope signatures occurring among individuals within a localized Hemimysis assemblage and temporally should be considered as a key design feature in further studies attempting to identify the possible effects of Hemimysis on nearshore food webs in the Great Lakes.  相似文献   

19.
To investigate migratory connectivity in the Reed Warbler Acrocephalus scirpaceus, we analysed (1) all available sub-Saharan ringing recoveries and (2) stable isotopes in feathers grown in Africa sampled at 17 European breeding sites across a migratory divide. A cluster analysis of ringing recoveries showed remarkable connectivity between breeding and non-breeding grounds. Two main clusters represented populations taking the two main migratory routes [southwesterly (SW) and southeasterly (SE)]. Stable isotope analysis confirmed the separation of wintering areas of SW- and SE-migrating populations. Higher δ15N values in feathers of SE-migrating birds indicated that they occupied more xeric biome types. Values of δ13C that did not differ significantly among populations were higher than those from feathers of known European origin and indicated a C4 biome. Three populations with an unknown migratory direction were assigned to the SE-migrating populations on the basis of δ15N values.  相似文献   

20.
Facultative hyperparasitism is likely to be the most common form of intraguild predation among parasitoids. However, difficulties associated with studying facultative hyperparasitoids in the field have hampered a thorough understanding of their trophic ecology. In this study, we used a combination of stable isotope analysis and published natural history information to infer trophic interactions in a guild of field-collected primary parasitoids and facultative hyperparasitoids that attack a gall-making midge on Baccharis pilularis. Our three a priori hypotheses were: (1) stable isotope values should increase incrementally from the host plant to higher trophic levels; (2) the two species of ectoparasitoids should exhibit higher stable isotope signatures than the two endoparasitoids, and; (3) the two facultative hyperparasitoids should exhibit stable isotope signatures that fall between zero and one trophic level steps above that observed for the primary parasitoids. Food webs inferred from stable isotope data generally agreed with previously published accounts of community structure. As expected, both δ13C and δ15N were progressively enriched in the heavy isotope from the host plant to the herbivorous midge to the parasitic wasps. Multivariate analysis of stable isotope data revealed that the two primary ectoparasitoids occupied a similar trophic niche, but were significantly different from the primary endoparasitoids. We attribute this result to “coincidental intraguild predation” by ectoparasitoids that develop on already-parasitized midge larvae. One of the facultative hyperparasitoids, Zatropis capitis, exhibited a stable isotope signature approximately one trophic step above the primary parasitoids. Unexpectedly, the second facultative hyperparasitoid, Mesopolobus sp., appeared to be developing as a primary parasitoid at all sites. Coupled with independent assessments of community structure, stable isotope analysis validated trophic links constructed by previous researchers and identified potential taxon-specific differences in trophic interactions for two facultative hyperparasitoids in the B. pilularis gall community.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号