首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The controlled synthesis of biodegradable copolymers of dextran grafted with aliphatic polyesters first requires the preparation of polysaccharide derivatives soluble in organic solvents. Silylation of dextran can thus lead to such organosoluble derivatives and allows the polymerization of cyclic esters initiated from the nonsilylated OH functions. Silylation of dextran was studied in DMSO by different reactants such as 1,1,1,3,3,3-hexamethyldisilazane (HMDS) in the presence of various catalysts and N,O-bis(trimethylsilyl)acetamide (BSA). According to the silylating agent and the used experimental conditions, it was possible to obtain highly or totally silylated dextrans. In parallel, an investigation of the chemical stability of the dextran chain during silylation was performed. Thus, it was found that, when used at 50 degrees C, HMDS with or without catalysts gives a relatively high silylation yield and does not alter the dextran chain length, whereas at 80 degrees C, dextran degradation was observed. BSA is a very good silylating agent, which allows reaching 100% silylation even at 50 degrees C but provokes the degradation of the polysaccharide chains. The work was completed by a study of the reactivity order of the glucosidic OH functions toward silylation reaction. This order was found to be (OH(2) > OH(4) > OH(3)) as already reported for other reactions. 2D-NMR of highly silylated dextrans demonstrated that they are constituted of both quantitatively silylated glucose units and two types of disilylated ones.  相似文献   

2.
An efficient and chemoselective procedure for preparing highly organosoluble 3,6-di-O-tert-butyldimethylsilyl (TBDMS)-chitosan and chitooligosaccharides is reported. The selective modification of the chitooligosaccharides with 0.50 degree of N-acetylation was achieved by using TBDMSCl as the reagent in combination with DMF/imidazole. These protocols yielded partly TBDMS-substituted chitooligosaccharides that were subsequently reacted with TBDMSOTf in dichloromethane in order to silylate the remaining, more sterically hindered hydroxyl groups. In the case of the chitosan polymer, a mesylate salt of chitosan was silylated using TBDMSCl in DMSO, yielding full silylation of the hydroxyl groups without using N-protection groups. The silyl-protected polymers displayed excellent solubility in a number of common organic solvents. The 3,6-di-O-TBDMS-chitosan and chitooligosaccharides were reacted with acetic anhydride, and deprotected to obtain the corresponding N-acetyl derivatives (chitin and chitinoligosaccharide). Our results show that the readily prepared 3,6-di-O-TBDMS-chitosan and chitooligosaccharides are useful precursors for selective N-modifications in common organic solvents.  相似文献   

3.
Specificity of sugar-phospholipid interactions   总被引:1,自引:0,他引:1  
Previous studies by Lefevre et al. (6) have shown that phospholipids stimulate uptake of glucose and other sugars by lipid solvents and enhance transfer of glucose through solvent layers into water. In this paper the specificity of the process for different sugars is investigated by following uptake from thin films of sugars or from glass fiber strips coated with radioactive sugars. Hexoses were taken up slowly to molar ratios of sugar to lipid phosphorus of about 1:1. Pentoses and deoxy sugars were taken up 5–10 times more rapidly to molar ratios of between 1.5 and 2.5:1. Relative rates of formation of the complexes at 25 °C were (d-glucose = 1.0):l-fucose, 9.1; d-ribose, 6.1; d-arabinose, 5.5; l-rhamnose, 3.8; l-arabinose, 3.7; d-xylose, 3.6; d-lyxose, 3.1; 3-O-methyl-d-glucose, 1.52; d-mannose, 1.36; d-galactose, 1.13; sucrose, 0.03; and lactose, 0.015. Radioactive sugars bound to phospholipids exchanged readily with unlabeled sugar in the anhydrous state and the sugars passed slowly into the aqueous phase when the complexes were shaken with water. The relative rates of dissociation (d-glucose = 1.0): l-arabinose, 2.82; d-arabinose, 2.49; l-rhamnose, 2.26; l-fucose, 1.96; d-xylose, 1.65; 3-O-methyl-d-glucose, 0.37; d-galactose, 0.28 were in the same general order as formation, suggesting that a common intermediate may be involved in both processes. In general, sugars with high mutarotation rates reacted most rapidly indicating a possible relationship between the structural features which favor interaction with phospholipids and those which enhance mutarotation.  相似文献   

4.
Bacterium N.C.I.B. 8250, a non-saccharolytic strain of Acinetobacter calcoaceticus, is impermeable to extracellular sugars and sugar phosphates but contains intracellularly several glucogenic intermediates.  相似文献   

5.
The extent to which vacuolar sugar transport activity affects molecular, cellular, and developmental processes in Arabidopsis (Arabidopsis thaliana) is unknown. Electrophysiological analysis revealed that overexpression of the tonoplast monosaccharide transporter TMT1 in a tmt1-2::tDNA mutant led to increased proton-coupled monosaccharide import into isolated mesophyll vacuoles in comparison with wild-type vacuoles. TMT1 overexpressor mutants grew faster than wild-type plants on soil and in high-glucose (Glc)-containing liquid medium. These effects were correlated with increased vacuolar monosaccharide compartmentation, as revealed by nonaqueous fractionation and by chlorophyllab-binding protein1 and nitrate reductase1 gene expression studies. Soil-grown TMT1 overexpressor plants respired less Glc than wild-type plants and only about half the amount of Glc respired by tmt1-2::tDNA mutants. In sum, these data show that TMT activity in wild-type plants limits vacuolar monosaccharide loading. Remarkably, TMT1 overexpressor mutants produced larger seeds and greater total seed yield, which was associated with increased lipid and protein content. These changes in seed properties were correlated with slightly decreased nocturnal CO2 release and increased sugar export rates from detached source leaves. The SUC2 gene, which codes for a sucrose transporter that may be critical for phloem loading in leaves, has been identified as Glc repressed. Thus, the observation that SUC2 mRNA increased slightly in TMT1 overexpressor leaves, characterized by lowered cytosolic Glc levels than wild-type leaves, provided further evidence of a stimulated source capacity. In summary, increased TMT activity in Arabidopsis induced modified subcellular sugar compartmentation, altered cellular sugar sensing, affected assimilate allocation, increased the biomass of Arabidopsis seeds, and accelerated early plant development.Sugars fulfill an extraordinarily wide range of functions in plants as well as in other organisms. They serve as valuable energy resources that are easy to store and remobilize. Sugars are required for the synthesis of cell walls and carbohydrate polymers. They are also necessary for starch accumulation and serve as precursors for a range of primary and secondary plant intermediates. From a chemical point of view, sugars represent a large class of metabolites. Among the prominent members in higher plants are the monosaccharides Glc and Fru and the disaccharide Suc (ap Rees, 1994).In contrast to heterotrophic organisms, plants are able to synthesize sugars de novo and to degrade them via oxidative or fermentative metabolism (Heldt, 2005). Net sugar accumulation in plants takes place during the day, whereas net degradation of stored carbohydrate reserves takes place the following night. In higher plants, autotrophic and heterotrophic organs appear to be interconnected by phloem for long-distance transport of sugars (Ruiz-Medrano et al., 2001). Accordingly, sugars must be transported within cells, between cells, and between plant organs. Given these factors, along with the outstanding importance of sugars, it is not surprising that plants sense intracellular sugar availability and use this information to coordinate the expression of many genes (Koch, 1996; Moore et al., 2003).In Arabidopsis (Arabidopsis thaliana), about 60 genes code for putative monosaccharide transport proteins and about 10 genes encode predicted disaccharide carriers (Lalonde et al., 2004). Transport of neutral sugars has been monitored across the plasma membrane, the chloroplast envelope, and the vacuolar membrane (Weber et al., 2000; Niittylä et al., 2004; Martinoia et al., 2007). So far, all sugar carriers residing in the plant plasma membrane have been characterized to catalyze proton-coupled sugar movement (Sauer, 1992; Büttner and Sauer, 2000; Carpaneto et al., 2005). In contrast, both facilitated diffusion and proton-driven antiport mechanisms have been described for monosaccharide and Suc transport across the vacuolar membrane (Thom and Komor, 1984; Daie and Wilusz, 1987; Martinoia et al., 1987; Shiratake et al., 1997; Neuhaus, 2007).In plants, vacuoles fulfill critical functions in the long-term and temporary storage of sugars, sugar alcohols, and other primary metabolites such as carboxylates and amino acids (Dietz et al., 1990; Rentsch and Martinoia, 1991; Martinoia and Rentsch, 1992; Emmerlich et al., 2003). Recently, the first solute carriers responsible for vacuolar Suc and inositol transport have been identified (Endler et al., 2006; Schneider et al., 2008). In addition, TMT (for tonoplast monosaccharide transporter) and VGT (for vacuolar Glc transporter) were the first vacuolar carrier proteins proven to have transport capacity for both Glc and Fru (Wormit et al., 2006; Aluri and Büttner, 2007).TMT exists in three isoforms in Arabidopsis (TMT1–TMT3), and orthologs have been found in other plant species like grapevine (Vitis vinifera), barley (Hordeum vulgare), and rice (Oryza sativa; Wormit et al., 2006). In Arabidopsis, the genes TMT1 and TMT2 are expressed in various tissues, whereas TMT3 is hardly expressed throughout the entire plant life cycle (Wormit et al., 2006). Interestingly, TMT1 and TMT2 are induced by Glc, salt, drought, and cold stress (Wormit et al., 2006), and vacuoles isolated from a TMT1 loss-of-function (T-DNA) Arabidopsis mutant showed reduced Glc import capacity in comparison with corresponding wild-type organelles (Wormit et al., 2006). Moreover, after transfer into the cold, these mutant leaves showed impaired ability to accumulate Glc and Fru, underscoring the in vivo function of TMT under selected conditions (Wormit et al., 2006).However, it is unknown to what extent overexpression of a vacuolar sugar carrier affects subcellular sugar allocation in Arabidopsis. In addition, whether increased vacuolar sugar transport influences sugar signaling, plant development, or organ properties has not been determined. Thus, it is unknown how important controlled activity of vacuolar monosaccharide transport is to plant development or physiological properties. To reveal whether TMT activity affects these processes, we created TMT1-overexpressing Arabidopsis lines and analyzed their physiological and molecular feedbacks.  相似文献   

6.
Borate complexed sugars, sugar phosphates, and nucleotides present in tissue extracts were separated and quantitated in 4 hr. An anion-exchange resin column and a programmed borate/acetate buffer gradient were used. Sugar residues were determined by a very sensitive orcinol/H2SO4 reaction. Samples required little preparation, and recovery of standard compounds added to tissue extracts was quantitative.  相似文献   

7.
为制取硫酸化菊糖,以硫酸钡比浊法测定硫酸基取代度(DS)、红外光谱测定含硫基团的特征吸收峰、核磁共振碳谱(13C NMR)判断硫酸根取代位置等方法,比较了以N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)和吡啶(Py)三种溶剂,氯磺酸(CA)和三氧化硫(SO3)两种硫酸化试剂对菊糖硫酸酯化的影响.结果表明:以吡啶为溶剂、氯磺酸为硫酸化试剂的方法(CA-Py)与SO3-Py、CA-DMF三种硫酸化方法均获得了硫酸化菊糖,产品均显示不对称S=O键伸缩振动(约1255 cm-1)和对称的C-O-S键伸缩振动(约810 cm-1)特征吸收峰;三种方法的DS分别为:1.24,0.89,1.83;三种产品的13C NMR基本相同,均表明硫酸根连接在C3、C5、C6上.DMSO不适宜用作硫酸化溶剂.三种硫酸化方法是成功的,但以SO3-Py法操作简便,最适于菊糖硫酸化.  相似文献   

8.
9.
龙须菜多糖脱硫酸化及免疫活性研究   总被引:1,自引:0,他引:1  
考察了Miller等和Nagasawa等报道的脱硫酸方法对龙须菜多糖硫酸基脱除效果,并比较了脱硫酸前后多糖的免疫活性变化。实验结果显示,采用Miller等报道的方法时,以草酸作为催化剂对硫酸基脱除效果最好,脱除率达到71.4%,远好于其他种类酸催化,但多糖回收率却只有36.4%;采用Nagasawa等报道的方法时,向二甲基亚砜溶液中加入10%甲醇比加入2%吡啶或2%吡啶+2%三甲基氯硅烷具有更好的脱硫酸基效果,硫酸基脱除率达到72.9%,回收率48.9%,是本次实验中效果最好的。免疫活性实验表明,当降低龙须菜多糖硫酸基含量时,免疫活性相应降低。  相似文献   

10.
Sugars and sugar phosphates enable vanadate to catalyze the oxidation of NADH. Superoxide dismutase inhibits this oxidation. Incubation of sugars with vanadate, prior to addition of NADH, accelerates this oxidation of subsequently added NADH and eliminates the lag phase otherwise noted. Incubation of sugars with vanadate also results in the reduction of vanadate to vanadyl, with appearance of a blue-green color probably associated with a vanadyl-vanadate complex. It appears that sugars reduce vanadate to vanadyl which, in turn, reduces O2 to O2 and that vanadate plus O2 then catalyzes the oxidation of NAD(P)H by a free radical chain reaction. Such oxidation of NAD(P)H may account for several of the biological effects of vanadate.  相似文献   

11.
A simple method for separating intermediates of carbohydrate metabolism, including the difficult-to-resolve sugar phosphates, using anion-exchange high-performance liquid chromatography is described. A gradient of decreasing borate concentration (10 to 0 mM) and increasing ionic strength (0 to 150 mM NH4Cl) separates phosphorylated sugars based on the strength of the ester complex that they form with borate anion. Lyophillized samples are reconstituted in a low ionic strength aqueous medium (5 mM triethanolamine-HCl, pH 8.1) and chromatographed on a commercially available anion-exchange column (Hamilton PRP-X100). The process requires only 3 h and permits nanomole detection of the phosphorylated intermediates of the glycolytic and pentose shunt pathways.  相似文献   

12.
Fructose (Fru) is a major storage form of sugars found in vacuoles, yet the molecular regulation of vacuolar Fru transport is poorly studied. Although SWEET17 (for SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS17) has been characterized as a vacuolar Fru exporter in leaves, its expression in leaves is low. Here, RNA analysis and SWEET17-β-glucuronidase/-GREEN FLUORESCENT PROTEIN fusions expressed in Arabidopsis (Arabidopsis thaliana) reveal that SWEET17 is highly expressed in the cortex of roots and localizes to the tonoplast of root cells. Expression of SWEET17 in roots was inducible by Fru and darkness, treatments that activate accumulation and release of vacuolar Fru, respectively. Mutation and ectopic expression of SWEET17 led to increased and decreased root growth in the presence of Fru, respectively. Overexpression of SWEET17 specifically reduced the Fru content in leaves by 80% during cold stress. These results intimate that SWEET17 functions as a Fru-specific uniporter on the root tonoplast. Vacuoles overexpressing SWEET17 showed increased [14C]Fru uptake compared with the wild type. SWEET17-mediated Fru uptake was insensitive to ATP or treatment with NH4Cl or carbonyl cyanide m-chlorophenyl hydrazone, indicating that SWEET17 functions as an energy-independent facilitative carrier. The Arabidopsis genome contains a close paralog of SWEET17 in clade IV, SWEET16. The predominant expression of SWEET16 in root vacuoles and reduced root growth of mutants under Fru excess indicate that SWEET16 also functions as a vacuolar transporter in roots. We propose that in addition to a role in leaves, SWEET17 plays a key role in facilitating bidirectional Fru transport across the tonoplast of roots in response to metabolic demand to maintain cytosolic Fru homeostasis.Sugars are main energy sources for generating ATP, major precursors to various storage carbohydrates as well as key signaling molecules important for normal growth in higher plants (Rolland et al., 2006). Depending on the metabolic demand, sugars are translocated over long distances or stored locally. SWEET (for SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS) and SUC/SUT (for Sucrose transporter/Sugar transporter)-type transporters are responsible for transfer of Suc from the phloem parenchyma into the sieve element companion cell complex for long-distance translocation (Riesmeier et al., 1992; Sauer, 2007; Kühn and Grof, 2010; Chen et al., 2012). Suc or hexoses derived from Suc hydrolysis in the cell wall are then taken up into sink cells by SUT (Braun and Slewinski, 2009) or monosaccharide transporters, such as sugar transporter1 (Sauer et al., 1990; Pego and Smeekens, 2000; Sherson et al., 2003). Alternatively, sugars are thought to move between cells via plasmodesmata (Voitsekhovskaja et al., 2006; Ayre, 2011). Major sugar storage pools within plant cells are soluble sugars stored in the vacuole, starch in plastids, and lipids in oil bodies.Vacuoles, which can account for approximately 90% of the cell volume (Winter et al., 1993), play central roles in temporary and long-term storage of soluble sugars (Martinoia et al., 2007; Etxeberria et al., 2012). Some agriculturally important crops such as sugar beet (Beta vulgaris; Leigh, 1984; Getz and Klein, 1995), citrus (Citrus spp.; Echeverria and Valich, 1988), sugarcane (Saccharum officinarum; Thom et al., 1982), and carrot (Daucus carota; Keller, 1988) can store considerable amounts (>10% of plant dry weight) of Suc, Glc, or Fru in vacuoles of the storage parenchyma. Due to a high capacity of vacuoles for storing sugars, vacuolar sugars can serve as an important carbohydrate source during energy starvation, e.g. after starch has been exhausted (Echeverria and Valich, 1988), as well as for the production of other compounds (e.g. osmoprotectants). Sugars are known to regulate photosynthesis; therefore, the release of sugars from vacuoles could be important for modulating photosynthesis (Kaiser and Heber, 1984). Moreover, vacuole-derived sugars are commercially used to produce biofuels, such as ethanol, from sugarcane. Knowledge of the key transporters involved in sugar exchange between the vacuole and cytoplasm is thus relevant in the context of bioenergy (Grennan and Gragg, 2009).To facilitate the exchange of sugars across the tonoplast, plant vacuoles are equipped with a multitude of transporters (Neuhaus, 2007; Etxeberria et al., 2012; Martinoia et al., 2012) comprising both facilitated diffusion and active transport systems of vacuolar sugars (Martinoia et al., 2000). Typically, Suc is actively imported into vacuoles by tonoplast monosaccharide transporter (AtTMT1/AtTMT2; Schulz et al., 2011) and exported by the SUT4 family (AtSUC4, OsSUT2; Eom et al., 2011; Payyavula et al., 2011; Schulz et al., 2011). Two H+-dependent sugar antiporters, the vacuolar Glc transporter (AtVGT1; Aluri and Büttner, 2007) and AtTMT1 (Wormit et al., 2006), mediate Glc uptake across the tonoplast to promote carbohydrate accumulation in Arabidopsis (Arabidopsis thaliana). The Early Responsive to Dehydration-Like6 protein has been shown to export vacuolar Glc into the cytosol (Poschet et al., 2011), likely via an energy-independent diffusion mechanism (Yamada et al., 2010). Defects in these vacuolar sugar transporters alter carbohydrate partitioning and allocation and inhibit plant growth and seed yield (Aluri and Büttner, 2007; Wingenter et al., 2010; Eom et al., 2011; Poschet et al., 2011).In contrast to numerous studies on vacuolar transport of Suc and Glc, limited efforts have been devoted to the molecular mechanism of vacuolar Fru transport even though Fru is predominantly located in vacuoles (Martinoia et al., 1987; Voitsekhovskaja et al., 2006; Tohge et al., 2011). Vacuolar Fru is important for the regulation of turgor pressure (Pontis, 1989), antioxidative defense (Bogdanović et al., 2008), and signal transduction during early seedling development (Cho and Yoo, 2011; Li et al., 2011). Thus, control of Fru transport across the tonoplast is thought to be important for plant growth and development. One vacuolar Glc transporter from the Arabidopsis monosaccharide transporter family, VGT1, has been reported to mediate low-affinity Fru uptake when expressed in yeast (Saccharomyces cerevisiae) vacuoles (Aluri and Büttner, 2007). Yet, the high vacuolar uptake activity to Fru intimates the existence of additional high-capacity Fru-specific vacuolar transporters (Thom et al., 1982). Recently, quantitative mapping of a quantitative trait locus for Fru content of leaves led to the identification of the Fru-specific vacuolar transporter SWEET17 (Chardon et al., 2013).SWEET17 belongs to the recently identified SWEET (PFAM:PF03083) super family, which contains 17 members in Arabidopsis and 21 in rice (Oryza sativa; Chen et al., 2010; Frommer et al., 2013; Xuan et al., 2013). Based on homology with 27% to 80% amino acid identity, plant SWEET proteins were grouped into four subclades (Chen et al., 2010). Analysis of GFP fusions indicated that most SWEET transporters are plasma membrane localized. Transport assays using radiotracers in Xenopus laevis oocytes and sugar nanosensors in mammalian cells showed that they function as largely pH-independent low-affinity uniporters with both uptake and efflux activity (Chen et al., 2010, 2012). In particular, clade I and II SWEETs transport monosaccharides and clade III SWEETs transport disaccharides, mainly Suc (Chen et al., 2010, 2012). Mutant phenotypes and developmental expression of several SWEET transporters support important roles in sugar translocation between organs. The clade III SWEETs, in particular SWEET11 and 12, mediate the key step of Suc efflux from phloem parenchyma cells for phloem translocation (Chen et al., 2012). Moreover, SWEETs are coopted by pathogens, likely to provide energy resources and carbon at the site of infection (Chen et al., 2010). Mutations of SWEET8/Ruptured pollen grain1 in Arabidopsis, and RNA inhibition of OsSWEET11 (also called Os8N3 or Xa13) in rice, and petunia (Petunia hybrida) NEC1 resulted in male sterility (Ge et al., 2001; Yang et al., 2006; Guan et al., 2008), possibly caused by inhibiting the Glc supply to developing pollen (Guan et al., 2008). Interestingly, two members, SWEET16 and SWEET17, of the family localize to the tonoplast (Chardon et al., 2013; Klemens et al., 2013). Allelic variation or mutations that affect SWEET17 expression caused Fru accumulation in Arabidopsis leaves, indicating that it plays a key role in exporting Fru from leaf vacuoles (Chardon et al., 2013). A more recent study demonstrated that SWEET16 also functions as a vacuolar sugar transporter (Klemens et al., 2013). Surprisingly, however, SWEET17 expression in mature leaves was comparatively low (Chardon et al., 2013), which leads us to ask whether SWEET17 could mainly function in other tissues under specific developmental or environmental conditions. Although Arabidopsis SWEET17 has been shown to transport Fru in a heterologous system where it accumulated in part at the plasma membrane (Chardon et al., 2013), the biochemical properties of SWEET17 were still elusive. SWEET16 and SWEET17 from Arabidopsis belong to the clade IV SWEETs. Whether clade IV proteins both transport vacuolar sugars in planta deserves further studies.Here, we used GUS/GFP fusions to reveal the root-dominant expression and vacuolar localization of the SWEET17 protein in vivo and its regulation by Fru levels. Phenotypes of mutants and overexpressors were consistent with a role of SWEET17 in bidirectional Fru transport across root vacuoles. The uniport feature of SWEET17 transport was further confirmed using isolated mesophyll vacuoles. Similarly, SWEET16 is also shown to function in vacuolar sugar transport in roots. Our work, performed in parallel to the two other studies (Chardon et al., 2013; Klemens et al., 2013), provides direct evidence for Fru uniport by SWEET17 and presents functional analyses to uncover important roles of these vacuolar transporters in maintaining intracellular Fru homeostasis in roots.  相似文献   

13.
Poly-(ε)-caprolactone grafted corn starch co-polymers were synthesized using a hydrophobised silylated starch precursor. The silylation reaction was performed using hexamethyl disilazane (HMDS) as the reagent in DMSO at 70 °C. Silylated starch with a degree of substitution (DS) between 0.45 and 0.7 was obtained. ε-Caprolactone is grafted to silylated starch by a ring-opening polymerisation catalysed by Al(OiPr)3 in THF at 50 °C. The grafting efficiency varies between 28% and 58%, the remainder being homopolymers of ε-caprolactone. The DS of the polycaprolactone graft is between 0.21 and 0.72. The poly-(ε)-caprolactone side chains consist of 40–55 monomer units and is a function of the reagent intakes. Experiments with native starch under similar conditions do not result in the desired poly-(ε)-caprolactone grafted corn starch co-polymers and unreacted starch was recovered after work-up. Removal of the silyl groups of the poly-(ε)-caprolactone grafted starch co-polymers is possible using a mild acid treatment with diluted hydrochloric acid in THF at room temperature.  相似文献   

14.
Here, we report that SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEET16) from Arabidopsis (Arabidopsis thaliana) is a vacuole-located carrier, transporting glucose (Glc), fructose (Fru), and sucrose (Suc) after heterologous expression in Xenopus laevis oocytes. The SWEET16 gene, similar to the homologs gene SWEET17, is mainly expressed in vascular parenchyma cells. Application of Glc, Fru, or Suc, as well as cold, osmotic stress, or low nitrogen, provoke the down-regulation of SWEET16 messenger RNA accumulation. SWEET16 overexpressors (35SPro:SWEET16) showed a number of peculiarities related to differences in sugar accumulation, such as less Glc, Fru, and Suc at the end of the night. Under cold stress, 35SPro:SWEET16 plants are unable to accumulate Fru, while under nitrogen starvation, both Glc and Fru, but not Suc, were less abundant. These changes of individual sugars indicate that the consequences of an increased SWEET16 activity are dependent upon the type of external stimulus. Remarkably, 35SPro:SWEET16 lines showed improved germination and increased freezing tolerance. The latter observation, in combination with the modified sugar levels, points to a superior function of Glc and Suc for frost tolerance. 35SPro:SWEET16 plants exhibited increased growth efficiency when cultivated on soil and showed improved nitrogen use efficiency when nitrate was sufficiently available, while under conditions of limiting nitrogen, wild-type biomasses were higher than those of 35SPro:SWEET16 plants. Our results identify SWEET16 as a vacuolar sugar facilitator, demonstrate the substantial impact of SWEET16 overexpression on various critical plant traits, and imply that SWEET16 activity must be tightly regulated to allow optimal Arabidopsis development under nonfavorable conditions.Sugars are of enormous importance for plant properties and the agronomic values of most crop species (John, 1992). In plants, they serve as energy reserves, as building blocks for carbohydrate polymers like starch or cellulose, as precursors for amino and carboxylic acids, and as osmolytes required for the molecular antifreezing program initiated after exposure to cold temperatures (Nägele et al., 2010).Sugars in leaves are synthesized either during the day via photosynthesis or in the night as a product of starch degradation. The major sugar synthesized in most plants during the day is Suc, which, after the export of triose phosphates from the chloroplast, is synthesized in the cytosol. During nocturnal starch degradation, maltose leaves the chloroplast and serves as a substrate for the cytosolic synthesis of heteroglycans (Fettke et al., 2005). Subsequent to this, heteroglycans are degraded by phosphorylases (Fettke et al., 2005) and act as a carbon source to synthesize Suc, which can be hydrolyzed by cytosolic or vacuolar invertases to monosaccharides (Roitsch and González, 2004). These processes, in sum, enable leaf mesophyll cells to synthesize Glc and Fru, in addition to Suc, during the day and at night.Besides these metabolic processes, sugars are transported between different intracellular compartments and between different cells in order to serve as a long-distance carbon supply for sink organs. Due to their large size and hydrate shell, the movement of neutral sugars like Suc, Glc, or Fru across membranes requires the presence of membrane-bound carriers. For example, in the plant plasma membrane, a wide number of monosaccharide- and Suc-specific carriers were identified and have been analyzed with biochemical and molecular approaches. The Arabidopsis (Arabidopsis thaliana) genome harbors more than 50 isoforms of putative monosaccharide carriers, most of which belong to the sugar transport protein subfamily (Büttner and Sauer, 2000), while about 20 putative disaccharide carriers sucrose transporters (named SUT and SUC) are present in this plant species (Lalonde et al., 2004). Most of the sugar transport protein, SUT, or SUC carriers analyzed so far reside in the plasma membrane and import, as proton-coupled transporters, apoplastic sugars against a concentration gradient (Lalonde et al., 2004). This proton-driven sugar import allows a substantial accumulation of Suc in phloem sieve elements, building the driving force for interorgan long-distance sugar transport (Turgeon and Wolf, 2009). All monosaccharide and disaccharide carriers mentioned above exhibit 12 predicted transmembrane domains and group into the large major facilitator superfamily of carriers (Marger and Saier, 1993).In both photosynthetic active mesophyll cells as well as storage tissues, the large central vacuole represents the internal storage compartment for sugars (Martinoia et al., 2007, 2012), leading, in sugar beet (Beta vulgaris) or sugarcane (Saccharum officinarum), up to even 20% sugars per fresh biomass (John, 1992). Suc import into the vacuole occurs either via facilitated diffusion (Kaiser and Heber, 1984) or electrogenically via antiport against protons (Willenbrink and Doll, 1979). The latter process is driven by the significant proton-motive force across the vacuolar membrane (Schumacher and Krebs, 2010) and allows a substantial Suc accumulation in storage organs of high-sugar species (Getz, 1987; Getz and Klein, 1995). However, no Suc importer at the vacuolar membrane (tonoplast) has been identified on the molecular level yet, while tonoplast-located Suc exporters have been identified. This vacuolar Suc export is mediated by members of the SUT4-type clade of carriers, in cereals named SUT2 (Endler et al., 2006; Eom et al., 2011), procuring a proton-driven Suc export into the cytosol (Schulz et al., 2011). Loss of function of this type of carrier in Arabidopsis, poplar (Populus spp.), or rice (Oryza sativa) leads to an accumulation of Suc in leaves (Eom et al., 2011; Payyavula et al., 2011; Schneider et al., 2012), elegantly proving that this type of carrier fulfills an export function under in vivo conditions.In contrast to vacuolar Suc import, the import of monosaccharides into this compartment has been deciphered on the molecular level. In the Arabidopsis tonoplast, two different monosaccharide importers have been identified, namely the vacuolar Glc transporter protein and three isoforms of the tonoplast monosaccharide transporter (TMT; Wormit et al., 2006; Aluri and Büttner, 2007). While vacuolar Glc transporter loss-of-function plants do not show significant changes in monosaccharide levels (Aluri and Büttner, 2007), decreased TMT activity correlates with impaired vacuolar sugar import and low levels of both Glc and Fru in leaves (Wormit et al., 2006). This fact and the observations that (1) TMT1 is a sugar/proton antiporter (Schulz et al., 2011), (2) increased TMT activity provokes improved seed biomass (Wingenter et al., 2010), and (3) TMT activity is highly regulated via protein phosphorylation (Wingenter et al., 2011) clearly underline the superior function of TMT for monosaccharide loading into the plant vacuole.So far, two carriers, ESL1 and ERDL6, have been found to be responsible for Glc export from the plant vacuole (Yamada et al., 2010; Poschet et al., 2011). ESL1 (for early responsive to dehydration6-like1) represents a carrier majorly expressed in pericycle and xylem parenchyma cells and is known to be induced by drought stress (Yamada et al., 2010). Loss-of-function mutants of the ERDL6 (for early responsive to dehydration6-like6) carrier show increased leaf Glc levels and decreased seed weight, indicating that controlled Glc export via this carrier is critical for interorgan movement of sugars in Arabidopsis (Poschet et al., 2011). ESL1 seems to transport Glc in a facilitated diffusion, while in contrast to the plasma membrane-located sugar carriers and to TMT, the transport mode of ERDL6 has not been identified so far.In marked contrast to the carriers mentioned above, the recent identification of the so-called SWEET proteins opened our understanding of how cellular sugar export is achieved. SWEET proteins occur in plants as well as in animals and humans and consist of only seven predicted transmembrane domains (Chen et al., 2010). The observation that the expression of several plant SWEET proteins is strongly induced by various pathogens indicated that they serve as sugar exporters. That hypothesis has been proven for some SWEET isoforms by heterologous expression in Xenopus laevis oocytes (Chen et al., 2010), and detailed analysis revealed that Arabidopsis SWEET11 and SWEET12 catalyze Suc export from source leaves and are critical for interorgan sugar transport (Chen et al., 2012).In a recent quantitative trait locus analysis, we identified SWEET17 as a novel determinant of leaf Fru content, especially under cold conditions and conditions of low nitrogen supply (Chardon et al., 2013). In fact, a detailed molecular-physiological analysis revealed that SWEET17 is the first vacuole-located SWEET protein and that it serves as a Fru-specific exporter, connecting the vacuolar lumen to the cytosol. In contrast to SWEET17, the subcellular localization of its closest homolog, SWEET16, is elusive. Moreover, transport properties of SWEET16 are unknown, and the effect of increased SWEET16 activity (or any other SWEET proteins) on plant properties has not been determined. The latter aspect is of particular interest, since most genes coding for SWEET proteins are only comparably weakly expressed or are only expressed in certain cell types (Chen et al., 2010; Chardon et al., 2013).In this report, we analyzed the intracellular localization of SWEET16 and studied its transport properties in X. laevis oocytes. Moreover, we constructed constitutive SWEET16-overexpressing Arabidopsis lines and report the impact of this overexpression of a vacuolar SWEET protein on plant development and stress tolerance. Our results support the hypothesis that the activity of a SWEET facilitator has to be controlled in planta to cope with altering environmental and developmental conditions.  相似文献   

15.
16.
Starch granules with associated metabolites were isolated from immature Zea mays L. endosperm by a nonaqueous procedure using glycerol and 3-chloro-1,2-propanediol. The soluble extract of the granule preparation contained varying amounts of neutral sugars, inorganic phosphate, hexose and triose phosphates, organic acids, adenosine and uridine nucleotides, sugar nucleotides, and amino acids. Based on the metabolites present and on information about translocators in chloroplast membranes, which function in transferring metabolites from the chloroplast stroma into the cytoplasm, it is suggested that sucrose is degraded in the cytoplasm, via glycolysis, to triose phosphates which cross the amyloplast membrane by means of a phosphate translocator. It is further postulated that hexose phosphates and sugars are produced from the triose phosphates in the amyloplast stroma by gluconeogenesis with starch being formed from glucose 1-phosphate via pyrophosphorylase and starch synthase enzymes. The glucose 1-phosphate to inorganic phosphate ratio in the granule preparation was such that starch synthesis by phosphorylase is highly unlikely in maize endosperm.  相似文献   

17.
Clostridial fermentation of cellulose and hemicellulose relies on the cellular physiology controlling the metabolism of the cellulosic hexose sugar (glucose) with respect to the hemicellulosic pentose sugars (xylose and arabinose) and the hemicellulosic hexose sugars (galactose and mannose). Here, liquid chromatography–mass spectrometry and stable isotope tracers in Clostridium acetobutylicum were applied to investigate the metabolic hierarchy of glucose relative to the different hemicellulosic sugars towards two important biofuel precursors, acetyl‐coenzyme A and butyryl‐coenzyme A. The findings revealed constitutive metabolic hierarchies in C. acetobutylicum that facilitate (i) selective investment of hemicellulosic pentoses towards ribonucleotide biosynthesis without substantial investment into biofuel production and (ii) selective contribution of hemicellulosic hexoses through the glycolytic pathway towards biofuel precursors. Long‐term isotopic enrichment demonstrated incorporation of both pentose sugars into pentose‐phosphates and ribonucleotides in the presence of glucose. Kinetic labelling data, however, showed that xylose was not routed towards the biofuel precursors but there was minor contribution from arabinose. Glucose hierarchy over the hemicellulosic hexoses was substrate‐dependent. Kinetic labelling of hexose‐phosphates and triose‐phosphates indicated that mannose was assimilated but not galactose. Labelling of both biofuel precursors confirmed this metabolic preference. These results highlight important metabolic considerations in the accounting of clostridial mixed‐sugar utilization.  相似文献   

18.
19.
Trimethylsilylation of chitin was studied in detail to establish a reliable method, and the properties of the resulting product were elucidated. Chitin was successfully trimethylsilylated with a mixture of hexamethyldisilazane and trimethylsilyl chloride in pyridine. Compared to alpha-chitin, beta-chitin was much more reactive and advantageous as a starting material to prepare fully substituted chitin in a simple manner, though alpha-chitin also underwent full silylation under appropriate conditions. The resulting silylated chitin was characterized by marked solubility in common organic solvents and by easy desilylation to regenerate hydroxy groups, which enabled clean preparation of chitin films. The reactivity of the silylated chitin was examined by treating with triphenylmethyl chloride and acetic anhydride as typical alkylating and acylating reagents, and complete substitutions were readily accomplished. The silylated chitin has thus proved to be a superb precursor for modification reactions.  相似文献   

20.
The esterification of carboxyl groups in poly-(l-glutamic acid) and atelo-collagen was carried out using N-hydroxysuccinimide and dicyclohexylcarbodiimide as coupling reagents in dimethylformamide (DMF) and/or dimethylsulphoxide (DMSO). The succinimide ester of polypeptide was allowed to react with the amino group of pepleomycin and then 2-aminoethanol in DMF and DMSO mixture. The graft polypeptide binding pepleomycin molecule is able to release the drug moiety during the biodegration of backbone polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号