首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
A continuum model describing the steady-state actin dynamics of the cytoskeleton of living cells has been developed to aid in the interpretation of photoactivated fluorescence experiments. In a simplified cell geometry, the model assumes uniform concentrations of cytosolic and cytoskeletal actin throughout the cell and no net growth of either pool. The spatiotemporal evolution of the fluorescent actin population is described by a system of two coupled linear partial-differential equations. An analytical solution is found using a Fourier-Laplace transform and important limiting cases relevant to the design of experiments are discussed. The results demonstrate that, despite being a complex function of the parameters, the fluorescence decay in photoactivated fluorescence experiments has a biphasic behavior featuring a short-term decay controlled by monomer diffusion and a long-term decay governed by the monomer exchange rate between the polymerized and unpolymerized actin pools. This biphasic behavior suggests a convenient mechanism for extracting the parameters governing the fluorescence decay from data records. These parameters include the actin monomer diffusion coefficient, filament turnover rate, and ratio of polymerized to unpolymerized actin.  相似文献   

3.
We previously reported setting up an in vitro system for the observation of actin filament sliding along myosin filaments. The system involved a minute amount of fluorescently labelled F-actin, and its movement was monitored by fluorescence microscopy. Here, we report observations of the Ca2+-dependent movement of F-actin complex with tropomyosin plus troponin (regulated actin) added to the movement system in place of pure F-actin. In a wide range of pCa (-log10[Ca2+]) between 3 and 5.5 at 30 degrees C, regulated actin filaments moved rapidly, and the average velocity depended little on the Ca2+ concentration (about 7.5 microns/s). However, when the Ca2+ concentration was decreased to pCa = 5.8 or lower, the filaments suddenly stopped moving. In striking contrast to these observations, unregulated actin moved rapidly within the whole pCa range examined, the average velocity (about 7.5 microns/s) being essentially Ca2+-independent. These observations indicate that (1) tropomyosin-troponin actually gave Ca2+-sensitivity to F-actin, and (2) the movement system was regulated by Ca2+ in an on-off fashion within a narrow range of Ca2+ concentration. In a pCa range between 5.8 and 6.0, regulated actin filaments did not exhibit thermal motion; instead, they had fixed positions in the specimen, possibly because they remained associated with myosin filaments in the background, without sliding past each other. Although regulated actin moved fast in the presence of 1 mM-CaCl2 (pCa = 3) at 30 degrees C, it became entirely non-motile as the temperature was decreased to 25 degrees C or lower. Such a sharp movement/temperature relation was never found for unregulated actin. We assayed regulated actin-activated myosin ATPase in the same conditions as used for microscopy, and found that the ATPase activity depended both on pCa and on the temperature considerably less than the movement of regulated actin. The results suggest that the sliding velocity in the in vitro system would not be proportional to the rate of actin-activated ATPase.  相似文献   

4.
5.
6.
Summary A method is described, for the first time, by which ultra-thin frozen sections of plant tissues may be prepared for electron microscopy. Sections of both plant and animal tissues were prepared from either unfixed or fixed tissues, without prior dehydration or infiltration of the tissue with a support medium, and with the aid of a Reichert OmU 2 ultra-microtome with freezing attachment.  相似文献   

7.
p-Phenylenediamine (pPD) can be used en bloc to preserve and differentiate cell lipids in aldehyde-fixed peanut plant tissues treated with osmium tetroxide during dehydration in 70% ethanol. Semithin plastic sections for light microscopy need no further staining and can be mounted in Histoclad after drying on a slide. Brown staining above background differentiates lipid-containing structures. Nonspecific staining can be distinguished in control preparations extracted en bloc with lipid solvents.  相似文献   

8.
This study investigates to which extent two-photon excitation (TPE) fluorescence lifetime imaging microscopy can be applied to study picosecond fluorescence kinetics of individual chloroplasts in leaves. Using femtosecond 860 nm excitation pulses, fluorescence lifetimes can be measured in leaves of Arabidopsis thaliana and Alocasia wentii under excitation-annihilation free conditions, both for the F 0- and the F m-state. The corresponding average lifetimes are ~250 ps and ~1.5 ns, respectively, similar to those of isolated chloroplasts. These values appear to be the same for chloroplasts in the top, middle, and bottom layer of the leaves. With the spatial resolution of ~500 nm in the focal (xy) plane and 2 μm in the z direction, it appears to be impossible to fully resolve the grana stacks and stroma lamellae, but variations in the fluorescence lifetimes, and thus of the composition on a pixel-to-pixel base can be observed.  相似文献   

9.
A new indirect method for fluorescence localization of proteins making use of the avidin-biotin complex is described. We have prepared both a biotin-modified rabbit heavy meromyosin (BHMM) and a biotin-modified antibody to a smooth muscle myosin. After fixation, cells can be treated with either BHMM, which binds to actin, or the biotinyl antibody, which binds to myosin. In a second step the cell are treated with a fluorescent derivative of avidin (Fl-avidin) which binds to the biotinyl proteins and thus indirectly reveals the location of the cellular action or myosin.  相似文献   

10.
Enhanced GFP (EGFP) is a powerful tool for the visualization of tagged proteins and transfected cells and is easily detected by fluorescence microscopy or flow cytometry in living cells. However, soluble EGFP molecules can be lost if cell integrity is disrupted by freezing, sectioning, or permeablization. Furthermore, the fluorescence of EGFP is dependent on its conformation. Therefore, fixation protocols that immobilize EGFP may also destroy its usefulness as a fluorescent reporter. Here we determined which methods of preparing murine lymphoid tissues immobilized soluble EGFP protein and retained its fluorescence while simultaneously maintaining the antigenicity of various immunologically important molecules and best preserving the overall morphology of the tissues. We found that EGFP could not be visualized in frozen sections of spleen that had not been fixed before freezing. However, robust EGFP fluorescence could be observed in frozen sections of tissues fixed under various conditions. Fixation was important to immobilize EGFP rather than to maintain conformation, because only minimal EGFP could be detected by immunofluorescence in unfixed frozen sections. Although it had little effect on EGFP fluorescence, the inclusion of sucrose during fixation better preserved the morphology of fixed tissues. These methods also preserved the antigenicity of a wide variety of molecules used to identify cell types in lymphoid tissues.  相似文献   

11.
Measurement of lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) activity in tissue extracts often poses problems due to the inhibitors released during homogenization. The present investigation provides a first report on the localization of lipase activity in viable plant protoplasts isolated from the cotyledons of germinating seeds of sunflower, cotton and peanut by fluorescence microscopy, using a lipase specific, 'glycerol-derived' synthetic substrate, i.e., 1,2-O-dilauryl-rac-3-glycero-glutaric acid-resorufin ester, commonly used for in vitro assays. Due to its lipophilicity, this chromogenic substrate readily permeates plasma membrane of plant protoplasts. Subsequent lipase action leads to cleavage of this substrate to release resorufin, which can be visualized due to emission of red fluorescence (max excitation – 567 nm; max emission – 584.6 nm) at its intracellular locations.  相似文献   

12.
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm2/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured.  相似文献   

13.
14.
Chromosomes undergoing meiosis are defined by a macromolecular protein assembly called the synaptonemal complex which holds homologs together and carries out important meiotic functions. By retaining the molecular specificity, multiplexing ability, and in situ imaging capabilities of fluorescence microscopy, but with vastly increased resolution, 3D-SIM and other superresolution techniques are poised to make significant discoveries about the structure and function of the synaptonemal complex. This review discusses recent developments in this field and poses questions approachable with current and future technology.  相似文献   

15.
Autofluorescence of aldehyde-fixed neural tissue often complicates the use of fluorescence microscopy. Background fluorescence can be notably reduced or eliminated by irradiation with light before treatment with fluorescence probes, resulting in a higher contrast without adversely affecting the staining probabilities.  相似文献   

16.
17.
Copper ions play a fundamental role in plant metabolism where its uptake and distribution within the organism is highly regulated, allowing the cells to sustain an adequate concentration. Shortage or excess of Cu can cause severe damage to the organisms endangering their survival. We recently reported a non-invasive method to follow the intracellular uptake of bivalent copper ion concentration by fluorescence lifetime microscopy of green fluorescent protein within plant cells. Measuring the fluorescence lifetime has the advantage of being independent on the fluorophore concentration and the excitation intensity. The use of GFP is beneficial because the protein can be introduced nondestructively. Here, we discuss the benefits of this approach as well as the possibility of applying this concept for the investigation of Cu redistribution and storage at the subcellular level. The fluorescence lifetime-encoded microscopic images are envisioned to map the copper distribution within plant cells not only qualitatively but even quantitatively. Time-lapse microscopy enables the following of cellular processes and the study of relevant transport mechanisms of copper in plant cells. Perspectives and necessary improvements are discussed.  相似文献   

18.
Mouse C3H 10T1/2 cell lines expressing the simian virus 40 (SV40) small t antigen were obtained by cotransfection of pSV2neo and plasmids which encode small t. Cell lines derived from two plasmids which encode small t in the absence of stable deletion fragments of the large T antigen were morphologically normal and grew to slightly higher saturation densities in low serum than control cell lines. Unexpectedly, the clones had highly organized actin cables, as did parental 10T1/2 cells infected with wild-type SV40. These observations and comparisons of rat F111 cells infected with either polyomavirus or SV40 suggest that the SV40 small t antigen does not directly affect cytoskeletal organization.  相似文献   

19.
Summary Two rapid flourescence procedures are described for detecting sulphydryl, disulphide and isothiocyanate groups of scented and pungent principles present in the vacuolar sap of onion, garlic and cabbage. To localize compounds containing sulphydryl groups, fresh or fixed frozen sections of the plants were treated with mercurochrome. After the fluorochromization, strongly-positive sulphydryl sites emitted an intense orange-red fluorescence, while weakly-positive sites emitted a distinctive red-brown fluorescence. Disulphide groups were detected by first reducing with thioglycolic acid to thiol groups before treating with mercurochrome. To effect isothiocyanate localization, frozen sections were exposed to ammonia: isothiocyanates were converted to thioureas and the engendered amino groups were revealed with fluorescamine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号