首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural comparison of two yeast tRNA Glu 3 genes.   总被引:11,自引:6,他引:5       下载免费PDF全文
A Eigel  J Olah    H Feldmann 《Nucleic acids research》1981,9(12):2961-2970
DNA sequences in a 1.7 kb Pst fragment from yeast have been determined. This fragment is part of a yeast 7.4 kb Hind III segment cloned ino pBR322 (pY 5). The fragment carries a single gene for a glutamate tRNA. The coding portion of this gene is identical in sequence to that of the tRNA Glu 3 gene from pY 20 [1]. The flanking regions differ in their sequences, but possible secondary structures within the 5'-flanking regions bear similar features. Sequence homologies between pY 5 and pY 20 were detected far outside the tRNA genes. More surprisingly, extended sequence homologies were seen between the flanking regions of the pY 20 tRNA Glu 3 gene and a tRNA Ser gene [2,3]. We have also checked the known tRNA genes for structural similarities. Hybridization studies indicate that portions of the Pst fragment are repeated within the yeast genome.  相似文献   

2.
A human Hind III 1.9 kb repeated DNA fragment was isolated and cloned in pBR322. A cloned member that hybridized predominantly to the 1.9 kb Hind III band in a digest of whole human DNA was chosen for sequencing. It is an 1894 bp fragment that shows no significant internal repeats. Few pCG residues are observed in the sequence and there are numerous stop codons. Detailed sequence comparisons confirm this is a novel class of repeats that is not related to previously characterized human satellite DNAs or Alu sequences. At least a portion of the sequence described is conserved in evolution.  相似文献   

3.
The position of the yeast phosphoglycerate kinase (PGK) gene has been mapped on a 2.95kb Hind III fragment. We have determined the nucleotide sequence of the 5' flanking region and compared this sequence with those from 16 other yeast genes. PGK, like all other yeast genes has an adenine residue at position -3. It has two possible TATA boxes at positions -114 and -152 and a CAAT box at -129. In addition we have defined a structure at position -63 to -39 that is common to all yeast genes that encode an abundant RNA. This structure is a CT-rich block followed, about 10 nucleotides later, by the sequence CAAG.  相似文献   

4.
Some of microorganisms have been known to possess penicillin G acylase activity. The E. coli derived penicillin G acylase (PGA) can catalyze the conversion of penicillin G into phenylacetic acid and 6-amino-penicillanic acid, the latter is used as the starting compound for the industrial formation of semi-synthetic penicillins. Apart from its industrial importance, the enzyme PGA displays a number of interesting properties. Catalytically active enzyme is localized in the periplasmic space of E. coli cells and composed of two dissimilar subunits. The two subunits are apparently produced from a precursor protein, via a processing pathway hitherto unique in its features for a prokaryotic enzyme. The studies on processing of the precursor and on the relationship between structure and function of the mature enzyme are important theoretically. Previously we cloned a 3.5 kb DNA fragment from a strain (E. coli AS 1.76), which displays PGA activity. In this paper, we report a nucleotide sequence of the 3.5 kb DNA fragment containing PGA gene. After insertion of the DNA fragment into EcoR I and Hind III sites in pWR 13, pPGA 20 had been obtained. We subcloned the Hind III and Bg1 II treated fragment of 1.6 kb in length from pPGA 20 into Hind III and BamH I sites of pWR 13 to get a pPGA 1.6, and Bg1 II and EcoR I treated fragment of 1.9 kb in length into BamH I and EcoR I sites of pWR 13 to get a pPGA 1.9. The linearized pPGA 1.9 which were digested with appropriate restriction enzymes were progressively shortened from both ends respectively by digestion with Bal 31 nuclease, followed by cleavage of shortened target DNA off vector DNA molecules with appropriate restriction enzymes. The series of the DNA fragments shortened from EcoR I end were then cloned into plasmid pWR 13 which had previously digested with Hind III and Sma I enzymes (Fig. 1). The DNA fragment cloned in pWR 13 were directly sequenced on the resulted plasmids by using primer I and primer II. Thus we have obtained the complete nucleotide sequence of the 3.5 kb DNA fragment. The 3.5 kb fragment contains an intact PGA gene which is 2.6 kb.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Structure of a yeast non-initiating methionine-tRNA gene.   总被引:8,自引:3,他引:5       下载免费PDF全文
4 to 8 kb Hind III fragments of yeast DNA were cloned into pBR322. One of these clones (pY6m3) containing a single tRNA3Met gene has been characterized in detail. The DNA sequence of the structural gene is colinear with the tRNA sequence, which means that in this case no intervening sequence is present. The 5'-leader and 3'-trailer sequences have also been determined. The 5'-flanking region can be folded up into possible secondary structures.  相似文献   

6.
Split gene for mitochondrial 24S ribosomal RNA of Neurospora crassa.   总被引:9,自引:0,他引:9  
U Hahn  C M Lazarus  H Lünsdorf  H Küntzel 《Cell》1979,17(1):191-200
  相似文献   

7.
袁志明 LeRo.  CN 《昆虫学报》1998,41(4):337-342
根据Bacillus sphaericus 2362二元毒素基因核苷酸序列合成的一组寡聚核苷酸为引物,通过PCR扩增出1.1 kb的DNA片段作探针检测了C3-41、IAB881、IAB872、BS-197和lPl-G菌株中二元毒素基因。Southern杂交表明C3-41、IAB881、IAB872和BS-197菌株中3.5kb Hind III及LPl-G中4.7kb Hind III的酶切片段分别带有与探针有高度同源性的二元毒素基因。SDS-PAGE和Western印迹杂交表明所有菌株都能产生41.9kD和51.4kD的毒素蛋白。C3.41、IAB881、BS.197和2362的全发酵液和碱抽提液对敏感尖音库蚊Culex pipienssubsp.Pipiens幼虫毒性高,但对抗性幼虫几乎无毒,LPl-G对敏感和抗性蚊幼虫具有相同的中度毒杀作用;IAB872对敏感幼虫毒性高,对抗性幼虫的毒力同LPl-G相似。这两株菌对抗性蚊幼虫的毒性可能是由Mtx毒素蛋白所导致的。  相似文献   

8.
Summary A detailed map of the 32 kb mitochondrial genome of Aspergillus nidulans has been obtained by locating the cleavage sites for restriction endonucleases Pst I, Bam H I, Hha I, Pvu II, Hpa II and Hae III relative to the previously determined sites for Eco R I, Hind II and Hind III. The genes for the small and large ribosomal subunit RNAs were mapped by gel transfer hybridization of in vitro labelled rRNA to restriction fragments of mitochondrial DNA and its cloned Eco R I fragment E3, and by electron microscopy of RNA/DNA hybrids.The gene for the large rRNA (2.9 kb) is interrupted by a 1.8 kb insert, and the main segment of this gene (2.4 kb) is separated from the small rRNA gene (1.4 kb) by a spacer sequence of 2.8 kb length.This rRNA gene organization is very similar to that of the two-times larger mitochondrial genome of Neurospora crassa, except that in A. nidulans the spacer and intervening sequences are considerably shorter.  相似文献   

9.
Genomic representation of the Hind II 1.9 kb repeated DNA.   总被引:19,自引:10,他引:9       下载免费PDF全文
The genomic representation and organization of sequences homologous to a cloned Hind III 1.9 kb repeated DNA fragment were studied. Approximately 80% of homologous repeated DNA was contained in a genomic Hind III cleavage band of 1.9 kb. Double digestion studies indicated that the genomic family, in the majority, followed the arrangement of the sequenced clone, with minor restriction cleavage variations compatible with a few base changes. Common restriction sites external to the 1.9 kb sequence were mapped, and hybridization of segments of the cloned sequence indicated the 1.9 kb DNA was itself not tandemly repeated. Kpn I bands which were homologous to the sequence contained specific regions of the repeat, and the molecular weight of these larger fragments could be simply explained. Mapping of common external restriction sites indicated that in some but not all cases the repeat could be organized in larger defined blocks of greater than or equal to 5.5 kb. In some instances, flanking regions adjacent to the repeat may contain common DNA elements such as other repeated DNA sequences, or possibly rearranged segments of the 1.9 kb sequence. It is suggested that although the 1.9 kb sequence is not strictly contiguous, at least some of these repeated sequences in the human genome are arranged in clustered or intercalary arrays. A region of the 1.9 kb sequence hybridized to a mouse repeated DNA, indicating homology beyond the primates.  相似文献   

10.
11.
G Tschumper  J Carbon 《Gene》1980,10(2):157-166
The DNA sequence of a 1.45 kb EcoRI fragment from the yeast (Saccharomyces cerevisiae) TRP1 region has been determined. The fragment contains the TRP1 gene and a yeast chromosomal replicator. The TRP1 gene has been located on the fragment by analysis of potential initiation and termination codons in the DNA sequence. This location has been confirmed by subcloning portions of the fragment. Both the 5' and 3' noncoding regions of the TRP1 gene contain sequence homologies with analogous areas surrounding other yeast genes. The yeast replicator has been localized in a region near the 3' end of the TRP1 gene. The DNA sequence in this region contains several structural features which may be involved in the initiation of DNA replication.  相似文献   

12.
3.18 kb fragments of X. laevis DNA coding for tRNA1met have been inserted into a λ vector via Hind III termini and cloned in E. coli. The organization of one cloned fragment has been analyzed by restriction endonuclease digestion and RNA-DNA hybridization. From the distribution of sites for three enzymes, this fragment appears to be typical of the majority of λ. laevis tandem tDNA1met repeat units. Evidence is presented to suggest that it contains two genes coding for tRNA1met and at least one gene coding for a second as yet unidentified 4S RNA species. The two tRNA1met genes are located on the same DNA strand 0.96 and 1.38 kb from one end of the repeat unit. A detailed restriction map for 19 enzymes reveals that the spacers between these genes are not identical, and it provides no indication of short repetitive sequence elements within the spacers.  相似文献   

13.
The yeast structural gene ADR2, coding for the glucose-repressible alcohol dehydrogenase (ADHII), has been isolated by complementation of function in transformed yeast. The chromosomal DNA from nine yeast strains with cis-dominant constitutive mutations (ADR3c) has been investigated by restriction enzyme analysis, using the cloned ADR2 DNA as a hybridization probe. Seven mutants appear to have insertions of approximately 5.6 kb near the 5′ end of the ADR2-coding region. Four of these insertions have the same restriction pattern as the yeast transposable element Tyl. Two differ from Tyl by the presence of an additional Hind III site, and a seventh insertion differs from Tyl at a number of restriction sites. All are inserted in the same orientation with respect to the structural gene. A DNA fragment containing the ADR2 gene and adjacent sequences from a constitutive mutant has been cloned and shown by heteroduplex analysis to contain an insertion near the 5′ end of the structural gene. The cloned insertion sequence hybridizes to multiple genomic DNA fragments, indicating that it contains a moderately repetitive sequence. Thus it appears that insertion of a transposable element near the 5′ terminus of the structural gene can produce constitutive expression of a normally glucose-repressed enzyme. Such insertions seem to be the most common way of generating cis-dominant constitutive mutations of ADHII.  相似文献   

14.
15.
球形芽孢杆菌C3-41是我国分离的一株对蚊幼虫有毒杀作用的高毒力菌株,对库蚊、按蚊幼虫的毒性高于2362菌株,Southern杂交证明C3-41总DNA中3.5KbHindIII片段上带有41.9和51.4kD二元毒素基因。  相似文献   

16.
The identification of the Hind III polymorphic site in the 3' end of the plasminogen activator inhibitor 1 (PAI-1) gene and a simple method to identify the Hind III polymorphism rapidly in the PAI-1 gene using PCR is described. The Hind III restriction site was identified by restriction site mapping and sequence analysis from a cosmid DNA clone. Genomic DNA was isolated from individual human umbilical cords and a 754-bp fragment of the human PAI-1 gene was amplified by PCR. Aliquots of the PCR products were digested with Hind III and analyzed by agarose gel electrophoresis. The presence of two fragments, 754 and 567 bp, was identified, and they were designated as 1/1 (750-bp band), 1/2 (754- and 567-bp bands), and 2/2 (567-bp band). The PCR method is considerably less time consuming than the conventional DNA genotyping using Southern blot analysis. To ensure that this new method identified the same PAI-1 genotypes as previously identified by Hind III restriction fragment length polymorphism (RFLP), samples were simultaneously genotyped by PCR and Southern blot analysis. Both methods identified the same Hind III genotypes in all the samples, confirming the reliability of this new PCR method for the rapid identification of the Hind III polymorphism in the human PAI-1 gene.  相似文献   

17.
From Hind III digests of Brassica napus (rape) nuclear DNA,seven DNA fragments were obtained which conferred on plasmidsthe ability to replicate autonomously in yeast. Six of thesewere analysed by restriction enzyme mapping, yielding six differentmaps and two were further characterized by defining the minimumeffective length and by sequencing. One of these had a minimumeffective length of 220 base pairs, was 86% A.T. and containeda direct match to the consensus sequence obtained from otherDNA's (i.e. DNA from other organisms) which replicate autonomouslyin yeast. The second fragment had a minimum effective lengthof 926 base pairs, was 69% A.T. and contained a 9/11 match tothe consensus sequence. Key words: Brassica napus, nuclear DNA, autonomous replication, plasmids, yeast  相似文献   

18.
Two classes of mRNA encoding the murine C4 protein were identified by sequence analysis of clones isolated from a liver complementary DNA library. The divergence found within a 357 base pair sequence available for comparison is limited to five nucleotide replacements located in the region corresponding to the carboxy-terminal end of the C4d peptide fragment. One of the nucleotide substitutions influences the presence of a site for the Hind III restriction endonuclease. That this restriction site indeed discriminates the two non-allelic genes encoding the mouse C4 and C4-Slp isoforms has been demonstrated by Southern blot analysis and nucleotide sequencing at the genomic level. Circumstantial evidence supports the identification of the gene lacking the Hind III site in the region corresponding to the carboxy-terminal end of the C4d fragment as the one encoding the C4-Slp isotype.  相似文献   

19.
2.0 kb Hind III fragment isolated from cytoplasmic male-sterile carrot mitochondria, designated PKT5, was hybridized to ORF13 which is the coding region of a unique polypeptide in maize CMS (Dewey et al., 1986). Sequence analysis indicated that PKT5 is consisted of 3 domains. Domain 1 was identical to the 5'-flanking region of atp6 in maize CMS-TURF2H3 sequence (Dewey et al., 1986). Domain 2 contained a novel ORF encoding 72 amino acids, which was extremely homologous to the amino-terminal 67 amino acids of the unique ORF13 in maize CMS. Domain 3 except an amino acid change (Ile87 = ATT for Asn87 = AAT), was identical to ORF25 polypeptide in maize CMS. Connective sequences of these 3 domains were also highly homologous to the maize CMS-TURF2H3 sequence. Out of 7 recombination points in maize CMS-TURF2H3 sequence, at least 4 points were conserved in PKT5 sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号