首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate receptor activated neuronal cell death has been implicated in the pathogenesis of motor neuron disease but the molecular mechanism responsible for neuronal dysfunction needs to be elucidated. In the present study, we examined the contribution of NMDA and non-NMDA sub-types of glutamate receptors in selective vulnerability of motor neurons. Glutamate receptor activated Ca2+ signaling, mitochondrial functions and neurotoxicity in motor neurons and other spinal neurons were studied in mixed spinal cord primary cultures. Exposure of cells to glutamate receptor agonists glutamate, NMDA and AMPA elevated the intracellular Ca2+, mitochondrial Ca2+ and caused mitochondrial depolarization and cytotoxicity in both motor neurons and other spinal neurons but a striking difference was observed in the magnitude and temporal patterns of the [Ca2+]i responses between the two neuronal cell types. The motor neurons elicited higher Ca2+ load than the other spinal neurons and the [Ca2+]i levels were elevated for a longer duration in motor neurons. AMPA receptor stimulation was more effective than NMDA. Both the NMDA and non-NMDA receptor antagonists APV and NBQX inhibited the Ca2+ entry and decreased the cell death significantly; however, NBQX was more potent than APV. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors contribute to glutamate-mediated motor neuron damage but AMPA receptors play the major role. AMPA receptor-mediated excessive Ca2+ load and differential handling/regulation of Ca2+ buffering by mitochondria in motor neurons could be central in their selective vulnerability to excitotoxicity.  相似文献   

2.
HIV-1 infection commonly leads to neuronal cell death and a debilitating syndrome known as AIDS-related dementia complex. The HIV-1 protein Tat is neurotoxic, and because cell survival is affected by the intracellular calcium concentration ([Ca2+]i), we determined mechanisms by which Tat increased [Ca2+]i and the involvement of these mechanisms in Tat-induced neurotoxicity. Tat increased [Ca2+]i dose-dependently in cultured human fetal neurons and astrocytes. In neurons, but not astrocytes, we observed biphasic increases of [Ca2+]i. Initial transient increases were larger in astrocytes than in neurons and in both cell types were significantly attenuated by antagonists of inositol 1,4,5-trisphosphate (IP3)-mediated intracellular calcium release [8-(diethylamino)octyl-3,4,5-trimethoxybenzoate HCI (TMB-8) and xestospongin], an inhibitor of receptor-Gi protein coupling (pertussis toxin), and a phospholipase C inhibitor (neomycin). Tat significantly increased levels of IP3 threefold. Secondary increases of neuronal [Ca2+]i in neurons were delayed and progressive as a result of excessive calcium influx and were inhibited by the glutamate receptor antagonists ketamine, MK-801, (+/-)-2-amino-5-phosphonopentanoic acid, and 6,7-dinitroquinoxaline-2,3-dione. Secondary increases of [Ca2+]i did not occur when initial increases of [Ca2+]i were prevented with TMB-8, xestospongin, pertussis toxin, or neomycin, and these inhibitors as well as thapsigargin inhibited Tat-induced neurotoxicity. These results suggest that Tat, via pertussis toxin-sensitive phospholipase C activity, induces calcium release from IP3-sensitive intracellular stores, which leads to glutamate receptor-mediated calcium influx, dysregulation of [Ca2+]i, and Tat-induced neurotoxicity.  相似文献   

3.
Real-time alterations in intracellular Ca2+ ([Ca2+]i) were monitored in fluo-3-loaded cerebellar granule neurons (CGNs) exposed to the brevetoxin PbTx-1. [Ca2+]i was measured using a fluorescent plate reader (FLIPR), which measures simultaneously the mean intracellular Ca2+ change in a population of cultured cells in each well of a 96-well plate. PbTx-1 produced rapid and concentration-dependent increases in neuronal [Ca2+]i with a potency nearly identical to that determined previously for PbTx-1-induced neurotoxicity. The NMDA receptor antagonists MK-801, dextrorphan, and D(-)-2-amino-5-phosphonopentanoic acid, and tetanus toxin, an inhibitor of Ca2+-dependent exocytotic neurotransmitter release, effected significant reductions in both the integrated fluo-3 fluorescence response and excitatory amino acid release and protected CGNs against PbTx-1 neurotoxicity. The L-type Ca2+ channel antagonist nifedipine produced a modest reduction in the fluo-3 response but reduced substantially the plateau phase of the PbTx-1 increment in [Ca2+]i when combined with MK-801. When nifedipine and MK-801 were combined with the Na+/Ca2+ exchanger (reversed mode) inhibitor KB-R7943, the PbTx-1 increment in [Ca2+]i was nearly completely attenuated. These data show that Ca2+ entry into PbTx-1-exposed CGNs occurs through three primary routes: NMDA receptor ion channels, L-type Ca2+ channels, and reversal of the Na+/Ca2+ exchanger. There was a close correlation between reduction of the integrated fluo-3 fluorescence response and the level of neuroprotection afforded by blockers of each Ca2+ entry pathway; however, simultaneous blockade of L-type Ca2+ channels and the Na+/Ca2+ exchanger, although reducing the integrated [Ca2+]i response to a level below that provided by NMDA receptor blockade alone, failed to completely attenuate PbTx-1 neurotoxicity. This finding suggests that in addition to total [Ca2+]i load, neuronal vulnerability is governed principally by the NMDA receptor Ca2+ influx pathway.  相似文献   

4.
Amyloid beta peptide (Abeta) accumulates in the CNS in Alzheimer's disease. Both the full peptide (1-42) or the 25-35 fragment are toxic to neurons in culture. We have used fluorescence imaging technology to explore the mechanism of neurotoxicity in mixed asytrocyte/neuronal cultures prepared from rat or mouse cortex or hippocampus, and have found that Abeta acts preferentially on astrocytes but causes neuronal death. Abeta causes sporadic transient increases in [Ca2+]c in astrocytes, associated with a calcium dependent increased generation of reactive oxygen species (ROS) and glutathione depletion. This caused a slow dissipation of mitochondrial potential on which abrupt calcium dependent transient depolarizations were superimposed. The mitochondrial depolarization was reversed by mitochondrial substrates glutamate, pyruvate or methyl succinate, and by NADPH oxidase (NOX) inhibitors, suggesting that it reflects oxidative damage to metabolic pathways upstream of mitochondrial complex I. The Abeta induced increase in ROS and the mitochondrial depolarization were absent in cells cultured from transgenic mice lacking the NOX component, gp91phox. Neuronal death after 24 h of Abeta exposure was dramatically reduced both by NOX inhibitors and in gp91phox knockout mice. Thus, by raising [Ca2+]c in astrocytes, Abeta activates NOX, generating oxidative stress that is transmitted to neurons, causing neuronal death.  相似文献   

5.
The effect of thrombin on the rat hippocampal neurons death in model of neurotoxicity induced by hemoglobin or glutamate, was studied. Thrombin (10 nM) was shown to inhibit 100-mkM glutamate--or 10-mkM hemoglobin-induced apoptosis of the rat hippocampal neurons. With the aid of PAR1 (protease-activated receptor1) agonist peptide and PAR1 antagonist, the PAR1 was found to be necessary for protective action of thrombin in hippocampal neurons in models of neurotoxicity induced by hemoglobin or glutamate. Because the prolonged elevation [Ca2+] ib neurons is a critical part of neurodestructive processes in CNS, the effect of thrombin on Ca2+-homeostatis of neurons after its injury by the inducer of neuronal apoptosis: a synthetic agonist of the NMDA receptors N-methyl-D-aspartate (NMDA), was studied. We hypothesized that thrombin via receptors PAR may prove to be neuroprotective for the hippocampus. Thrombin was shown to stimulate via PAR1 a transient increase in [Ca2+] in neurons in a concentration-dependent manner. Thrombin (1 nM) decreased the [Ca2+] signal induced by activation of the NMDA-subtype of glutamate receptors. This thrombin effect may be one of the reasons of the protective action of thrombin in hippocampal neurons.  相似文献   

6.
H T Cline  R W Tsien 《Neuron》1991,6(2):259-267
Influx of Ca2+ through NMDA channels may initiate the stabilization of coactive synapses during development of the retinotectal projection in frogs. Ca2+ imaging techniques were applied to cultured tectal cells to investigate whether excitatory amino acids cause a rise in [Ca2+]i. High [K+], NMDA, and glutamate increase [Ca2+]i in about 75% of the cells. NMDA and glutamate responses were completely blocked in the absence of extracellular Ca2+ and by the NMDA receptor or channel blockers APV and MK-801. The NMDA response was also blocked by Mg2+. Quisqualate and kainate produced little or no rise in [Ca2+]i. These studies indicate that when tectal cells are exposed to the retinal ganglion cell transmitter glutamate, the predominant means of Ca2+ entry is through NMDA channels.  相似文献   

7.
Cultures of rat hippocampal pyramidal neurons were used to examine the roles of excitatory synaptic transmission, NMDA receptors, and elevated [Ca2+]i in the production of excitotoxicity. In integral of 70% of the cells observed, perfusion with Mg2(+)-free, glycine-supplemented medium induced large spontaneous fluctuations or maintained plateaus of [Ca2+]i. [Ca2+]i fluctuations could be blocked by tetrodotoxin, NMDA receptor antagonists, dihydropyridines, or compounds that inhibit synaptic transmission in the hippocampus, but not by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. When cells were treated with Mg2(+)-free, glycine-supplemented medium and examined 24 hr later, integral of 30% of the neurons were found to have died. Cell death could be inhibited by the same agents that reduced [Ca2+]i fluctuations. These results support a role for direct excitatory synaptic transmission, as opposed to the general release of glutamate, in excitotoxicity. A major role for synaptically activated NMDA receptors, rather than kainate/quisqualate receptors, is also indicated. Neuronal death may be produced by abnormal changes in neuronal [Ca2+]i.  相似文献   

8.
In the present study, we have examined the effects of prolonged (up to 72 h) inhibition of high-affinity glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC; 100 microM) on glutamate receptor functions in primary cultures of rat cerebellar granule neurons. This was done by comparing the effects of various glutamate receptor agonists on neuronal 45Ca2+ uptake, free cytoplasmic Ca2+ concentration ([Ca2+]i), and cell viability. We also determined the parameters of[3H]MK-801 binding as well as the expression of the NMDAR1 subunit protein in control and PDC-exposed cultures. The blockade of glutamate reuptake by PDC led to a gradual increase of ambient glutamate to concentrations that are neurotoxic when applied acutely to control cells. In PDC-exposed cells, however, the acute glutamate-induced NMDA receptor-mediated calcium fluxes were strongly diminished and no toxicity was observed. The down-regulation of the functional effects of glutamate was dependent on the duration of PDC exposure and was accompanied by a reduced NMDAR1 subunit expression and decreased [3H]MK-801 binding, indicative of a pronounced structural rearrangement of NMDA receptors. The possibility that the decrease of NMDA glutamate receptor sensitivity can be explained on the basis of a reduced density or altered subunit composition of NMDA receptors is discussed.  相似文献   

9.
The effects of 30 s to 10 min hypoxia (PO2-10 mmHg) on glutamate receptor activity were studied in murine cortical neurons. Receptor activity was assessed as a rise in intracellular calcium concentration ([Ca2+]i) following a 10 s application of 1 mm glutamate or 100 micro mN-methy-d-aspartate (NMDA) in the presence of 0.1 mm Mg2+ and 10 micro m glycine. Change in [Ca2+]i elicited by glutamate increased 26% (n = 192, p < 0.001) and that to NMDA by 74% (n = 9, p < 0.01) during a 100-s period of hypoxia. After 10 min hypoxia, responses to glutamate were 62% smaller than those in normoxia, with increased basal intracellular [Ca2+]i predicting reduced receptor activity. When neurons were exposed to NMDA after 10 min of hypoxia, [Ca2+]i increases were 12% smaller than after 100 s hypoxia, but still 53% larger than in oxygenated neurons (n = 9, p = 0.01). Neurons expressed relatively similar amounts of NR2A, -B, -C, and -D subunits. The phosphorylation of NMDA NR1 subunits increased during hypoxia. Pre-treatment of neurons with a protein kinase C (PKC) inhibitor (chelerythrine, 10 micro m) prevented increases in N-methy-d-aspartate receptor (NMDAR) activity during hypoxia and reduced the phosphorylation of NR1 subunits. These results suggest that enhancement of glutamate receptor activity during the first minutes of hypoxia is mediated by phosphorylation of NMDARs by PKC and that other mechanisms, possibly involving intracellular calcium, limit glutamate receptor-mediated calcium influx during longer periods of hypoxia.  相似文献   

10.
Increases in cytoplasmic Ca2+ concentration ([Ca2+]i) can lead to neuron death. Preventing a rise in [Ca2+]i by removing Ca2+ from the extracellular space or by adding Ca2+ chelators to the cytosol of target cells ameliorates the neurotoxicity associated with [Ca2+]i increases. Another potential route of decreasing the neurotoxic impact of Ca2+ is to overexpress one of the large number of constitutive calcium-binding proteins. Previous studies in this laboratory demonstrated that overexpression of the gene for the calcium-binding protein calbindin D28K, via herpes simplex virus (HSV) amplicon vector, increases the survival of hippocampal neurons in vitro following energetic or excitotoxic insults but not following application of sodium cyanide. We now report that in vivo hippocampal infection with the calbindin D28K HSV vector increases neuronal survival in the dentate gyrus after application of the antimetabolite 3-acetylpyridine and increases transsynaptic neuronal survival in area CA3 following kainic acid neurotoxicity. The protective effects of infection with the calbindin D28K vector in an intact brain may prove to be beneficial during changes in Ca2+ homeostasis caused by neurological trauma associated with aging and certain neurological diseases.  相似文献   

11.
Overactivation of glutamate receptors and subsequent deregulation of the intraneuronal calcium ([Ca2+]i) levels are critical components of the injurious pathways initiated by cerebral ischemia. Another hallmark of stroke is parenchymal acidosis, and we have previously shown that mild acidosis can act as a switch to decrease NMDAR-dependent neuronal loss while potentiating the neuronal loss mediated by AMPARs. Potentiation of AMPAR-mediated neuronal death in an acidotic environment was originally associated only with [Ca2+]i dyshomeostasis, as assessed by Ca2+ imaging; however, intracellular dyshomeostasis of another divalent cation, Zn2+, has recently emerged as another important co-factor in ischemic neuronal injury. Rises in [Zn2+]i greatly contribute to the fluorescent changes of Ca2+-sensitive fluorescent probes, which also have great affinity for Zn2+. We therefore revisited our original findings (Mcdonald et al., 1998) and investigated if AMPAR-mediated fura-2 signals we observed could also be partially due to [Zn2+]i increases. Fura-2 loaded neuronal cultures were exposed to the AMPAR agonist, kainate, in a physiological buffer at pH 7.4 and then washed either at pH 7.4 or pH 6.2. A delayed recovery of fura-2 signals was observed at both pHs. Interestingly this impaired recovery phase was found to be sensitive to chelation of intracellular Zn2+. Experiments with the Zn2+ sensitive (and Ca2+-insensitive) fluorescent probe FluoZin-3 confirmed the idea that AMPAR activation increases [Zn2+]i, a phenomenon that is potentiated by mild acidosis. Additionally, our results show that selective Ca2+ imaging mandates the use of intracellular heavy metal chelators to avoid confounding effects of endogenous metals such as Zn2+.  相似文献   

12.
Calcium influx and elevation of intracellular free calcium ([Ca2+]i), with subsequent activation of degradative enzymes, is hypothesized to cause cell injury and death after traumatic brain injury. We examined the effects of mild-to-severe stretch-induced traumatic injury on [Ca2+]i dynamics in cortical neurons cultured on silastic membranes. [Ca2+]i was rapidly elevated after injury, however, the increase was transient with neuronal [Ca2+]i returning to basal levels by 3 h after injury, except in the most severely injured cells. Despite a return of [Ca2+]i to basal levels, there were persistent alterations in calcium-mediated signal transduction through 24 h after injury. [Ca2+]i elevation in response to glutamate or NMDA was enhanced after injury. We also found novel alterations in intracellular calcium store-mediated signaling. Neuronal calcium stores failed to respond to a stimulus 15 min after injury and exhibited potentiated responses to stimuli at 3 and 24 h post-injury. Thus, changes in calcium-mediated cellular signaling may contribute to the pathology that is observed after traumatic brain injury.  相似文献   

13.
A variety of neurotransmitters are believed to elicit effects through receptor-stimulated inositol phospholipid metabolism. It appears that most major types of retinal neurons receive a direct glutamatergic input. The aim of the present studies was to characterize excitatory amino acid (EAA) receptor-mediated breakdown of inositol phospholipids and changes in Ca2+ homeostasis in primary avian retinal cell cultures. Cell monolayers, prepared from 8-day-old chick embryo neural retina, were labelled with [3H]inositol for 48 h, and used after 7 days in vitro. Kainic acid stimulated the accumulation of inositol phosphates in a time- and dose-dependent manner (ED50 = 30 microM). The EAA receptor agonists glutamate, N-methyl-D-aspartate (NMDA), ibotenate and quisqualate were all active, with the rank order: glutamate greater than kainate greater than NMDA much greater than ibotenate approximately quisqualate. External Ca2+ was required for these effects. Agonist actions were inhibited by type-specific antagonists, and also Mg2+ in the case of glutamate and NMDA. Glutamate, NMDA and kainate also elevated cytosolic free Ca2+ in individual retinal cells loaded with the Ca2(+)-sensitive dye Fura-2, as assessed by digital fluorescence ratio imaging microscopy. The agonist-induced increases in [Ca2+]i were largely dependent on extracellular Ca2+, independent of membrane depolarization and were blocked by Mg2+ for glutamate and NMDA. These results demonstrate that vertebrate retinal cells possess EAA receptors coupled to intracellular signal transduction pathways.  相似文献   

14.
Reduction in GluR2 subunit expression and subsequent increases in AMPA receptor mediated Ca(2+) currents were postulated to exacerbate glutamate neurotoxicity following seizures or global ischemia. To directly test the effects of shifting the GluR1/GluR2 subunit ratio on excitotoxicity, GluR2 antisense deoxyoligonucleotides (AS-ODNs) were applied to dissociated hippocampal cultures for 1-8 days. The GluR1/GluR2 protein ratio was examined immunohistochemically and by Western blotting. [Ca(2+)](i) concentrations were determined by ratiometric imaging of Fura 2-loaded cells. The cultures were exposed to glutamate, AMPA, NMDA or kainic acid (KA) 3 days after GluR2 knockdown and cell viability was determined 1 day later by MTT reduction assay or Trypan blue exclusion. Although GluR2 AS-ODNs increased the GluR1/GluR2 protein ratio in a time dependent manner, neurons and glia appeared healthy and MTT reduction values were similar to untreated and sense controls. Basal [Ca(2+)](i) levels were unchanged but [Ca(2+)](i) was selectively increased by agonist stimulation of AMPA receptors. Unexpectedly, delayed neurotoxicity was attenuated at saturating doses of glutamate while little difference in cell viability was observed at lower doses or with the other excitotoxins at any concentration. Therefore, there was a dissociation between rises in AMPA receptor-mediated Ca(2+) influx and neurotoxicity despite marked decreases in GluR2 but not GluR1 immunoreactivity. It is proposed that a modification of AMPA receptor stochiometry that raises agonist-stimulated Ca(2+) influx during an excitotoxic insult may have eventual neuroprotective effects.  相似文献   

15.
Dissociated brain cells were isolated from newborn rat pups and loaded with fura-2. These cells were sensitive to low N-methyl-D-aspartate (NMDA) concentrations with EC50 values for NMDA-induced intracellular Ca2+ concentration ([Ca2+]i) increases of approximately 7-16 microM measured in the absence of Mg2+. NMDA-stimulated [Ca2+]i increases could be observed in buffer with Mg2+ when the cells were predepolarized with 15 mM KCl prior to NMDA addition. Under these predepolarized conditions, 100 mM ethanol inhibited 25 microM NMDA responses by approximately 50%, which was similar to the ethanol inhibition observed in buffer without added Mg2+. Ethanol did not alter [Ca2+]i prior to NMDA addition. In the absence of Mg2+, 50 and 100 mM ethanol did not significantly alter the EC50 value for NMDA, but did inhibit NMDA-induced increases in [Ca2+]i in a concentration-dependent manner at 4, 16, 64, and 256 microM NMDA. Whereas NMDA-induced increases in [Ca2+]i were dependent on extracellular Ca2+ and were inhibited by Mg2+, the ability of 100 mM ethanol to inhibit 25 microM NMDA responses was independent of the external Ca2+ or Mg2+ concentrations. Glycine (1, 10, and 100 microM) enhanced 25 microM NMDA-induced increases in [Ca2+]i by approximately 50%. Glycine (1-100 microM) prevented the 100 mM ethanol inhibition of NMDA-stimulated [Ca2+]i observed in the absence of exogenous glycine. MK-801 (25-400 nM) inhibited 25 microM NMDA-stimulated rises in [Ca2+]i in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Under control conditions, superfused hippocampal slices exhibited a significantly higher phosphocreatine (PCr)/ATP ratio than cortical slices; the evidence suggests that this is due to lower concentrations of ATP, rather than higher concentrations of PCr. Glutamate caused relatively rapid decreases in PCr and ATP levels to approximately 45%, accompanied or immediately followed by an increased free intracellular calcium concentration ([Ca2+]i) and the release of Zn2+ in the cortex. In the hippocampus PCr and ATP decreased further to approximately 20% of control values, but the changes in [Ca2+]i and Zn2+ content were slower. This is in contrast to the effects of depolarisation, which produced the same rapid changes in the energy state and [Ca2+]i, with no detectable Zn2+, in both tissues. NMDA causes effects similar to those of glutamate in the cortex (decreases in the energy state, increased [Ca2+]i, and release of Zn2+). Pretreatment of the cortex for 1 h with the NMDA blocker MK-801 prevented all of the observed effects of NMDA. In contrast, pretreatment with MK-801 had no detectable effect on the increase in [Ca2+]i or the decreases in PCr and ATP caused by glutamate, although it prevented the release of zinc. The results are discussed in relation to the function of the NMDA subtype of glutamate receptor in excitotoxicity.  相似文献   

17.
Cyclodextrins (CDs) are cyclic oligosaccharides composed of a lipophilic central cavity and a hydrophilic outer surface. Some CDs are capable of extracting cholesterol from cell membranes and can affect function of receptors and proteins localized in cholesterol-rich membrane domains. In this report, we demonstrate the neuroprotective activity of some CD derivatives against oxygen-glucose deprivation (OGD), N-methyl-D-aspartic acid (NMDA) and glutamate in cortical neuronal cultures. Although all CDs complexed with NMDA or glutamate, only beta-, methylated beta- and sulfated beta-CDs displayed neuroprotective activity and lowered cellular cholesterol. Only CDs that lowered cholesterol levels redistributed the NMDA receptor NR2B subunit, PSD-95 (postsynaptic density protein 95 kDa) and neuronal nitric oxide synthase (nNOS) from Triton X-100 insoluble membrane domains to soluble fractions. Cholesterol repletion counteracted the ability of methylated beta-CD to protect against NMDA toxicity, and reversed NR2B, PSD-95 and nNOS localization to Triton X-100 insoluble membrane fraction. Surprisingly, neuroprotective CDs had minimal effect on NMDA receptor-mediated increases in intracellular Ca(2+) concentration ([Ca(2+)](i)), but did suppress OGD-induced increases in [Ca(2+)](i). beta-CD, but not Mbeta-CD, also caused a slight block of NMDA-induced currents, suggesting a minor contribution to neuroprotection by direct action on NMDA receptors. Taken together, data suggest that cholesterol extraction from detergent-resistant microdomains affects NMDA receptor subunit distribution and signal propagation, resulting in neuroprotection of cortical neuronal cultures against ischemic and excitotoxic insults. Since cholesterol-rich membrane domains exist in neuronal postsynaptic densities, these results imply that synaptic NMDA receptor subpopulations underlie excitotoxicity, which can be targeted by CDs without affecting overall neuronal Ca(2+) levels.  相似文献   

18.
The free cytosolic Ca2+ concentration ([Ca2+]i) of cultured cerebral cortex neurons was determined using a fluorescent Ca2+ chelator (Fluo-3) after exposure of the neurons to glutamate. Mature neurons (8 days in culture) responded within 45 s to 100 microM glutamate by an increase in [Ca2+]i from 75 to 340 nM, an increase that during the following 6 min of exposure reached 400 nM. This increase in [Ca2+]i could not be reversed by removal of glutamate. In the absence of extracellular CaCl2, only part of the initial, rapid, glutamate-induced increase in [Ca2+]i was observed in these neurons. In contrast to these findings, neurons cultured for only 2 days (immature neurons) exhibited only a small (from 75 to 173 nM) increase in [Ca2+]i after exposure to 100 microM glutamate, and this rapid increase in [Ca2+]i tended to decline on prolonged exposure to glutamate. Moreover, after removal of glutamate, the increase in [Ca2+]i was fully reversible. Pharmacological characterization of the response to glutamate in mature neurons showed that the N-methyl-D-aspartate (NMDA) receptor antagonists phencyclidine and D-2-amino-5-phosphonovalerate phosphonovalerate blocked 75 and 90%, respectively, of the response, whereas the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione had little effect.  相似文献   

19.
Intracellular free [Ca2+]i was measured using fura-2 in synaptosomes prepared from cerebral cortices of adult male rats (12 weeks). L-(+)-Glutamate, D-(-)-glutamate, and quisqualate produced similar dose-dependent increases in [Ca2+]i, with EC50 values of 0.38 microM, 0.74 microM, and 0.1 microM, respectively, and maximum increases of approximately 40%. Ibotenate showed less affinity (EC50 4.4 microM) but had a greater maximum effect (57%). N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) did not increase [Ca2+]i. The increases in [Ca2+]i induced by quisqualate and ibotenate were not diminished in the absence of extrasynaptosomal Ca2+. L-2-Amino-4-phosphonobutyrate (L-AP4) (1 microM) completely blocked the changes in [Ca2+]i induced by L-(+)-glutamate, D-(-)-glutamate, quisqualate, or ibotenate. The effects of quisqualate and ibotenate on [Ca2+]i were also blocked by coincubation of synaptosomes with L-(+)-serine-O-phosphate (L-SP) (1 mM) (which, like L-AP4, blocks the effects of quisqualate and ibotenate on inositol phospholipid metabolism). 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) had no effect on agonist-mediated increases in [Ca2+]i when coincubated with either quisqualate or ibotenate. These data are consistent with the existence of presynaptic glutamate receptors (of the excitatory amino acid metabotropic type) which activate phospholipase C leading to the elevation of inositol 1,4,5-trisphosphate and release of Ca2+ from intracellular stores.  相似文献   

20.
Calcium and calcium-dependent systems have been long implicated in the induction of epilepsy. We have previously observed that intracellular calcium ([Ca2+]i) levels remain elevated in cells undergoing epileptogenesis in the hippocampal neuronal culture (HNC) model. In this study, we employed the hippocampal neuronal culture (HNC) model of in vitro 'epilepsy' which produces spontaneous recurrent epileptiform discharges (SREDs) for the life of the neurons in culture to investigate alterations in [Ca2+]i homeostatic mechanisms that may be associated with the 'epileptic' phenotype. [Ca2+]i imaging fluorescence microscopy was performed on control and 'epileptic' neurons with two different fluorescent dyes ranging from high to low affinities for [Ca2+]i. We measured baseline [Ca2+]i levels and the ability to restore resting [Ca2+]i levels after a brief 2-min exposure to the excitatory amino acid glutamate in control neurons and neurons with SREDs. Neurons manifesting SREDs had statistically significantly higher baseline [Ca2+]i levels that persisted for the life of the culture. In addition, the 'epileptic' phenotype was associated with an inability to rapidly restore [Ca2+]i levels to baseline following a glutamate induced [Ca2+]i load. The use of the low affinity dye Fura-FF demonstrated that the difference in restoring baseline [Ca2+]i levels was not due to saturation of the high affinity dye Indo-1, which was utilized for evaluating the [Ca2+]i kinetics at lower [Ca2+]i levels. Peak [Ca2+]i levels in response to glutamate were the same in both 'epileptic' and control neurons. While [Ca2+]i levels recovered in approximately 30 min in control cells, it took more than 90 min to reach baseline levels in cells manifesting SREDs. Alterations of [Ca2+]i homeostatic mechanisms observed with the 'epileptic' phenotype were shown to be independent of the presence of continuous SREDs and persisted for the life of the neurons in culture. Epileptogenesis was shown not to affect the degree or duration of glutamate induced neuronal depolarization in comparing control and 'epileptic' neurons. The results indicate that epileptogenesis in this in vitro model produced long-lasting alterations in [Ca2+]i regulation that may underlie the 'epileptic' phenotype and contribute to the persistent neuroplasticity changes associated with epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号