首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postnatal myoblasts, the satellite cells, originating from slow and fast skeletal muscle fibres differentiate and fuse into myotubes expressing different phenotype of myosin heavy chain (MyHC) isoforms. Little is known, however, of factors which establish and maintain this phenotypic diversity. We used immunofluorescent labelling and Western blotting to examine the expression of slow and fast MyHC isoforms in myotubes formed in vitro from satellite cells isolated from mouse fast twitch extensor digitorum longus (EDL) and slow twitch soleus muscles. Satellite cells were cultured in serum-rich growth medium promoting myoblast proliferation until cross-striated and self-contracting myotubes were formed. We report that in both cultures myotubes expressed slow as well as fast MyHC isoforms, but the level of slow MyHC was higher in soleus culture than in EDL culture. Hence, the pattern of expression of slow and fast MyHC was characteristic of the muscle fibre type from which these cells derive. These results support the concept of phenotypic diversity among satellite cells in mature skeletal muscles and suggest that this diversity is generated in vitro irrespectively of serum mitogens.  相似文献   

2.
Following muscle damage, fast- and slow-contracting fibers regenerate, owing to the activation of their satellite cells. In rats, crush-induced regeneration of extensor digitorum longus (EDL, a fast muscle) and soleus (a slow muscle) present different characteristics, suggesting that intrinsic differences exist among their satellite cells. An in vitro comparative study of the proliferation and differentiation capacities of satellite cells isolated from these muscles is presented there. We observed several differences between soleus and EDL satellite cell cultures plated at high density on gelatin-coated dishes. Soleus satellite cells proliferated more actively and fused into myotubes less efficiently than EDL cells. The rate of muscular creatine kinase enzyme appeared slightly lower in soleus than in EDL cultures at day 11 after plating, when many myotubes were formed, although the levels of muscular creatine kinase mRNA were similar in both cultures. In addition, soleus cultures expressed higher levels of MyoD and myogenin mRNA and of MyoD protein than EDL satellite cell cultures at day 12. A clonal analysis was also carried out on both cell populations in order to determine if distinct lineage features could be detected among satellite cells derived from EDL and soleus muscles. When plated on gelatin at clonal density, cells from both muscles yielded clones within 2 weeks, which stemmed from 3–15 mitotic cycles and were classified into three classes according to their sizes. Myotubes resulting from spontaneous fusion of cells from the progeny of one single cell were seen regardless of the clone size in the standard culture medium we used. The proportion of clones showing myotubes in each class depended on the muscle origin of the cells and was greater in EDL- than in soleus-cell cultures. In addition, soleus cells were shown to improve their differentiation capacity upon changes in the culture condition. Indeed, the proportions of clones showing myotubes, or of cells fusing into myotubes in clones, were increased by treatments with a myotube-conditioned medium, with phorbol ester, and by growth on extra-cellular matrix components (Matrigel). These results, showing differences among satellite cells from fast and slow muscles, might be of importance to muscle repair after trauma and in pathological situations.  相似文献   

3.
Phorbol esters have been reported to induce opposite responses in fetal myoblasts and in satellite cells isolated from adult skeletal muscles. We examined the possibility that different levels of protein kinase C (PKC) activity and different phorbol ester binding characteristics account for these responses. For this purpose, the subcellular distributions of PKC were compared in primary cultures of myogenic cells from fetal and adult rat muscles and in the L6 cell line. Cells were used at the proliferative stage or after differentiation into myotubes. Binding of phorbol dibutyrate (PDBu) was assayed. In all three cell types, the levels of PKC specific activity were comparable at the proliferating and the differentiated stages, and partial translocation of PKC activity from the membrane to the cytosolic compartment was observed after differentiation into myotubes. PDBu binding, which had a Kd of 6 to 13 nM in proliferative cells, rose to between 30 and 52 nM in myotubes. Simultaneously, a small increase was observed in the total number of PDBu binding sites. These results suggest that the role of PKC might change with the stage of differentiation. They also imply that the difference described by others between the sensitivity to phorbol esters of fetal myoblasts and satellite cells is not connected with the phorbol ester receptor (i.e., PKC), but might be caused by events subsequent to PKC activation.  相似文献   

4.
5.
6.
《The Journal of cell biology》1985,101(5):1643-1650
We prepared monoclonal antibodies specific for fast or slow classes of myosin heavy chain isoforms in the chicken and used them to probe myosin expression in cultures of myotubes derived from embryonic chicken myoblasts. Myosin heavy chain expression was assayed by gel electrophoresis and immunoblotting of extracted myosin and by immunostaining of cultures of myotubes. Myotubes that formed from embryonic day 5-6 pectoral myoblasts synthesized both a fast and a slow class of myosin heavy chain, which were electrophoretically and immunologically distinct, but only the fast class of myosin heavy chain was synthesized by myotubes that formed in cultures of embryonic day 8 or older myoblasts. Furthermore, three types of myotubes formed in cultures of embryonic day 5-6 myoblasts: one that contained only a fast myosin heavy chain, a second that contained only a slow myosin heavy chain, and a third that contained both a fast and a slow heavy chain. Myotubes that formed in cultures of embryonic day 8 or older myoblasts, however, were of a single type that synthesized only a fast class of myosin heavy chain. Regardless of whether myoblasts from embryonic day 6 pectoral muscle were cultured alone or mixed with an equal number of myoblasts from embryonic day 12 muscle, the number of myotubes that formed and contained a slow class of myosin was the same. These results demonstrate that the slow class of myosin heavy chain can be synthesized by myotubes formed in cell culture, and that three types of myotubes form in culture from pectoral muscle myoblasts that are isolated early in development, but only one type of myotube forms from older myoblasts; and they suggest that muscle fiber formation probably depends upon different populations of myoblasts that co-exist and remain distinct during myogenesis.  相似文献   

7.
Emerin expression at the early stages of myogenic differentiation   总被引:3,自引:0,他引:3  
Emerin is an ubiquitous protein localized at the nuclear membrane of most cell types including muscle cells. The protein is absent in most patients affected by the X-linked form of Emery-Dreifuss muscular dystrophy, a disease characterized by slowly progressive muscle wasting and weakness, early contractures of the elbows, Achilles tendons, and post-cervical muscles, and cardiomyopathy. Besides the nuclear localization, emerin cytoplasmic distribution has been suggested in several cell types. We studied the expression and the subcellular distribution of emerin in mouse cultured C2C12 myoblasts and in primary cultures of human myoblasts induced to differentiate or spontaneously differentiating in the culture medium. In differentiating myoblasts transiently transfected with a cDNA encoding the complete emerin sequence, the protein localized at the nuclear rim of all transfected cells and also in the cytoplasm of some myoblasts and myotubes. Cytoplasmic emerin was also observed in detergent-treated myotubes, as determined by electron microscopy observation. Both immunofluorescence and biochemical analysis showed, that upon differentiation of C2C12 cells, emerin expression was decreased in the resting myoblasts but the protein was highly represented in the developing myotubes at the early stage of cell fusion. Labeling with specific markers of myogenesis such as troponin-T and myogenin permitted the correlation of increased emerin expression with the onset of muscle differentiation. These data suggest a role for emerin during proliferation of activated satellite cells and at the early stages of differentiation.  相似文献   

8.
The local anaesthetic (Bupivacaine (1-n-butyl-DL-piperidine-2-carboxylic acid-2, 6-dimethyl anilide hydrochloride) has been used to induce myofiber damage (and thus satellite cells proliferation) and thereby represents a tool for increasing the yield of myoblasts from adult muscles. Replicating satellite cells were isolated by enzymatic dissociation from soleus (slow type) and tibialis anterior (fast type) muscles of adult rats, and categorized by the isoform (embryonic, fast and slow) of myosin heavy chain (MHC) expressed following myotube formation in a similar in vitro environment. According to light microscopic criteria, no morphological differences exist between the satellite cell cultures obtained from adult fast and slow muscles after Bupivacaine injection. On the other hand the derived myotubes express, beside the embryonic type, the peculiar myosin heavy chains which characterize the myosin pattern of the donor muscles.  相似文献   

9.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

10.
In the rat, the fast and slow twitch muscles respectively Extensor digitorum longus (EDL) and Soleus present differential characteristics during regeneration. This suggests that their satellite cells responsible for muscle growth and repair represent distinct cellular populations. We have previously shown that satellite cells dissociated from Soleus and grown in vitro proliferate more readily than those isolated from EDL muscle. Fibroblast growth factors (FGFs) are known as regulators of myoblast proliferation and several studies have revealed a relationship between the response of myoblasts to FGF and the expression of myogenic regulatory factors (MRF) of the MyoD family by myoblasts. Therefore, we presently examined the possibility that the satellite cells isolated from EDL and Soleus muscles differ in the expression of FGF receptors (FGF-R) and of MRF expression. FGF-R1 and -R4 were strongly expressed in proliferating cultures whereas FGF-R2 and R3 were not detected in these cultures. In differentiating cultures, only -R1 was present in EDL satellite cells while FGF-R4 was also still expressed in Soleus cells. Interestingly, the unconventional receptor for FGF called cystein rich FGF receptor (CFR), of yet unknown function, was mainly detected in EDL satellite cell cultures. Soleus and EDL satellite cell cultures also differed in the expression MRFs. These results are consistent with the notion that satellite cells from fast and slow twitch muscles belong to different types of myogenic cells and suggest that satellite cells might play distinct roles in the formation and diversification of fast and slow fibres.  相似文献   

11.
12.
Although protein kinase C (PKC) has been shown to participate in skeletal myogenic differentiation, the functions of individual isoforms of PKC in myogenesis have not been completely elucidated. These studies focused on the role of nPKC straight theta, an isoform of the PKC family whose expression has been shown to be regulated by commitment to the myogenic lineage, myogenic differentiation and innervation. We used the myogenic cell line C(2)C(12) as a tissue culture model system to explore the role of nPKC straight theta in the formation of multinucleated myotubes. We examined endogenous levels of nPKC straight theta in C(2)C(12) cells and showed that it is expressed at low levels in myoblasts compared to mouse skeletal muscle and that expression is maintained in myotubes. We overexpressed nPKC straight theta in C(2)C(12) myoblasts and examined the ability of overexpressing cells to differentiate into myotubes. Using an nPKC straight theta - green fluorescent protein (GFP) chimera to detect transfected myoblasts, we showed that overexpressed nPKC straight theta-GFP translocates to the plasma membrane in response to phorbol ester treatment of myoblast cultures in situ. nPKC straight theta-GFP was found to be completely extracted into the detergent-soluble fraction of cell lysates and was stably expressed throughout the extent of differentiation into myotubes. No difference was seen in the ability of myoblasts either overexpressing nPKC straight theta - GFP or GFP alone to form myotubes. These studies demonstrate that overexpression of nPKC straight theta does not interfere with fusion of myoblasts into myotubes suggesting that nPKC straight theta activity is not inhibitory for myogenesis. These studies also demonstrate a method for transfecting myoblasts and identifying differentiated cells that overexpress nPKC straight theta-GFP for investigating the function of nPKC straight theta in living myotubes.  相似文献   

13.
During the early stages of myogenesis in X. laevis, the primary myoblasts (of mesodermal origin) differentiate simultaneously, in each myotome, into mononucleate myotubes. At later stages mesenchymal cells appear in intermyotomal fissures and then in the myotomes between myotubes and contribute to the formation ofsyncytial muscle fibres. The pathway of mesenchymals cell during myogenesis was described in X laevis by monitoring the incorporation of 3H-thymidine. 3H-thymidine was incorporated in the nuclei of mesenchymal cells in intermyotomal fissures of younger myotomes and then in those of older myotomes between the myotubes revealing the proliferation of mesenchymal cells. As expected, nuclei of differentiating mononucleate myotubes did not incorporate 3H-thymidine. At later stages of myogenesis the myotubes were found to contain two classes of nuclei: large nuclei of the primary myoblasts (of myotomal origin) and smaller nuclei originating from secondary myoblasts ofmesenchymal origin. TEM and autoradiographic analyses confirm that mulinucleate myotubes in X. laevis arise through fusion of secondary myoblasts with mononucleate myotubes.  相似文献   

14.
Muscle repair following severe injury is slow and incomplete due to the limited regenerative capacity of muscles comprising the function. In this study, one pure compound structurally corresponding to triterpenoid, which can directly induce the activation, proliferation and maturation of quiescent satellite cells into myocytes in vitro, was isolated from Geum japonicum. The potential effect of this compound on myogenesis was further tested in repair of severe muscle injury. It was found that this compound could significantly stimulate the regenerative potential of the damaged muscle resulting in regeneration of myotubes and myotube bundles time-dependently replacing the damaged muscle tissues. This compound-mediated active regeneration of new myofibers repairing damaged muscles was probably due to its direct action on activation and proliferation of quiescent myogenic precursor cells and enhancement of their maturation into regenerating myotubes, as was demonstrated in our primary myogenic precursor cells culture experiments. The up-regulated expression of endogenous phospho-Akt1 in compound-treated myogenic precursor cells may also contribute to the process of myofiber regeneration and muscle repair probably via promoting myogenic cell survival capacity.  相似文献   

15.
The fiber-type composition of postnatal chicken leg muscle spindles with from one to four intrafusal fibers was examined in sections incubated with monoclonal antibodies against fast and slow myosin heavy chains. In monofibral spindles the lone intrafusal fiber was almost always fast. In duofibral spindles usually one slow and one fast fiber were present. Trifibral spindles most often displayed two fast and one slow fiber, whereas quadrofibral receptors characteristically contained two slow and two fast fibers. Earlier results showed that the primary intrafusal myotube in nascent spindles has almost always a fast myosin heavy chain profile and that the proportion of slow myotubes and fibers increases as intrafusal fiber bundles grow in size. Data from postnatal chicken leg muscles collected here suggest that up to the first four fibers this proportional increase can be largely accounted for if consecutive intrafusal fibers arise in a fast-slow-fast-slow sequence. The late recognition during myogenesis of primary intrafusal myotubes and their fast myosin heavy chain profiles warrant exploring if nascent chicken muscles spindles are first seeded by fast fetal myoblasts. © 1995 Wiley-Liss, Inc.  相似文献   

16.
There is evidence involving protein kinase C (PKC) in the signal transduction pathways that regulate the differentiation of myoblasts into mature multinucleated muscle cells (myotubes). In order to obtain information on the possible role of individual PKC isozymes in myogenesis, in the present work we investigated the differential expression of PKC isoforms alpha, beta, delta, epsilon, and zeta during muscle cell development in vitro. Chick embryo myoblasts cultured from 1 to 6 days were used as experimental model. Morphological characterization and measurement of specific biochemical parameters in cultures, e.g., DNA synthesis, creatine kinase activity, and myosin levels, revealed a typical muscle cell developmental pattern consisting of an initial proliferation of myoblasts followed by their differentiation into myotubes. PKC activity was high at the proliferation stage, decreased as myoblasts elongated and fused, and increased again in differentiated myotubes. In proliferating myoblasts, the PKC inhibitors calphostin C and bisindolylmaleimide I decreased DNA synthesis whereas in myoblasts undergoing differentiation they exerted the opposite effect, suggesting that PKC plays a role at both stages of myogenesis. Western blot analysis of changes in the expression of PKC isoforms during muscle cell development showed high levels of PKC alpha in the proliferating phase which markedly decreased as myoblasts differentiated. Treatment with TPA of proliferative myoblasts inhibited DNA synthesis and selectively down-regulated PKC alpha, suggesting that this isozyme may have an important role in maintaining myoblast proliferation. On the other hand, an increase in the expression of PKC beta, delta, and epsilon was detected during myogenesis, suggesting that one or more of these isoforms may participate in the differentiation process of myoblasts.  相似文献   

17.
The emergence of avian satellite cells during development has been studied using markers that distinguish adult from fetal cells. Previous studies by us have shown that myogenic cultures from fetal (Embryonic Day 10) and adult 12-16 weeks) chicken pectoralis muscle (PM) each regulate expression of the embryonic isoform of fast myosin heavy chain (MHC) differently. In fetal cultures, embryonic MHC is coexpressed with a ventricular MHC in both myocytes (differentiated myoblasts) and myotubes. In contrast, myocytes and newly formed myotubes in adult cultures express ventricular but not embryonic MHC. In the current study, the appearance of myocytes and myotubes which express ventricular but not embryonic MHC was used to determine when adult myoblasts first emerge during avian development. By examining patterns of MHC expression in mass and clonal cultures prepared from embryonic and posthatch chicken skeletal muscle using double-label immunofluorescence with isoform-specific monoclonal antibodies, we show that a significant number of myocytes and myotubes which stain for ventricular but not embryonic MHC are first seen in cultures derived from PM during fetal development (Embryonic Day 18) and comprise the majority, if not all, of the myoblasts present at hatching and beyond. These results suggest that adult type myoblasts become dominant in late embryogenesis. We also show that satellite cell cultures derived from adult slow muscle give results similar to those of cultures derived from adult fast muscle. Cultures derived from Embryonic Day 10 hindlimb form myocytes and myotubes that coexpress ventricular and embryonic MHCs in a manner similar to cells of the Embryonic Day 10 PM. Thus, adult and fetal expression patterns of ventricular and embryonic MHCs are correlated with developmental age but not muscle fiber type.  相似文献   

18.
19.
Abstract. Satellite cells were isolated at high yields from slow-twitch soleus and fast-twitch tibialis anterior (TA) muscles of adult male Wistar rats. The number of satellite cells isolated from soleus muscle exceeded that from TA muscles by a factor of three. A comparison of satellite cells grown on gelatin- or Matrigel-coated dishes revealed that Matrigel greatly enhances the maturation of the satellite-cell-derived myotubes. As judged from immunohistochemistry, myosin heavy chain electrophoresis and immunoblot analyses, only cells grown on Matrigel, but not on gelatin, expressed adult myosin isoforms. Slow myosin expression was only detected in Matrigel cultures. Soleus cultures contained, in addition to the majority of myotubes expressing fast myosin, a small fraction (maximally 10%) of myotubes coexpressing fast and slow myosins. The number of fast/slow myosin-containing myotubes was negligible in TA cultures. The expression of slow myosin increased with age. Slow myosin was nonuniformly distributed along the length of specific myotubes and accumulated around some myonuclei. These results point to the existence of myotubes with a heterogeneous population of myonuclei, probably resulting from fusion of differently preprogrammed satellite cells. We suggest that the patch-like expression of slow myosin results from local accumulation of myonuclei of slow-type satellite cells.  相似文献   

20.
It has recently been established that exosomes can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs. As muscle cells secrete exosomes, we addressed the question of whether skeletal muscle (SkM) exosomes contained specific miRNAs, and whether they could act as “endocrine signals” during myogenesis. We compared the miRNA repertoires found in exosomes released from C2C12 myoblasts and myotubes and found that 171 and 182 miRNAs were exported into exosomes from myoblasts and myotubes, respectively. Interestingly, some miRNAs were expressed at higher levels in exosomes than in their donor cells and vice versa, indicating a selectivity in the incorporation of miRNAs into exosomes. Moreover miRNAs from C2C12 exosomes were regulated during myogenesis. The predicted target genes of regulated exosomal miRNAs are mainly involved in the control of important signaling pathways for muscle cell differentiation (e.g., Wnt signaling pathway). We demonstrated that exosomes from myotubes can transfer small RNAs (C. elegans miRNAs and siRNA) into myoblasts. Moreover, we present evidence that exosome miRNAs secreted by myotubes are functionally able to silence Sirt1 in myoblasts. As Sirt1 regulates muscle gene expression and differentiation, our results show that myotube–exosome miRNAs could contribute to the commitment of myoblasts in the process of differentiation. Until now, myokines in muscle cell secretome provided a conceptual basis for communication between muscles. Here, we show that miRNA exosomal transfer would be a powerful means by which gene expression is orchestrated to regulate SkM metabolic homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号