首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Supernatants from the coculture of peripheral blood lymphocytes and the NK-susceptible cell line K562 were highly growth inhibitory for a variety of tumor cell lines. No correlation was observed between the susceptibility of the target cell lines to growth inhibition and to lysis by NK cells. Rather, the spectrum of cytostatic activity and the characteristics of the soluble factor were similar to those of leukoregulin, a recently described lymphokine. The supernatants of tumor-lymphocyte cultures contained only low levels of IFN-alpha and IFN-gamma, and antibodies to interferons did not affect the observed growth inhibition. The pattern of target cell susceptibility to growth inhibition by this factor was also quite distinct from that seen with purified recombinant LT or TNF. Furthermore, monoclonal antibodies to these cytokines also had no effect on the cytostasis, arguing against a requirement for, or synergistic interaction with, low levels of these cytokines. Some of the targets susceptible to the factor were only growth inhibited but not lysed, thereby distinguishing it from NKCF. Furthermore, the cytostasis was not inhibited by mannose-6-PO4 or rabbit antibodies to granule cytolysin, both of which have been reported to block NKCF. Therefore, the results show that a cytostatic factor is released in tumor-lymphocyte incubation that is quite distinct from interferons, LT, and TNF but has characteristics that resemble those of leukoregulin.  相似文献   

2.
The present study was undertaken to evaluate the possible contribution of other cytokines to the lytic activity of NKCF-containing supernatants. We compared some of the functional properties of human NKCF and purified recombinant human rLT and rTNF. It was found that the target cell specificity of rLT was quite different from NKCF in that rLT was neither species specific nor NK specific. Furthermore, antibodies against rLT did not affect the lytic activity of NKCF. These results demonstrate that LT does not significantly contribute to the lytic activity mediated by NKCF. The target specificity of rTNF was found to be related to that of NKCF with the exception of one NK-resistant cell line that was lysed by rTNF in a 20-hr 51Cr-release assay. However, rTNF was not toxic to any of the target cells tested as assessed by trypan blue exclusion in a 20-hr assay unless the targets were labeled with 51Cr. In contrast, NKCF did kill target cells as detected by trypan blue exclusion that were not labeled with 51Cr. Further analysis of this mechanistic difference in the lytic activity of rTNF and NKCF revealed that rTNF in combination with either cycloheximide or mitomycin C but not IFN-gamma could lyse unlabeled U937 target cells. In addition, pretreatment of U937 target cells with nonradioactive Na2CrO4 at concentrations equivalent to that used to 51Cr-labeled cells resulted in their susceptibility to lysis by rTNF as assessed by trypan blue exclusion. These findings suggest that lysis of several susceptible target cells in 20 hr by rTNF requires the presence of additional agents that may be sublethally toxic and/or inhibitory to macromolecular synthesis. Antibody inhibition studies revealed that anti-TNF mediated from partial to complete inhibition of lysis of U937 by unfractionated supernatants containing NKCF. However, fractionation of such supernatants on chromatofocusing columns yielded two distinct peaks of activity eluting in the pH range of 5 to 6 and 7 to 8. Anti-TNF could inhibit the acidic form of NKCF but not the neutral form. It is concluded that NKCF activity is mediated in part by TNF or an antigenically related molecule as well as some other distinct factor(s). The lack of consistent inhibition of NK CMC by anti-TNF suggests that TNF alone is not sufficient to mediate NK activity, or else it is inaccessible to the added antibody.  相似文献   

3.
After being treated with rTNF, polymorphonuclear neutrophils (PMN) were highly suppressive to the growth of four different tumor target cells, Raji, K562, UCLA-SO-M14, and U937. Neutralizing TNF with specific antibodies before PMN were treated blocked induction of the anti-proliferative activity against Raji. However, after PMN were exposed to TNF the cytostatic activity could not be reversed by the antibody or by washing off TNF, indicating that the continuous presence of TNF was not required for expression of the anti-proliferative function. Addition of the hydrogen peroxide (HP) scavenger, catalase, at the beginning of the assay inhibited the cytostatic activity, suggesting that HP was involved in suppressing the tumor cell growth. In contrast, other reactive oxygen species inhibitors such as superoxide dismutase, sodium azide, L-methionine, or deferoxamine did not inhibit the cytostasis. HP alone at above 10 microM was cytostatic to Raji cells. The presence of TNF did not increase the sensitivity of Raji to HP. TNF activated PMN to produce HP but the amount of HP released in the culture supernatant was too low for direct cytostasis. PMN also became more adherent after TNF treatment. Therefore, the TNF-induced cytostasis may be mediated by local high concentrations of HP produced by PMN.  相似文献   

4.
Human peripheral blood lymphocytes cultured in vitro for 2 days in serum-free conditions produced a natural killer (NK) cytotoxic factor (NKCF) which selectively killed NK-susceptible targets. Optimal release of NKCF was achieved under serum-free conditions, while the presence of fetal calf serum inhibited both the production and activity of the factor. Mechanistic studies with NKCF demonstrated that the factor could be adsorbed by the target cells within 6 h, with no further exposure to NKCF required for maximal levels of lysis of the treated targets after additional 30-48 h of incubation, as assessed by a 111I release microcytotoxicity assay. NKCF adsorption to target cells and its cytotoxic activity were inhibited by some phosphorylated sugars (mannose-6PO4 and glucose-6PO4), but not by fructose-6PO4 or nonphosphorylated sugars (mannose, glucose, galactose). These results suggest a role of sugar-6PO4 at the level of interaction of NKCF with NK target cells. This was further supported by the finding that inhibition of target cell glycosylation by tunicamycin also inhibited absorption of NKCF to the target cells and direct killing by NKCF. Therefore, it appears that NKCF is a large granular lymphocyte produced factor which produces lysis as a result of the interaction with glycosylated structures on target cell membranes. Purification studies were performed to begin biochemical characterization of human NKCF. The results indicated that NKCF has an apparent molecular weight between 20,000 and 40,000 dalton. Such approaches with radiolabeled NKCF should be useful for the further study of the biochemical characteristics of human NKCF and of its mechanism of action. The ability to elicit NKCF under serum-free conditions should facilitate its testing, purification, and biochemical characterization.  相似文献   

5.
NK cells exert their lytic action through the release of NK cytotoxic factors (NKCF) after stimulation by the bound target cell. NKCF may be related to granule-derived perforin/cytolysin on one hand and to the pleiotropic cytokine TNF on the other hand. In the present study, we show that NKCF can also lyse artificial lipid vesicles, as had been reported previously for cytotoxic granules and cytolysin. The lysis of large unilamellar vesicles was monitored by measuring the release of the encapsulated fluorescent dye carboxyfluorescein. NKCF-induced lysis was only observed with liposomes composed of a complex mixture of lipids including acidic phospholipids. No lysis could be demonstrated if the liposomes contained phosphatidylcholine as the only phospholipid, suggesting some kind of lipid specificity for the action of NKCF. A remarkable finding was that neither recombinant nor natural TNF were able to lyse large unilamellar vesicles, irrespective of their lipid composition, indicating different ways of interaction of NKCF and TNF with artificial (and presumably also biological) membranes.  相似文献   

6.
TNF-alpha and lymphotoxin (LT or TNF-beta) are structurally related cytokines that share several proinflammatory and immunomodulatory activities. The shared biologic activities of TNF and LT have been attributed to their binding to a common cell surface receptor(s). We observed that rTNF enhanced the expression of MHC class I proteins on the human T cell hybridoma, II-23.D7, however LT was largely unable to regulate MHC expression. To determine the molecular basis of this disparity between LT and TNF the receptor binding characteristics of rTNF and rLT were investigated by direct and competitive radioligand assays on the II-23.D7 T hybridoma, and for comparison, anti-CD3 activated human T lymphocytes. Specific 125I-rTNF binding to the II-23.D7 line revealed a single class of sites with a Kd = 175 pM and 3000 sites/cell; anti-CD3 activated T cells exhibited specific TNF binding with similar properties. The relationship of receptor occupancy to the induction of MHC class I Ag yielded a hyperbolic curve indicating a complex relationship between rTNF binding and biologic response. LT appeared to function like a partial agonist in that rLT was 10- to 20-fold less effective than rTNF in competitively inhibiting 125I-rTNF binding on the II-23.D7 line. Scatchard type analysis revealed a single class of low affinity binding sites for 125I-rLT. No differences in the competitive binding activity of rTNF and rLT were observed on the anti-CD3-activated T cells. Receptors for rTNF and rLT were immunoprecipitated from the II-23.D7 and activated T cells with anticytokine antibodies after cross-linking of radioiodinated rTNF or rLT to intact cells by using chemical cross-linking reagents. Analysis of the cross-linked adducts by SDS-PAGE and autoradiography indicated a major adduct of 92 kDa for rTNF and 104 kDa for rLT. Enzymatic digestion with neuraminidase or V8 protease revealed a unique structure to these adducts consistent with the cross-linking of a single chain of cytokine to a cell surface glycoprotein. rTNF inhibited the formation of the 104-kDa adduct formed with 125I-rLT on the II-23.D7 line, indicating these two cytokines bind to the same receptor of approximately 80 kDa. These results suggest that the disparate activities of LT and TNF to induce MHC class I proteins on the II-23.D7 cells are, in part, associated with a modified state of a common receptor.  相似文献   

7.
Summary This study investigated the relation between the production of natural killer cytotoxic factors (NKCF) and the phenomenon of natural killing (NK) activity against target K562 cells. Two different models of defective NK cell activity were employed. In the first instance, cytotoxic activity of mononuclear cells (MN) derived from patients with hepatocellular carcinoma was compared to the ability of these cells to produce NKCF. Although direct cytotoxicity was considerably impaired in these patients, the ability of their MN to produce NKCF when stimulated with K562 cells was found to be normal. In the second model, MN treated with the lysosomotropic drug monensin showed considerably reduced direct cytotoxic activity, although they were capable of producing normal amounts of NKCF when activated by K562 cells. These results therefore indicate that there is no correlation between NK activity and corresponding NKCF release, and suggest that NKCF production and activity is independent of direct NK cytotoxic activity.  相似文献   

8.
We investigated the role of soluble factors in natural killer (NK) cell-mediated lysis of herpes simplex virus (HSV)-infected cells. Supernatants generated by incubating human peripheral blood mononuclear cells with HSV-infected human fibroblasts contained tumor necrosis factor (TNF) and lysed uninfected U937 cells, but not HSV-infected fibroblasts. U937 cells, but not HSV-infected fibroblasts, were lysed when exposed to recombinant TNF (rTNF) for 18 hr. NK cell-mediated lysis of HSV-infected fibroblasts was not inhibited by addition of anti-TNF or anti-lymphotoxin (LT) antibodies to cytotoxicity assays. Thus, a role for soluble factors, and in particular TNF and LT, in NK cell-mediated lysis of HSV-infected cells could not be demonstrated.  相似文献   

9.
This investigation has employed the "innocent bystander" type of experimental design to determine whether soluble cytotoxic factor(s) are released during interactions between human peripheral blood lymphocytes (PBL) and NK-sensitive target cells. PBL cocultured with NK-sensitive Molt-4 or K562 target cells in the lower well of a miniaturized Marbrook culture released natural killer cytotoxic factors (NKCF), which diffused across a 0.2-mu Nucleopore membrane and lysed Molt-4 or K562 target cells cultured in the upper chamber. Coculture of PBL with the NK-resistant Raji or WI-L2 cell lines also induced release of NKCF. These factors were selectively cytotoxic to NK-sensitive targets and lysed Molt-4 and, to a lesser extent, K562 cells. However, Raji, WI-L2, and RPMI 1788 cells were all resistant to lysis. In addition, low density fractions from Percoll density gradients that were enriched for NK effector cells also released increased levels of NKCF during coculture with Molt-4 cells. Lysis of Molt-4 and K562 targets was observed after exposure to NKCF for 48 hr and 60 to 70 hr, respectively. Cellfree supernatants containing NKCF were obtained after a short time of incubation (i.e., within 5 hr of coculture of PBL with NK target cells). The factors were nondialyzable, stable at 56 degrees C for 3 hr, and showed partial loss of activity on storage at 4 degrees C or -20 degrees C for 7 days. These data suggest that NKCF may be involved in the lytic mechanism of human NK cell-mediated cytotoxicity.  相似文献   

10.
Natural killer cytotoxic factor (NKCF) has been proposed as one of the factors that mediates lysis induced by natural killer (NK) cells. Recently, an excellent source of NKCF has been found to be the rat large granular lymphocyte (LGL) tumor (RNK) cell line. In this study, the kinetics of lysis of the NK-sensitive, tumor target YAC-1 by the RNK-NKCF was analyzed and found to parallel that seen with NK cell-mediated killing. RNK-NKCF was also capable of killing the NK-resistant target cell, MBL-2, over a longer time period. This study utilized monoclonal antibodies (mAbs) prepared against granule protein, previously termed "anti-NKCF mAbs." These mAbs established the nature of RNK-NKCF as compared to other known cytotoxic factors in combination with studies that show that RNK-NKCF causes both 51Cr release and nuclear degradation. Antibody inhibition experiments have verified that RNK-NKCF is unique from tumor necrosis factor (TNF), leukoregulin, or complement. Anti-NKCF mAbs were capable, however, of neutralizing the RNK cell granule activity against YAC-1 tumor target cells. Based on these results, the ability of anti-NKCF mAbs to neutralize the cytolytic function of pore-forming protein (PFP), a component of these granules, was analyzed. In these experiments, the antibodies were found to inhibit the hemolytic activity of granules. Interestingly, the antibodies were effective in inhibiting the activity of unbound granule proteins as well as those bound to sheep red blood cell (SRBC) targets. Further studies to examine the target lysis requirements demonstrated that in contrast to PFP, the RNK-NKCF was able to lyse the tumor target in the absence of calcium. In addition, treatment of targets with RNA and protein synthesis inhibitors indicated that the mechanism of lysis of NKCF is quite unique from other defined cytotoxic moieties.  相似文献   

11.
Natural killer cytotoxic factor (NKCF) is produced as a result of the interaction of murine, rat, or human natural killer (NK) cells with NK-susceptible targets. This factor has been linked to the target cell lysis mediated by the NK effector cell. In the present results, culture supernatants from rat large granular lymphocyte (LGL) tumors exhibited NKCF activity which lysed the susceptible targets, MBL-2 and YAC-1. NKCF production from these rat tumor lines was spontaneous and was not significantly increased by co-incubation of the LGL tumors with target cells, target cell membranes, or by preincubation of the LGL tumor cells with interferon or interleukin 2. In addition to NKCF activity, the supernatants lysed L929, indicating the presence of tumor necrosis factor (TNF) in these preparations. The presence of this latter cytokine was verified using specific antibodies to recombinant murine TNF which neutralized the L929 activity while not affecting the NKCF activity against MBL-2 or YAC-1. Mouse monoclonal antibodies (mAb) A0287, A0462, and A0316) which significantly inhibit the NKCF cytolytic activity of these LGL-derived supernatants were also produced. These antibodies were shown to cross-react with human NKCF in a manner similar to that seen in the rat. Interestingly these same mAb demonstrated no inhibition of L929 cytotoxicity from either LGL-derived supernatants or by recombinant murine or human TNF. To examine further the specificity of these antibodies, they were chemically linked to Sepharose 4B and found to remove a significant proportion of the NKCF cytolytic activity from LGL supernatants, while not affecting the TNF reactivities in these preparations. In addition, these antibodies demonstrated significant inhibition of cell-mediated cytotoxicity by rat LGL against YAC-1 target cells. Biochemical analysis of labeled NKCF-containing supernatants indicated the major protein recognized by these anti-NKCF mAb to be approximately 12,000 m.w. The use of these mAb against NKCF should be very useful in further purification and biochemical characterization of NKCF and in studying its role in a variety of cell-mediated cytotoxicity assays.  相似文献   

12.
Highly purified populations of large granular lymphocytes (LGL) have been shown to mediate natural killer (NK) cell activity. The mechanism of target cell killing by NK cells is as yet undefined; however, it has been postulated that such killing may involve soluble cytotoxic factors produced and secreted by NK cells. The data presented show that NK-sensitive, but not NK-resistant, tumor cell lines induce highly purified populations of human LGL to produce factors with cytotoxic and/or cytostatic activities. We have identified one of these factors as tumor necrosis factor-alpha (TNF-alpha), and have shown that production of this factor is enhanced by recombinant human interferon-gamma (rHuIFN-gamma). We have also examined the role of TNF-alpha in the cytotoxic function of NK cells. The data show that although highly purified LGL populations produce low levels of TNF-alpha, the cytotoxic/cytostatic activity of this lymphokine on tumor target cells does not correlate with the cytotoxic activity of highly purified populations of LGL on tumor target cells. Furthermore, NK cell-mediated cytotoxicity is not reliably inhibited by antibodies directed against various epitopes of recombinant human TNF-alpha and/or recombinant TNF-beta (lymphotoxin) or rHuIFN-gamma. These data show that although TNF-alpha is produced by highly purified NK-containing LGL cell populations, this factor does not appear to be responsible for NK cell cytotoxicity against classical NK target cells such as Molt-4 or K562. We suggest that NK function can be attributed to a combination of factors rather than to a single factor alone, and that at least two major phenomena are involved in LGL function: the rapid cytotoxic events which lead to the cell lysis measured in classical in vitro NK assays such as against K562; and the release of factors such as TNF-alpha with cytotoxic/cytostatic activities which would inhibit the growth of invading tumor cells in vivo.  相似文献   

13.
Cord blood lymphocytes (CBL) were compared with adult peripheral blood lymphocytes (a-PBL) for their: (i) natural killer (NK) and antibody-dependent cellular cytotoxic (ADCC) activities, (ii) target-binding capacity, (iii) ability to induce soluble natural killer cytotoxic factor (NKCF), (iv) interferon (IFN)-, interleukin 2 (IL-2)-, and lectin-induced augmentation of NK activity, and (v) ability to produce IFN against tumor targets in vitro. CBL depleted of adherent cells and Percoll-separated, NK-enriched subpopulations demonstrated significantly lower NK, ADCC, and target-binding activities compared to a-PBL. CBL produced significantly lower levels of NKCF directed against K562 tumor targets in comparison with a-PBL. Although the NK activity of CBL was not stimulated by either IFN or IL-2 to the same levels shown by a-PBL, the percentage enhancement of cytotoxicity of CBL by IFN and IL-2 was greater than that of a-PBL. Lectin-induced enhancement of cytotoxicity was significantly greater for CBL in comparison with a-PBL. Further, the ability of CBL lymphocytes to produce IFN-gamma in vitro against K562 target cells was significantly lower than that of adult PBL. These studies suggest an association between decreased NK, ADCC, and target-binding activities, induction of NKCF and IFN production by CBL, and increased susceptibility of neonates to infection.  相似文献   

14.
We have cloned lines of IL 2-dependent human T cells derived from alloantigen, soluble antigen (tetanus toxoid), mitogen, or IL 2-stimulated peripheral blood lymphocytes and characterized their surface marker expression and cytolytic activity. The surface phenotype and cytolytic function was compared with the ability of these T cell clones to release cytotoxic lymphokines in response to mitogenic lectins. The cytotoxins released by these CTL clones were detected on the murine L929 target cells in a 16-hr assay. All of the T cell clones, whether stimulated by HLA alloantigens, tetanus toxoid, or mitogens, exhibited killer cell activity and the capacity to secrete a soluble cytotoxin(s). Specific polyclonal antisera to recombinant human tumor necrosis factor (rTNF) and human alpha-lymphotoxin (alpha LT) were unable to neutralize the cytotoxic activity released by most of these CTL clones. These results indicate that human CTL produce a novel antigenic form(s) of cytotoxin that we have termed CTL-toxin. Supernatants from several CTL clones yielded a cytotoxic activity that was partially neutralized (10 to 40%) by saturating levels of anti-TNF (but not anti-alpha LT) indicating that human CTL may be capable of producing a TNF-like molecule. Only two out of 60 CTL clones studied thus far produced a cytotoxic activity that was partially neutralized by anti-alpha LT (20 to 40%). Collectively, these results suggest that although both the CD4 and the CD8 subpopulations of human cytotoxic T cells may be capable of releasing several types of cytotoxins in response to mitogenic signals, the predominant cytotoxin is distinct from alpha LT and TNF.  相似文献   

15.
The effect of recombinant tumor necrosis factor-alpha (rTNF alpha) on human natural killer (NK) function was examined. Lysis of both the NK-sensitive K562 erythroleukemia line and the relatively insensitive renal carcinoma line Cur by nonadherent peripheral blood lymphocytes was significantly enhanced as a result of an 18-hr preincubation with either rTNF alpha or recombinant interleukin 2 (rIL 2). When cells were preincubated with rTNF alpha and low doses of rIL 2 (1 to 10 U/ml), marked additional augmentation of lysis of both targets was noted which was greater than that caused by either cytokine alone. Similar results were observed when responses of CD16+ large granular lymphocytes selected with the fluorescence-activated cell sorter after staining with the NK-specific monoclonal antibody Leu-11 were examined, indicating that the action of the cytokines was directly on the cytotoxic cells. Augmentation of tumor cell lysis could not be ascribed to a cytolytic activity of rTNF alpha on the targets, because no combination of rIL 2, rTNF alpha, or interferon-gamma caused lysis of K562 or Cur. By flow cytometric analysis, it was found that expression of IL 2 receptors was induced on purified CD16+ large granular lymphocytes by rTNF alpha alone and to an even greater degree by the combination of rTNF alpha and rIL 2. Additional analysis of the expression of surface antigens and blocking studies with monoclonal antibodies showed that enhanced tumor cell lysis was not caused by the augmentation of leukocyte function-associated antigen-1-mediated effector/target interactions. These data indicate that rTNF alpha alone, or in combination with rIL 2, directly augments NK cytotoxic activity.  相似文献   

16.
Recent evidence has implicated natural killer cytotoxic factors (NKCF) as the lytic mediators of NK cell-mediated cytotoxicity reactions. The objective of this study was to examine and compare some of the biochemical and functional characteristics of human, rat, and murine NKCF. Supernatants containing NKCF were generated by stimulating effector cells with Con A or U937 (for human PBL) or YAC-1 (for rodent spleen cells) and tested for cytotoxic activity in a 20-hour (rodent) or 24-hour (human) 51Cr release assay. NKCF activity was inactivated by heating to 63 degrees C, 8 M urea, pH 2, and reduction and alkylation. These factors were highly sensitive to trypsin, moderately sensitive to papain and resistant to neuraminidase. Adsorption of human NKCF to U937 cells is inhibited by mannose-6-phosphate and adsorption of rodent NKCF to YAC-1 cells is inhibited by alpha-methyl-D-mannoside and fructose-6-phosphate. Oxidation of NKCF with sodium periodate abolished lytic activity. Pretreatment of NKCF with Con A but not pretreatment of target cells inhibited lytic activity. NKCF activity eluted in a single broad band of apparent MW of 15,000-40,000 after fractionation by HPLC gel permeating chromatography. Pooled fractions containing NKCF activity were subjected to some of the same tests performed on whole supernatants. Test result with semipurified NKCF confirmed that these factors are inactivated by trypsin or sodium periodate and that mannose-6-phosphate inhibits their binding to target cells. There were no major differences observed in NKCF produced by the three different species whether stimulated by Con A or NK-sensitive tumor cells. The evidence indicates that NKCF are glycoproteins in which disulfide bonding is essential for lytic activity. Furthermore, it appears that carbohydrate residues expressed on NKCF molecules are involved in the binding of these factors to the target cell membrane.  相似文献   

17.
Summary During interaction with autologous tumor cells large granular lymphocytes (LGL) of cancer patients released a soluble cytotoxic factor, termed LGL-derived cytotoxic factor, which mediated lysing of autologous fresh tumor cells. The cytotoxic factor was compared with purified human recombinant cytotoxic cytokines, including tumor necrosis factor (TNF), lymphotoxin (LT), interferon (IFN) , IFN, interleukin-1 (IL-1) and IL-2. The LGL cytotoxic factor exhibited cytotoxicity against autologous and allogeneic fresh human tumor cells in an 18-h51Cr-release assay, while these target cells were resistant to lysing by any of the recombinant cytokines. Mixtures of recombinant(r) TNF, rLT, rIFN, rIFN, rIL-1 and rIL-2 were still unable to produce cytotoxic effects on fresh human tumor cells. Treatment with monoclonal and polyclonal antibodies directed against rTNF, rLT, rIFN, rIFN, or rIL-1 did not inhibit the cytotoxic activity of LGL-derived cytotoxic factor against fresh human tumor cells. Even a mixture of all the antibodies was incapable of blocking the cytolytic activity of the factor to fresh human tumor cells. Furthermore, intact LGL-mediated lysing of autologous tumor cells was not inhibited by any of the antibodies. These results may indicate that a cytotoxic factor produced by LGL in response to autologous tumor cells mediates lysing of fresh human tumor cells independently of TNF, LT, IFN, IL-1 and IL-2.  相似文献   

18.
Antisera raised against recombinant tumor necrosis factor (TNF) and against the monocyte-derived cytotoxic/cytostatic protein factor (CF), which is related to recombinant TNF, have been compared with respect to their ability to inhibit monocyte-mediated killing of various types of cells which differ in their sensitivity to recombinant TNF. During 6 hr of coculturing monocytes and target cells, the recombinant TNF antiserum inhibited killing of the extremely TNF-sensitive WEHI 164 clone 13 cells and actinomycin D-treated WEHI 164 cells from which the clone 13 cells were derived (parental WEHI 164 cells (P-WEHI 164 cells]. The CF antiserum also inhibited monocyte-mediated killing of these cells during 6 hr of coculturing with monocytes, but on a per volume basis it was less potent than the recombinant TNF antiserum, consistent with the fact that the CF antiserum also was much less potent in inhibiting the cytotoxic activity of recombinant TNF. However, during 72 hr of coculturing with monocytes and target cells, the CF antiserum inhibited monocyte-mediated killing of P-WEHI 164 cells more efficiently than the recombinant TNF antiserum. Moreover, during 72 hr of coculturing with monocytes, only the CF antiserum was able to significantly inhibit monocyte-mediated killing of the relatively recombinant TNF-resistant K562 cells. This suggests that a factor immunologically different from recombinant TNF, perhaps a form of natural TNF differing somewhat immunologically from recombinant TNF, was involved in the killing of K562 cells, and possibly in the killing of P-WEHI 164 cells, during 72 hr of coculturing with monocytes. Although this factor was present extracellularly, it appears that it may act as a monocyte-associated factor in monocyte-mediated killing of K562 cells, since exposure to recombinant interferon-gamma (rIFN-gamma) in the absence of Escherichia coli endotoxin (lipopolysaccharide, LPS) activated the monocytes to mediate killing of K562 cells more efficiently than exposure to LPS alone, despite the fact that only little cytotoxic/cytostatic activity was released from the monocytes without the addition of LPS. The ability of rIFN-gamma and LPS to activate monocytes to produce and release CF has also been studied.  相似文献   

19.
The resistance of target cells to the cytolytic action of lymphotoxin (LT) and recombinant tumor necrosis factor (rTNF) has been investigated by using clonally derived cell lines with defined gap junction-mediated, intercellular communication properties. Gap junction-competent Chinese hamster ovary cells are normally insensitive to the action of LT/TNF. However, treatment with 12-o-tetradecanoylphorbol-13-acetate, which promotes the loss of gap junctions, or culturing at low cell density to reduce intercellular contacts, significantly increased their sensitivity to LT/TNF. The LT/TNF-sensitive murine CL-1D and L929 cell lines, which in normal culture conditions are unable to form gap junctions, were not changed in their susceptibility to LT/TNF after treatment with phorbol ester or low culture density. However, the formation of gap junctions by CL-1D can be promoted by treatment with 8-bromo-cyclic adenosine monophosphate (1 mM), and this treatment completely suppressed the ability of LT and rTNF to kill CL-1D. Additionally, the LA25-normal rat kidney cell line, which is infected with a temperature-sensitive mutant of Rous sarcoma virus (LA25), is gap junction-competent and resistant to the effects of LT at the restrictive temperature (39 degrees C). However, when shifted to the permissive temperature (33 degrees C), LA25-normal rat kidney cells express the pp60v-src viral gene product, lose their ability to form gap junctions, and become sensitive to the lytic activity of LT. The results demonstrate that the expression of the retroviral pp60v-src, a tyrosine protein kinase, is sufficient to render cells susceptible to the lytic effects of LT and rTNF. Collectively, these experiments demonstrate a strong correlation between the resistance of target cells to the action of LT/TNF and their ability to cooperate metabolically through gap junctions. The results do not completely exclude the possibility that other mechanisms, such as LT receptor modulation, are also occurring under these experimental conditions. These data also suggest that a possible physiologic function of the stable cytotoxic lymphokines is to induce cytolysis/cytostasis of cells that have lost gap junctional contact, such as those in the process of mitosis or metastasis that have separated from the main tissue mass.  相似文献   

20.
The mechanism by which interferon (IFN) pretreatment of effector cells augments natural killer (NK) cell-mediated cytotoxicity (CMC) was examined by determining whether IFN has any effect on the production of natural killer cytotoxic factors (NKCF). NKCF are released into the supernatant of co-cultures of murine spleen cells and YAC-1 stimulator cells, and their lytic activity is measured against YAC-1 target cells. It was demonstrated that pretreatment of effector cells with murine fibroblast IFN or polyinosinic-polycytidylic acid (pIC) resulted in the release of NKCF with augmented lytic activity. Evidence indicated that the IFN-induced augmentation of NKCF activity required protein synthesis during the IFN pretreatment period, because concurrent pretreatment with both IFN and cycloheximide abrogated the IFN effect. Protein synthesis, however, is not required for the production of base levels of NKCF because emetine pretreatment of normal spleen cells did not result in a decrease in NKCF production. Furthermore, substantial levels of NKCF activity could be detected in freeze-thaw lysates of freshly isolated spleen cells. Cell populations enriched for NK effector cells, such as nylon wool-nonadherent nude mouse spleen cells, produced lysates with high levels of NKCF activity, whereas lysates of CBA thymocytes were devoid of NKCF activity. Pretreatment of spleen cells with either IFN or pIC resulted in an augmentation of the NKCF activity present in their cell lysates. Taken altogether, these findings suggest that freshly isolated NK cells contain preformed pools of NKCF. Pretreatment of these cells with IFN causes de novo synthesis of additional NKCF and/or activation of preexisting NKCF. According to our model for the mechanism of NK CMC, target cell lysis is ultimately the result of transfer of NKCF from the effector cell to the target cell. The evidence presented here suggests that the IFN-induced augmentation of NK activity could be accounted for by an increase in the synthesis, activation, and/or release of NKCF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号