首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two distinct spontaneous variants of the murine anti-digoxin hybridoma 26-10 were isolated by fluorescence-activated cell sorting for reduced affinity of surface antibody for antigen. Nucleotide and partial amino acid sequencing of the variant antibody variable regions revealed that 1 variant had a single amino acid substitution: Lys for Asn at heavy chain position 35. The second variant antibody had 2 heavy chain substitutions: Tyr for Asn at position 35, and Met for Arg at position 38. Mutagenesis experiments confirmed that the position 35 substitutions were solely responsible for the markedly reduced affinity of both variant antibodies. Several mutants with more conservative position 35 substitutions were engineered to ascertain the contribution of Asn 35 to the binding of digoxin to antibody 26-10. Replacement of Asn with Gln reduced affinity for digoxin 10-fold relative to the wild-type antibody, but maintained wild-type fine specificity for cardiac glycoside analogues. All other substitutions (Val, Thr, Leu, Ala, and Asp) reduced affinity by at least 90-fold and caused distinct shifts in fine specificity. The Ala mutant demonstrated greatly increased relative affinities for 16-acetylated haptens and haptens with a saturated lactone. The X-ray crystal structure of the 26-10 Fab in complex with digoxin (Jeffrey PD et al., 1993, Proc Natl Acad Sci USA 90:10310-10314) reveals that the position 35 Asn contacts hapten and forms hydrogen bonds with 2 other contact residues. The reductions in affinity of the position 35 mutants for digoxin are greater than expected based upon the small hapten contact area provided by the wild-type Asn. We therefore performed molecular modeling experiments which suggested that substitution of Gln or Asp can maintain these hydrogen bonds whereas the other substituted side chains cannot. The altered binding of the Asp mutant may be due to the introduction of a negative charge. The similarities in binding of the wild-type and Gln-mutant antibodies, however, suggest that these hydrogen bonds are important for maintaining the architecture of the binding site and therefore the affinity and specificity of this antibody. The Ala mutant eliminates the wild-type hydrogen bonding, and molecular modeling suggests that the reduced side-chain volume also provides space that can accommodate a congener with a 16-acetyl group or saturated lactone, accounting for the altered fine specificity of this antibody.  相似文献   

2.
Two spontaneous variants of the murine anti-digoxin antibody-producing hybridoma cell line 26-10 were isolated by two-color fluorescence-activated cell sorting on the basis of altered hapten binding. The variable region sequences of the antibodies produced by the mutant lines revealed that each contains a single amino acid change in the heavy chain second complementarity determining region. A Tyr to His change at position 50 leads to a 40-fold reduction in affinity for digoxin. A Ser to Phe mutation at position 52 results in a 300-fold reduction in affinity for digoxin. A competition assay involving 33 digoxin analogues was used to examine the specificity of hapten binding of 26-10 and the two mutant antibodies. The position 50 mutant has a distinct specificity change; it exhibits a preference for digoxin congeners containing a hydroxyl group at the steroid 12 position, whereas the 26-10 parent does not. The affinities of all three antibodies for hapten are progressively lowered by substitutions of increasing size at the digoxin steroid D ring 16 position. Although 26-10 binds digoxin and its genin form equally, 12 and 16 steroid position substitutions which lower affinity also confer a preference for a sugar at the steroid 3 position. These results suggest that position 50 contributes to specificity of the antibody and that alterations of the hapten can lead to differences in recognition, possibly through a shift in hapten orientation within the binding site.  相似文献   

3.
The structure of the antigen-binding fragment (Fab) of an anti-p-azophenylarsonate monoclonal antibody, 36-71, bearing a major cross-reactive idiotype of A/J mice has been refined to an R factor of 24.8% at a resolution of 1.85 A. The previously solved partial structure of this Fab at a resolution of 2.9 A (Rose et al., 1990) was used as an initial model for refinement against the high-resolution data. The complex with hapten has been modeled by docking the small-molecule crystal structure of phenylarsonic acid into the structure of the native Fab on the basis of a low-resolution electron density map of the complex. In this model, residue Arg-96 in the light chain and residues Asn-35, Trp-47, and Ser-99 in the heavy chain contact the arsonate moiety of the hapten; an additional bond is found between the arsonate group and a tightly bound water molecule. The phenyl moiety of the hapten packs against two tyrosine side chains at positions 50 and 106 in the heavy chain. Residue Arg-96 in the light chain had been implicated as involved in hapten binding on the basis of previous experiments, and indeed, this residue appears to play a crucial role in this model. Experiments employing site-directed mutagenesis directly support this conclusion. The heavy-chain complementarity-determining regions have novel conformations not previously observed in immunoglobulins except for the recently solved anti-p-azophenylarsonate Fab R 19.9 (Lascombe et al., 1989).  相似文献   

4.
The heavy-chain CDR3 region of the high affinity (K(a) = 1.3 x 10(10) M(-)1) anti-digoxin monoclonal antibody 26-10 was modified previously to shift its specificity, by substitution of tryptophan 100 by arginine, toward binding analogs of digoxin containing substitutions at position 16. To further change specificity, two 5-mer libraries of the randomly mutagenized phage-displayed 26-10 HCDR3 region (positions 94-98) were panned against digoxin-bovine serum albumin (BSA) as well as against 16-acetylgitoxin-BSA. When a mutant Fab that binds 16-substituted analogs preferentially was used as a parent sequence, clones were obtained with affinities for digoxin increased 2-4-fold, by panning on digoxin-BSA yet retaining the specificity shift. Selection on 16-acetylgitoxin-BSA, however, resulted in nine clones that bound gitoxin (16-OH) up to 150-fold higher than the wild-type 26-10, due to a consensus mutation of Ser(H95) to Gly(H95). The residues at both position H95 (serine) and position H100 (tryptophan) contact hapten in the crystal structure of the Fab 26-10-digoxin complex. Thus, by mutating hapten contact residues, it is possible to reorder the combining site of a high affinity antibody, resulting in altered specificity, yet retain or substantially increase the relative affinity for the cross-reactive ligand.  相似文献   

5.
Antibody 26-10, obtained in a secondary immune response, binds digoxin with high affinity (K(a) = 1.3 x 10(10) M(-1)) because of extensive shape complementarity. We demonstrated previously that mutations of the hapten contact residue HTrp-100 to Arg (where H refers to the heavy chain) resulted in increased specificity for digoxin analogs substituted at the cardenolide 16 position. However, mutagenesis of H:CDR1 did not result in such a specificity change despite the proximity of the H:CDR1 hapten contact residue Asn-35 to the cardenolide 16 position. Here we constructed a bacteriophage-displayed library containing randomized mutations at H chain residues 30-35 in a 26-10 mutant containing Arg-100 (26-10-RRALD). Phage were selected by panning against digoxin, gitoxin (16-OH), and 16-acetylgitoxin coupled to bovine serum albumin. Clones that retained wild-type Asn at position 35 showed preferred binding to gitoxin, like the 26-10-RRALD parent. In contrast, clones containing Val-35 selected mainly on digoxin-bovine serum albumin demonstrated a shift back to wild-type specificity. Several clones containing Val-35 bound digoxin with increased affinity, approaching that of the wild type in a few instances, in contrast to the mutation Val-35 in the wild-type 26-10 background, which reduces affinity for digoxin 90-fold. It has therefore proven possible to reorder the 26-10 binding site by mutations including two major contact residues on opposite sides of the site and yet to retain high affinity for binding for digoxin. Thus, even among antibodies that have undergone affinity maturation in vivo, different structural solutions to high affinity binding may be revealed.  相似文献   

6.
We constructed Fab libraries of bacteriophage-displayed H:CDR3 mutants in the high-affinity anti-digoxin antibody 26-10 to determine structural constraints on affinity and specificity for digoxin. Libraries of mutant Fabs randomized at five or 10 contiguous positions were panned against digoxin and three C16-substituted analogs, gitoxin (16-OH), 16-formylgitoxin and 16-acetylgitoxin. The sequence data from 83 different mutant Fabs showed highly restricted consensus patterns at positions H:100, 100a and 100b for binding to digoxin; these residues contact digoxin in the 26-10:digoxin co-crystal structure. Several mutant Fabs obtained following panning on digoxin-BSA showed increased affinity for digoxin compared with 26-10 and retained the wild-type (wt) Trp at position 100. Those Fabs selected following panning on C16-substituted analogs showed enhanced binding to the analogs. Replacement of H:Trp100 by Arg resulted in mutants that bound better to the analogs than to digoxin. This specificity change was unexpected, as C16 lies on the opposite side of digoxin from H:CDR3. Substitution of wt Trp by Arg appears to alter specificity by allowing the hapten to shift toward H:CDR3, thereby providing room for C16 substituents in the region of H:CDR1.  相似文献   

7.
A comparative analysis of the immunological evolution of antibody 28B4   总被引:2,自引:0,他引:2  
In an effort to gain greater insight into the evolution of the redox active, catalytic antibody 28B4, the germline genes used by the mouse to generate this antibody were cloned and expressed, and the X-ray crystal structures of the unliganded and hapten-bound germline Fab of antibody 28B4 were determined. Comparison with the previously determined structures of the unliganded and hapten-bound affinity-matured Fab [Hsieh-Wilson, L. C., Schultz, P. G., and Stevens, R. C. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 5363] shows that the germline antibody binds the p-nitrophenyl ring of hapten 3 in an orientation significantly different from that seen in the affinity-matured antibody, whereas the phosphonate moiety is bound in a similar mode by both antibodies. The affinity-matured antibody 28B4 has more electrostatic and hydrophobic interactions with hapten 3 than the germline antibody and binds the hapten in a lock-and-key fashion. In contrast, significant conformational changes occur in the loops of CDR H3 and CDR L1 upon hapten binding to the germline antibody, consistent with the notion of structural plasticity in the germline antibody-combining site [Wedemayer, G. J., Patten, P. A., Wang, L. H., Schultz, P. G., and Stevens, R. C. (1997) Science 276, 1665]. The structural differences are reflected in the differential binding affinities of the germline Fab (K(d) = 25 microM) and 28B4 Fab (K(d) = 37 nM) to hapten 3. Nine replacement mutations were found to accumulate in the affinity-matured antibody 28B4 compared to its germline precursor. The effects of each mutation on the binding affinity of the antibody to hapten 3 were characterized in detail in the contexts of both the germline and the affinity-matured antibodies. One of the mutations, Asp95(H)Trp, leads to a change in the orientation of the bound hapten, and its presence is a prerequisite for other somatic mutations to enhance the binding affinity of the germline antibody for hapten 3. Thus, the germline antibody of 28B4 acquired functionally important mutations in a stepwise manner, which fits into a multicycle mutation, affinity selection, and clonal expansion model for germline antibody evolution. Two other antibodies, 20-1 and NZA6, with very different antigen specificities were found to be highly homologous to the germline antibody of 28B4, consistent with the notion that certain germline variable-region gene combinations can give rise to polyspecific hapten binding sites [Romesberg, F. E., Spiller, B., Schultz, P. G., and Stevens, R. C. (1998) Science 279, 1929]. The ultimate specificity of the polyspecific germline antibody appears to be defined by CDR H3 variability and subsequent somatic mutation. Insights into the evolution of antibody-combining sites provided by this and other structural studies are discussed.  相似文献   

8.
Eleven hybridoma cell lines secreting monoclonal anti-digoxin antibody have been produced. They are primarily gamma heavy chain and kappa light chain molecules. Affinity constants for digoxin range from 2 X 10(6) to 3.5 X 10(8) liters/mole. Fine specificity analysis using a series of digoxin congeners demonstrates that an unsaturated lactone ring attached to the aglycone at the C-17 position is necessary for hapten recognition. The impact of other changes in digoxin's structure on antibody binding were also studied. DNA hybridization analysis demonstrates that there are at least three different variable region gene arrangements used to produce the heavy chains of the different hybridoma antibodies. Correlations between antigen binding characteristics and antibody V-gene arrangements are demonstrable.  相似文献   

9.
A set of high affinity antidigoxin antibodies were previously identified with high homologous V kappa 1A L chain sequences but were associated with two entirely different VH regions and two dramatically different specificities for digoxin analogs. Antibodies 40-20, 40-60, 40-90, and 40-100 displayed similar binding specificities but differed from that of antibody 26-10. In a previous study using somatic cell fusion for Ig chain recombination we demonstrated that a recombinant antibody consisting of the H chain of antibody 26-10 and the L chain of antibody 40-20 retained digoxin binding and the 26-10 Id, but displayed a binding specificity pattern dominated by the 26-10 H chain donor. In the present study we produced three additional chain recombinant antibodies that contain the 26-10 H chain recombined with each of the L chains of antibodies 40-60, 40-90, and 40-100. All four recombinants expressed the 26-10 Id indistinguishably from the 26-10 antibody. Two of the recombinants (using the 40-60 and 40-90 L chains) bind digoxin; however, the recombinant using the 40-100 L chain failed to bind digoxin. Complete sequence analyses of the 40-20, 40-60, 40-90, and 40-100 VH and VL regions were performed. Antibodies 40-90 and 40-100 have identical VH region sequences but differed only in their L chains at position 96 (proline/leucine). This single difference at the VK-JK junction abolished digoxin binding in the context of one H chain (26-10), but does not cause a significant change in binding in association with the "normal" parental chains 40-90 and 40-100. Thus, structurally closely related VL regions can recombine with different VH regions to form digoxin binding sites of different specificity; in one binding site the identity of a L chain junctional residue is critical whereas in the second binding site that residue is unimportant. Molecular modeling studies revealed major differences between calculated binding site structures for 26-10 when leucine is substituted for proline at position 96 in the 26-10 VL region.  相似文献   

10.
《MABS-AUSTIN》2013,5(2):437-445
Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid sequence encoded by the natural human repertoire.  相似文献   

11.
Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD < 10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid sequence encoded by the natural human repertoire.  相似文献   

12.
The mouse hybridoma cell line 40-150 secretes antibodies with high affinity toward the cardiac glycosides digoxin and digitoxin. A spontaneous mutant, 40-150 A2.4, produces an antibody which carries a single residue mutation, Ser----Arg, in its heavy chain (H94) and has an altered specificity. A second-order mutant, 40-150 A2.4 P.10, produces two antibody molecules, one the same as 40-150 A2.4, the other lacking two residues at the N-terminus of its H chain, and having a specificity profile approaching that of 40-150 antibody. The N-terminus and the position H94 are distant from the antigen-binding site of the antibody; thus, the structural basis of the specificity changes was not immediately clear. Approximate structures of the 40-150 antibody and its mutants were constructed in the computer, based on atomic coordinates of the homologous mouse antibody McPC 603. Using the program CONGEN, the torsional space of the polypeptide backbone and side chains around position H94 was uniformly sampled, and the lowest energy conformations were analyzed in detail. The results indicate that when Arg-H94 is substituted for Ser, Arg-H94 can hydrogen bond to side chains of Asp-H101, Arg-L46, and Asp-L55. This results in a change in the surface of the combining site which may account for the affinity changes. Deletion of the two N-terminal residues increases solvent accessibility of Arg-H94. The solvation may cause a hydrogen bond between Arg-H94 and Asp-H101 to be lost, restoring the structure to one similar to that of 40-150.  相似文献   

13.
We have previously found that the complex between fluorescently labeled digoxigenin and the monoclonal antibody 26-10 forms with a decrease in volume of approximately 30 ml/mol, leading to increased association of these species under applied hydrostatic pressure. In the present study, we have utilized a panel of mutant antibodies and Fab fragments, previously characterized for their importance in the binding affinity of digoxin:26-10, to probe the molecular basis of pressure sensitivity in this complex, as measured by fluorescence polarization spectroscopy. Several mutations that result in marked decreases in affinity exerted little or no significant effect on the association volume. Mutation at any of several key aromatic residues of the 26-10 Fab heavy chain led to a decrease in the pressure-induced association, and two mutants with Trp-->Arg mutations at heavy chain residue 100 exhibited pressure-induced dissociation. The effect of charged groups was found to depend on their proximity to contacting aromatic groups. The ability to understand and control the pressure sensitivity of antigen-antibody complexes has numerous potential applications in immunoseparations and immunosensors.  相似文献   

14.
BACKGROUND: Elucidating the structural basis of antigen-antibody recognition ideally requires a structural comparison of free and complexed components. To this end we have studied a mouse monoclonal antibody, denoted 13B5, raised against p24, the capsid protein of HIV-1. We have previously described the first crystal structure of intact p24 as visualized in the Fab13B5-p24 complex. Here we report the structure of the uncomplexed Fab13B5 at 1.8 A resolution and analyze the Fab-p24 interface and the conformational changes occurring upon complex formation. RESULTS: Fab13B5 recognizes a nearly continuous epitope comprising a helix-turn-helix motif in the C-terminal domain of p24. Only 4 complementarity-determining regions (CDRs) are in contact with p24 with most interactions being by the heavy chain. Comparison of the free and complexed Fab reveals that structural changes upon binding are localized to a few side chains of CDR-H1 and -H2 but involve a larger, concerted displacement of CDR-H3. Antigen binding is also associated with an 8 degrees relative rotation of the heavy and light chain variable regions. In p24, small conformational changes localized to the turn between the two helices comprising the epitope result from Fab binding. CONCLUSIONS: The relatively small area of contact between Fab13B5 and p24 may be related to the fact that the epitope is a continuous peptide rather than a more complex protein surface and correlates with a relatively low affinity of antigen and antibody. Despite this, a significant quaternary structural change occurs in the Fab upon complex formation, with additional smaller adaptations of both antigen and antibody.  相似文献   

15.
Conditions necessary for in vitro chain recombination of high affinity (10(9) to 10(12) M-1) antidigoxin monoclonal antibodies resulted in decreased affinity for both intact "native" and chain recombinant molecules. Chain recombination by somatic cell fusion was used instead to study the effects on antigen specificity and idiotypy of recombinants in which an homologous light (L) chain substituted for the parental L chain. The antidigoxin antibody 26-10 utilizes a VL sequence highly homologous to that of antibody 40-20, an antidigoxin antibody which uses a different VH gene than does 26-10 and lacks significant reactivity with an anti-26-10 idiotypic serum. The drug-marked antidigoxin cell line 26-10 (gamma 2a, kappa) and a drug-marked light chain producing variant of antidigoxin hybridoma 45-20 (lambda 1) which lacks both digoxin binding and idiotypy were fused. The fusion progeny (gamma 2a, kappa, lambda 1) which binds digoxin and is idiotype-positive, was selected for kappa loss (resulting in loss of digoxin and idiotype binding) and then fused with a heavy (H) chain loss variant of antidigoxin hybridoma 40-20 (kappa, digoxin nonbinding, idiotype negative). The resultant cell line CR-57 (gamma 2a, kappa, lambda) secretes antibodies which assemble the 26-10 H chain with both the 40-20 kappa-chain and the 45-20 lambda 1-chain. The affinity purified recombinant species consisting of 26-10 H chain and 40-20 kappa-chain expresses complete 26-10 idiotypic determinants. However, this recombinant antibody binds digoxin with decreased affinity and altered specificity relative to native 26-10. The binding specificity pattern nonetheless is most similar to the H chain donor. Amino acid and nucleotide sequence analyses of the respective light chains demonstrate six variable region differences between them, two of which are in complementarity-determining regions and the remainder in the framework. Hybridoma-hybridoma fusion provides an alternative to in vitro chain recombination for studying the contribution of chain combinational diversity to antibody diversity, antigen binding, and idiotypy.  相似文献   

16.
The crystal structure of a fluorescein-Fab (4-4-20) complex was determined at 2.7 A resolution by molecular replacement methods. The starting model was the refined 2.7 A structure of unliganded Fab from an autoantibody (BV04-01) with specificity for single-stranded DNA. In the 4-4-20 complex fluorescein fits tightly into a relatively deep slot formed by a network of tryptophan and tyrosine side chains. The planar xanthonyl ring of the hapten is accommodated at the bottom of the slot while the phenylcarboxyl group interfaces with solvent. Tyrosine 37 (light chain) and tryptophan 33 (heavy chain) flank the xanthonyl group and tryptophan 101 (light chain) provides the floor of the combining site. Tyrosine 103 (heavy chain) is situated near the phenyl ring of the hapten and tyrosine 102 (heavy chain) forms part of the boundary of the slot. Histidine 31 and arginine 39 of the light chain are located in positions adjacent to the two enolic groups at opposite ends of the xanthonyl ring, and thus account for neutralization of one of two negative charges in the haptenic dianion. Formation of an enol-arginine ion pair in a region of low dielectric constant may account for an incremental increase in affinity of 2-3 orders of magnitude in the 4-4-20 molecule relative to other members of an idiotypic family of monoclonal antifluorescyl antibodies. The phenyl carboxyl group of fluorescein appears to be hydrogen bonded to the phenolic hydroxyl group of tyrosine 37 of the light chain. A molecule of 2-methyl-2,4-pentanediol (MPD), trapped in the interface of the variable domains just below the fluorescein binding site, may be partly responsible for the decrease in affinity for the hapten in MPD.  相似文献   

17.
Two Fab fragments of the monoclonal anti dinitrophenyl (DNP) spin-label antibody AN02 were prepared by recombination of specifically deuterated heavy and light chains. In the recombinant H(I)L(II) all the tyrosines and phenylalanines were perdeuterated as were the tryptophan residues of the heavy chain. In the recombinant H(II)L(I) all the tyrosines and phenylalanines were perdeuterated as were the tryptophan residues of the light chain. Saturation of three resonances of H(I)L(II), assigned to tryptophan protons of the light chain, resulted in magnetization transfer to the aromatic proton at position 6 of the DNP ring and to the CH2 protons of the glycines linked to the DNP in a diamagnetic hapten (DNP-DG). Saturation of three resonances of H(II)L(I) assigned to tryptophan protons of the heavy chain resulted in magnetization transfer to the CH2 protons of the glycines in DNP-DG. From the dependence of the magnetization transfer on the irradiation time, the cross relaxation rates between the involved protons were estimated. The inferred distances between these protons of the hapten and certain tryptophan protons are 3-4 A. It is concluded that in the combining site of AN02 there is one tryptophan from the light chain and one tryptophan from the heavy chain that are very near the hapten. When all tyrosines and phenylalanines were perdeuterated and all tryptophan aromatic protons were deuterated except for the protons at positions 2 and 5, titration of the Fab fragments with variable amounts of paramagnetic hapten showed that one proton from the light chain tryptophan is near (less than 7 A) the unpaired electron and that three other protons are significantly closer than 15 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A model structure has been constructed for a monoclonal anti-dinitrophenyl antibody. The antibody, ANO2, has been sequenced and cloned (Anglister, J., Frey, T., & McConnell, H.M., 1984, Biochemistry 23, 1138-1142). Its amino acid sequence shows striking homology with the anti-lysozyme Fab fragments HyHel5 (83%) and HyHel10 (73%). Based on this homology, a model for the ANO2 variable heavy and variable light chain framework was constructed using a hybrid of the HyHel5 light chain and the HyHel10 heavy chain backbone, omitting the hypervariable loops. These coordinates were used as scaffolds for the model building of ANO2. The CONGEN conformational sampling algorithm (Bruccoleri, R.E. & Karplus, M., 1987, Biopolymers 26, 127-196) was used to model the six hypervariable loops that contain the antigen-combining site. All the possible conformations of the loop backbones were constructed and the best loop structures were selected using a combination of the CHARMM potential energy function and evaluation of the solvent-accessible surface area of the conformers. The order in which the loops were searched was carried out based on the relative locations of the loops with reference to the framework of the beta-barrel, namely, L2-H1-L3-H2-H3-L1. The model structures thus obtained were compared to the high resolution X-ray structure (Brünger, A.T., Leahy, D.J., Hynes, T.R., & Fox, R.O., 1991, J. Mol. Biol. 221, 239-256).  相似文献   

19.
A testosterone binding scFv antibody was isolated from a naïve human library with a modest size of 108 clones. The crystal structure of the Fab fragment form of the 5F2 antibody clone complexed with testosterone determined at 1.5 Å resolution shows that the hapten is bound deeply in the antibody binding pocket. In addition to the interactions with framework residues only CDR‐L3 and CDR‐H3 loops interact with testosterone and the heavy chain forms the majority of the contacts with the hapten. The testosterone binding site of the 5F2 antibody with a high abundance of aromatic amino acid residues shows similarity with an in vitro affinity matured antibody having around 300 times higher affinity. The moderate affinity of the 5F2 antibody originates from the different orientation of the hapten and few light chain contacts. This is the first three‐dimensional structure of a human steroid hormone binding antibody that has been isolated from a naïve human repertoire. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Yeast display is a powerful technology for the affinity maturation of human antibody fragments. However, the technology thus far has been limited by the size of antibody libraries that can be generated, as using current transformation protocols libraries of only between 10(6) and 10(7) are typically possible. We have recently shown that Fab antibodies can be displayed on the cell surface of Saccharomyces cerevisiae [van den Beucken, T., Pieters, H., Steukers, M., van der Vaart, M., Ladner, R.C., Hoogenboom, H.R., Hufton, S.E., 2003. Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Lett. 546, 288-294]. This discovery and the knowledge that Fab antibodies are heterodimeric suggest that independent repertoires of heavy chain (HC) and light chain (LC) can be constructed in haploid yeast strains of opposite mating type. These separate repertoires can then be combined by highly efficient yeast mating. Using this approach, we have rapidly generated a naive human Fab yeast display library of over 10(9) clones. In addition, utilizing error-prone polymerase chain reaction, we have diversified Fab sequences and generated combinatorial and hierarchical chain shuffled libraries with complexities of up to 5 x 10(9) clones. These libraries have been selected for higher affinity using a repeating process of mating-driven chain shuffling and flow cytometric sorting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号