首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the structural details of the coordination environment of the copper sites in eight resting-state samples of beef heart cytochrome c oxidase prepared by different methods. The unusual position and structure of the resting-state copper edge spectrum can be adequately explained by the presence of sulfur-containing ligands, with a significant amount of S----Cu(II) charge transfer (i.e., a covalent site). Quantitative curve-fitting analysis of the copper extended X-ray absorption fine structure (EXAFS) data indicates similar average first coordination spheres for all resting-state samples, regardless of preparation method. The average coordination sphere (per 2 coppers) mainly consists of 6 +/- 1 nitrogens or oxygens at an average Cu-(N,O) distance of 1.99 +/- 0.03 A and 2 +/- 1 sulfurs at an average Cu-S distance of 2.28 +/- 0.02 A. Quantitative curve-fitting analysis of the outer shell of the copper EXAFS indicates the presence of a Cu...Fe interaction at a distance of 3.00 +/- 0.03 A. Proposed structures of the two copper sites based on these and other spectroscopic results are presented, and differences between our results and those of other published copper XAS studies [Powers, L., Chance, B., Ching, Y., & Angiolillo, P. (1981) Biophys. J. 34, 465-498] are discussed.  相似文献   

2.
3.
X-ray absorption spectroscopy has been used to investigate the local environment of the copper sites in bovine dopamine beta-hydroylase, the enzyme that catalyzes the conversion of dopamine to norepinephrine in the adrenal medulla and noradrenergic nerve cells. The marked similarity of the x-ray absorption edge features of the oxidized and ascorbate-reduced forms of the enzyme with those of the corresponding Cu(imidazole)4 complexes suggests that the ligation in both cases is very similar. Furthermore, this similarity is found for the extended x-ray absorption fine structure data, and analysis shows only nitrogen (or oxygen) ligation for both enzyme forms. Thus, four nitrogen atoms provide the best fit to the data at an average distance of 1.97 +/- 0.02 A for the oxidized enzyme and four nitrogen atoms at 2.05 +/- 0.02 A for the ascorbate-reduced form. The present data analysis also indicates that there is little change in the average copper ligand environment upon reduction of the enzyme-bound copper from Cu(II) to the Cu(I). The data for the oxidized form of the enzyme are in agreement with previous spin-echo EPR experiments that show three to four imidazole nitrogen ligands for each copper (McCracken, J., Desai, P. R., Papadopoulos, N. J., Villafranca, J. J., and Peisach, J. (1988) Biochemistry 27, 4133-4137). In addition, the data do not indicate the presence of any heavy atom (sulfur or chlorine) ligation to the ascorbate-reduced form of the enzyme as reported by Scott et al. (Scott, R. A., Sullivan, R. J., DeWolf, W. E., Jr., Dolle, R. E., and Kruse, L. I. (1988) Biochemistry 27, 5411-5417).  相似文献   

4.
The structures of membrane proteins are difficult to obtain by crystallography and may be altered by the detergents used in their extraction. X-ray absorption spectroscopy has been used to identify the structures of the copper atoms of the membrane-bound enzyme in mitochondria and in submitochondrial particles at respective concentrations of 100 and 200 micron of molar copper. To within the experimental error, the x-ray absorption spectra of the copper atoms of the membrane-bound and the Yonetani (Yonetani, T. (1961) J. Biol. Chem. 236, 1680-1688) purified oxidase are identical; all detectable shells of the active site indicate no alteration of structural parameters. Significant differences are found when compared to the Hartzell-Beinert (Hartzell, R. C., and Beinert, H. (1974) Biochim. Biophys. Acta 368, 318-338) preparation. Extended x-ray absorption fine structure technology is now adequate for the direct studies of membrane proteins in situ in their natural environment.  相似文献   

5.
Cyanide binding to bovine heart cytochrome c oxidase at five redox levels has been investigated by use of infrared and visible-Soret spectra. A C-N stretch band permits identification of the metal ion to which the CN- is bound and the oxidation state of the metal. Non-intrinsic Cu, if present, is detected as a cyanide complex. Bands can be assigned to Cu+CN at 2093 cm-1, Cu2+CN at 2151 or 2165 cm-1, Fe3+CN at 2131 cm-1, and Fe2+CN at 2058 cm-1. Fe2+CN is found only when the enzyme is fully reduced whereas the reduced Cu+CN occurs in 2-, 3-, and 4-electron reduced species. A band for Fe3+CN is not found for the complex of fully oxidized enzyme but is for all partially reduced species. Cu2+CN occurs in both fully oxidized and 1-electron-reduced oxidase. CO displaces the CN- at Fe2+ to give a C-O band at 1963.5 cm-1 but does not displace the CN- at Cu+. Another metal site, noted by a band at 2042 cm-1, is accessible only in fully reduced enzyme and may represent Zn2+ or another Cu+. Binding of either CN- or CO may induce electron redistribution among metal centers. The extraordinary narrowness of ligand infrared bands indicates very little mobility of the components that line the O2 reduction site, a property of potential advantage for enzyme catalysis. The infrared evidence that CN- can bind to both Fe and Cu supports the possibility of an O2 reduction mechanism in which an intermediate with a mu-peroxo bridge between Fe and Cu is formed. On the other hand, the apparent independence of Fe and Cu ligand-binding sites makes a heme hydroperoxide (Fe-O-O-H) intermediate an attractive alternative to the formation an Fe-O-O-Cu linkage.  相似文献   

6.
The reaction of cyanide with oxygenated cytochrome c oxidase was followed by means of flow-flash techniques. The oxygenated form, produced after photolysis of the partially reduced CO complex in the presence of cyanide and O2, shows cyanide-binding properties distinct from those of both the oxidized and the reduced forms of the protein. The binding is a single process (k = 22M-1-S-1) linearly dependent on cyanide concentration to as high as 75 mM. It is suggested that the oxygenated form is a conformational variant of the oxidized protein.  相似文献   

7.
Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, catalyzes the insertion of ferrous iron into the protoporphyrin IX ring. Ferrochelatases can be arbitrarily divided into two broad categories: those with and those without a [2Fe-2S] center. In this work we have used X-ray absorption spectroscopy to investigate the metal ion binding sites of murine and Saccharomyces cerevisiae (yeast) ferrochelatases, which are representatives of the former and latter categories, respectively. Co(2+) and Zn(2+) complexes of both enzymes were studied, but the Fe(2+) complex was only studied for yeast ferrochelatase because the [2Fe-2S] center of the murine enzyme interferes with the analysis. Co(2+) and Zn(2+) binding to site-directed mutants of the murine enzyme were also studied, in which the highly conserved and potentially metal-coordinating residues H207 and Y220 were substituted by residues that should not coordinate metal (i.e., H207N, H207A, and Y220F). Our experiments indicate four-coordinate zinc with Zn(N/O)(3)(S/Cl)(1) coordination for the yeast and Zn(N/O)(2)(S/Cl)(2) coordination for the wild-type murine enzyme. In contrast to zinc, a six-coordinate site for Co(2+) coordinated with oxygen or nitrogen was present in both the yeast and murine (wild-type and mutated) enzymes, with evidence of two histidine ligands in both. Like Co(2+), Fe(2+) bound to yeast ferrochelatase was coordinated by approximately six oxygen or nitrogen ligands, again with evidence of two histidine ligands. For the murine enzyme, mutation of both H207 and Y220 significantly changed the spectra, indicating a likely role for these residues in metal ion substrate binding. This is in marked disagreement with the conclusions from X-ray crystallographic studies of the human enzyme, and possible reasons for this are discussed.  相似文献   

8.
9.
Mapping of the cytochrome c binding site on cytochrome c oxidase   总被引:1,自引:0,他引:1  
  相似文献   

10.
Cytochrome c was chemically coupled to cytochrome c oxidase using the reagent 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) which couples amine groups to carboxyl residues. The products of this reaction were analyzed on 2.5–27% polyacrylamide gradient gels electrophoretically. Since cytochrome c binds to cytochrome oxidase electrostatically in an attraction between certain of its lysine residues and carboxyl residues on the oxidase surface, EDC is an especially appropriate reagent probe for binding-subunit studies. Coupling of polylysine to cytochrome oxidase using EDC was also performed, and the products of this reaction indicate that polylysine, an inhibitor of the cytochrome c reaction with oxidase, binds to the same oxidase subunit as does cytochrome c, subunit IV in the gel system used.  相似文献   

11.
A Naqui  C Kumar  Y C Ching  L Powers  B Chance 《Biochemistry》1984,23(25):6222-6227
The extended X-ray absorption fine structure (EXAFS) data show differences between the active site structures of different cytochrome oxidase preparations. In the resting (as isolated) state of the Yonetani preparation, the bridging atom between Fe3+a3 and Cu2+a3 is present [Powers, L., Chance, B., Ching, Y., & Angiolillo, P. (1981) Biophys. J. 34, 465], whereas in another preparation (e.g., Hartzell-Beinert), this atom seems to be bound only to Fe3+a3 in a significant fraction of the molecules. Both preparations bind cyanide in a multiphasic fashion, suggesting that the resting cytochrome oxidase is not homogeneous but rather is a mixture of several forms. The proportion of these forms as detected by cyanide binding kinetics differs for different preparations. However, upon reduction and reoxidation (conversion to the "oxygenated" form) the cyanide binding kinetics become monophasic and all preparations of the oxygenated form bind cyanide at the same rate. Thus, a combination of structural and kinetic approaches seems necessary for evaluation of the nature of the active site of cytochrome oxidase in its various forms.  相似文献   

12.
The role of zinc in beef heart cytochrome c oxidase has been studied by using x-ray absorption spectroscopy, zinc depletion and secondary structure predictions of subunits of beef heart cytochrome c oxidase. The stoichiometry of zinc in cytochrome oxidase has been determined in 35 different preparations and found to be one-half of copper (Cu:Zu = 2:1). Zinc is tightly bound to this enzyme and cannot be removed by dialysis against EDTA. However, zinc could be partially (up to 50%) depleted by treating the enzyme with either dipicolinic acid or by trypsin digestion. This partial depletion of zinc does not change the O2 uptake rate. X-ray absorption spectroscopy shows that the atom is in a distorted tetrahedral environment with mostly sulfur ligands. Since subunit VIa removed by the digestion removes about one-half the zinc, a possible binding site involves the two S sites present in that subunit with an appropriate folding in a structural role.  相似文献   

13.
The long-known biphasic response of cytochrome c oxidase to the concentration of cytochrome c has been explained, alternatively, by the presence of a catalytic and a regulatory site on the oxidase, by negative cooperativity between adjacent active sites in dimeric oxidase, or by a transition of the enzyme molecule between different conformational states. The three mechanistic hypotheses allow testable predictions about the relationship between substrate binding and steady-state kinetics catalyzed by the monomeric and dimeric (or oligomeric) enzyme. We have tested these predictions on monomeric, dimeric, and oligomeric beef heart oxidase and on monomeric oxidase from Paracoccus denitrificans. The aggregation state of the oxidase was evaluated from the sedimentation equilibrium in the ultracentrifuge and by gel chromatography. The binding of cytochrome c to cytochrome c oxidase was measured by spectrophotometric titration of cytochrome c oxidase with cytochrome c. The procedure makes use of a small perturbation in the Soret band of the absorption spectrum of the cytochrome c-cytochrome c oxidase complex. The steady-state oxidation of cytochrome c was followed spectroscopically by an automated assay procedure, and the kinetic parameters were deduced by numerical analysis of several hundred initial rate assays in the substrate concentration range 0.15-30 microM. The following results were obtained: (1) The kinetics of cytochrome c oxidation are always biphasic at low ionic strength, independent of the aggregation state of the enzyme. (2) The kinetics become apparently monophasic at ionic strengths above 100 mM or at slightly acidic pH values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
ATP influences the kinetics of electron transfer from cytochrome c to mitochondrial oxidase both in the membrane-embedded and detergent-solubilized forms of the enzyme. The most relevant effect is on the so-called "high affinity" binding site for cytochrome c which can be converted to "low affinity" by millimolar concentrations of ATP (Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1976) J. Biol. Chem. 251, 1104-1115). This phenomenon is characterized at the molecular level by the following features. ATP triggers a conformational change on the water-exposed surface of cytochrome c oxidase; in this process, carboxyl groups forming the cluster of negative charges responsible for binding cytochrome c change their accessibility to water-soluble protein modifier reagents; as a consequence the electrostatic field that controls the enzyme-substrate interaction is altered and cytochrome c appears to bind differently to oxidase; photolabeling experiments with the enzyme from bovine heart and other eukaryotic sources show that ATP cross-links specifically to the cytoplasmic subunits IV and VIII. Taken together, these data indicate that ATP can, at physiological concentration, bind to cytochrome c oxidase and induce an allosteric conformational change, thus affecting the interaction of the enzyme with cytochrome c. These findings raise the possibility that the oxidase activity may be influenced by the cell environment via cytoplasmic subunit-mediated interactions.  相似文献   

15.
Experiments were performed to examine the cyanide-binding properties of resting and pulsed cytochrome c oxidase in both their stable and transient turnover states. Inhibition of the oxidation of ferrocytochrome c was monitored as a function of cyanide concentration. Cyanide binding to partially reduced forms produced by mixing cytochrome c oxidase with sodium dithionite was also examined. A model is presented that accounts fully for cyanide inhibition of the enzyme, the essential feature of which is the rapid, tight, binding of cyanide to transient, partially reduced, forms of the enzyme populated during turnover. Computer fitting of the experimentally obtained data to the kinetic predictions given by this model indicate that the cyanide-sensitive form of the enzyme binds the ligand with combination constants in excess of 10(6) M-1 X s-1 and with KD values of 50 nM or less. Kinetic difference spectra indicate that cyanide binds to oxidized cytochrome a33+ and that this occurs rapidly only when cytochrome a and CuA are reduced.  相似文献   

16.
Interactions of azide ion with bovine heart cytochrome c oxidase (CcO) at five redox levels (IV) to (0), obtained by zero to four electron reduction of fully oxidized enzyme CcO(IV), were monitored by infrared and visible/Soret spectra. Partially reduced CcO gave three azide asymmetric stretch band at 2040, 2016, and 2004 cm-1 for CcO(III)N3 and two at 2040 and 2016 cm-1 for CcO(II)N3 and CcO(I)N3. Resting CcO(IV) reacts with N3- to give one band at 2041 cm-1 assigned to CuB2+N3 and another at 2051 cm-1 to N3- that is associated with protein but is not bound to a metal ion. At high azide concentrations the weak association of many azide molecules with non-metal protein sites was observed at all redox levels. These findings provide direct evidence for 1) N3- binding to CuB as well as Fea3 in partially reduced enzyme, but no binding to Fea3 in fully oxidized enzyme and no binding to either metal in fully reduced enzyme; 2) a long range effect of the oxidation state of Fea or CuA on ligand binding at heme a3, but not at CuB; and 3) an insensitivity of either Fea3 or CuB ligand site to changes in ligand or oxidation state at the other site. The observed independence of the Fea3 and CuB sites provides further support for Fea3(3)+ OOH, rather than Fea3(3)+ OOCuB2+, as an intermediate in the reduction of O2 to water by the oxidase.  相似文献   

17.
The isolated complexes of ferricytochrome c with cytochrome c oxidase, cytochrome c reductase (cytochrome bc1 or complex III), and cytochrome c1 (a subunit of cytochrome c reductase) were investigated by the method of differential chemical modification (Bosshard, H.R. (1979) Methods Biochem. Anal. 25, 273-301). By this method the chemical reactivity of each of the 19 lysyl side chains of horse cytochrome c was compared in free and in complexed cytochrome c and binding sites were deduced from altered chemical reactivities of particular lysyl side chains in complexed cytochrome c. The most important findings follow. 1. The binding sites on cytochrome c for cytochrome c oxidase and cytochrome c reductase, defined in terms of the involvement of particular lysyl residues, are indistinguishable. The two oxidation-reduction partners of cytochrome c interact at the front (exposed heme edge) and top left part of the molecule, shielding mainly lysyl residues 8, 13, 72 + 73, 86, and 87. The chemical reactivity of lysyl residues 22, 39, 53, 55, 60, 99, and 100 is unaffected by complex formation while the remaining lysyl residues in positions 5, 7, 25, 27, 79, and 88 are somewhat less reactive in the complexed molecule. 2. When bound to cytochrome c reductase or to the isolated cytochrome c1 subunit of the reductase the same lysyl side chains of cytochrome c are shielded. This indicates that cytochrome c binds to the c1 subunit of the reductase during the electron transfer process.  相似文献   

18.
The EPR spectrum of copper in cytochrome c oxidase (EC 1.9.3.1) has been studied between 5 and 220 degreesK, and the spectral parameters have been determined for both forms of EPR-detectable copper by computer simulation methods. Numerical methods have been developed to separate the spectra of intrinsic copper and inactive copper. Evidence is presented to show that inactive copper is probably formed by denaturation. The EPR parameters for intrinsic copper were determined as gx = 1.99, gy = 2.03, gz = 2.185, / Ax(Cu) / = 0.0020 cm-1, / Ay(Cu) / = 0.0025 cm-1, / Az(Cu) / = 0.0030 cm-1. The principal values of the g tensor and the small value of /Az(Cu) / are interpreted in terms of mixing of 3d, 4s, and 4p metal orbitals. A flattened-tetrahedral stereochemistry about Cu2+ with an additional rhombic distrotion is in best agreement with all of the data. The peak-to-peak linewidth is found to be orientation dependent, and is described by a tensor with principal values deltaHx = 45G, deltaHy = 65 G, deltaHz = 85 G. A weak dipolar interaction with a low-spin ferric species stereochemistry for the copper ion is consistent with the electron transport function of the enzyme. Broad EPR signals with a very short spin-lattice relaxation time has been observed near g = 14 and g = 3 at 5 degrees K in oxidized cytochrome oxidase but not in the reduced or denatured enzyme. The possibility that these are due to the "EPR-undetectable" iron and copper is raised.  相似文献   

19.
X-ray absorption spectroscopy at the iron K-edge indicates that the iron cores of human and yeast frataxin polymers assembled in vitro are identical to each other and are similar but not identical to ferritin cores. Both frataxin polymers contain ferrihydrite, a biomineral composed of ferric oxide/hydroxide octahedra. The ferrihydrite in frataxin is less ordered than iron cores of horse spleen ferritin, having fewer face-sharing Fe-Fe interactions but similar double corner-sharing interactions. The extended X-ray absorption fine structure (EXAFS) analysis agrees with previous electron microscopy data showing that frataxin cores are composed of very small ferrihydrite crystallites.  相似文献   

20.
Electrostatically stabilized complexes of fully oxidized cytochrome c oxidase from Paracoccus denitrificans and horse heart cytochrome c were studied by resonance Raman spectroscopy. The experiments were carried out with the wild-type oxidase and a variant in which a negatively charged amino acid in the binding domain (D257) is replaced by an asparagine. It is shown that cytochrome c induces structural changes at heme a and heme a(3) which are reminiscent to those found in mammalian cytochrome c oxidase-cytochrome c complex. The spectral changes are attributed to subtle changes in the heme-protein interactions implying that there is a structural communication from the binding domain even to the remote catalytic center. Only for the heme a modes minor spectral differences were found in the response of the wild-type and the D257N variant oxidase upon cytochrome c binding indicating that electrostatic interactions of aspartate 257 are not crucial for the perturbation of the catalytic site structure in the complex. On the other hand, in none of the complexes, structural changes were detected in the bound cytochrome c. These findings are in contrast to previous results obtained with beef heart cytochrome c oxidase which triggers the formation of a new conformational state of cytochrome c assumed to be involved in the biological electron transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号