首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitoptosis was described as a sort of mitochondrial death program. It could be associated with both necrosis and apoptosis, although degenerating mitochondria are also found in autophagic vacuoles. It was demonstrated that several molecules might contribute to the remodeling and rearrangement of mitochondrial membranes, leading to mitochondria rupture and disruption. Here, we hypothesize that, at least in T cells, two main pathways of mitoptosis can occur: an inner membrane mitoptosis (IMM), in which only the internal matrix and cristae are lost while the external mitochondrial envelope remains unaltered, and an outer membrane mitoptosis (OMM) where only swollen internal cristae are detected as remnants. We suggest that the study of these processes could provide useful insights not only to the field of cell death but also to the study of the pathogenic mechanisms of mitochondria-associated human diseases.  相似文献   

2.
Mitochondrial morphology within cells is controlled by precisely regulated rates of fusion and fission . During programmed cell death (PCD), mitochondria undergo extensive fragmentation and ultimately caspase-independent elimination through a process known as mitoptosis . Though this increased fragmentation is due to increased fission through the recruitment of the dynamin-like GTPase Drp1 to mitochondria , as well as to a block in mitochondrial fusion , cellular mechanisms underlying these processes remain unclear. Here, we describe a mechanism for the increased mitochondrial Drp1 levels and subsequent stimulation of mitochondrial fission seen during PCD. We observed Bax/Bak-mediated release of DDP/TIMM8a, a mitochondrial intermembrane space (IMS) protein , into the cytoplasm, where it binds to and promotes the mitochondrial redistribution of Drp1, a mediator of mitochondrial fission. Using both loss- and gain-of-function assays, we also demonstrate that the Drp1- and DDP/TIMM8a-dependent mitochondrial fragmentation observed during PCD is an important step in mitoptosis, which in turn is involved in caspase-independent cell death. Thus, following Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), IMS proteins released comprise not only apoptogenic factors such as cytochrome c involved in caspase activation but also DDP/TIMM8a, which activates Drp1-mediated fission to promote mitochondrial fragmentation and subsequently elimination during PCD.  相似文献   

3.
Hypoxia affects the physiological behavior of rat cortical synaptosomes   总被引:1,自引:0,他引:1  
Nerve cells, especially synaptosomes, are very susceptible to hypoxia and the subsequent oxidative stress. In this paper, we examined the effects of hypoxia (93% N(2):2% O(2):5% CO(2), v/v/v) on rat cortical synaptosomes by evaluating modifications of synaptosomal mitochondrial respiration rate and ATP production, membrane potential, intrasynaptosomal mitochondrial Ca(2+) concentration ([Ca(2+)](i)), and desferoxamine-chelatable free iron and esterified F2-isoprostane levels after different periods of hypoxia and after 30 min of reoxygenation. Oxygen consumption decreased significantly during 120 min of hypoxia and was restored after reoxygenation. At the same time, ATP production decreased and remained significantly lower even after reoxygenation. This involved a depolarization of the synaptosomal mitochondrial membrane, although the [Ca(2+)](i) remained practically unchanged. Indeed, iron and F2-isoprostane levels, representing useful prediction markers for neurodevelopmental outcome, increased significantly after hypoxia, and there was a strong correlation between the two variables. On the whole our results indicate that synaptosomal mitochondria undergo mitoptosis after 2 h of hypoxia.  相似文献   

4.
Bioenergetic aspects of apoptosis, necrosis and mitoptosis   总被引:6,自引:2,他引:4  
In this review I summarize interrelations between bioenergetic processes and such programmed death phenomena as cell suicide (apoptosis and necrosis) and mitochondrial suicide (mitoptosis). The following conclusions are made. (I) ATP and rather often mitochondrial hyperpolarization (i.e. an increase in membrane potential, ΔΨ) are required for certain steps of apoptosis and necrosis. (II) Apoptosis, even if it is accompanied by ΔΨ and [ATP] increases at its early stage, finally results in a ΔΨ collapse and ATP decrease. (III) Moderate (about three-fold) lowering of [ATP] for short and long periods of time induces apoptosis and necrosis, respectively. In some types of apoptosis and necrosis, the cell death is mediated by a ΔΨ-dependent overproduction of ROS by the initial (Complex I) and the middle (Complex III) spans of the respiratory chain. ROS initiate mitoptosis which is postulated to rid the intracellular population of mitochondria from those that are ROS overproducing. Massive mitoptosis can result in cell death due to release to cytosol of the cell death proteins normally hidden in the mitochondrial intermembrane space.  相似文献   

5.
《Autophagy》2013,9(3):282-284
Mitoptosis was described as a sort of mitochondrial death program. It could be associated with both necrosis and apoptosis, although degenerating mitochondria are also found in autophagic vacuoles. It was demonstrated that several molecules might contribute to the remodeling and rearrangement of mitochondrial membranes, leading to mitochondria rupture and disruption. Here, we hypothesize that, at least in T cells, two main pathways of mitoptosis can occur: an inner membrane mitoptosis (IMM), in which only the internal matrix and cristae are lost while the external mitochondrial envelope remains unaltered, and an outer membrane mitoptosis (OMM) where only swollen internal cristae are detected as remnants. We suggest that the study of these processes could provide useful insights not only to the field of cell death but also to the study of the pathogenic mechanisms of mitochondria-associated human diseases.

Addendum to:

Death Receptor Ligation Triggers Membrane Scrambling Between Golgi and Mitochondria

S. Ouasti, P. Matarrese, R. Paddon, R. Khosravi-Far, M. Sorice, A. Tinari, W. Malorni, M. Degli Esposti

Cell Death Differ 2006; Epub ahead of print  相似文献   

6.
Cardiolipin (CL) is essential for the functionality of several mitochondrial proteins. Its distribution between the inner and outer leaflet of the mitochondrial internal membrane is crucial for ATP synthesis. We have investigated alterations in CL distribution during the early phases of apoptosis. Using two classical models (staurosporine-treated HL-60 cells and tumor necrosis factor alpha-treated U937 cells), we found that in apoptotic cells CL moves to the outer leaflet of mitochondrial inner membrane in a time-dependent manner. This occurs before the appearance of apoptosis markers such as plasma-membrane exposure of phosphatidylserine, changes in mitochondrial membrane potential, DNA fragmentation, but after the production of reactive oxygen species. The exposure of a phospholipid on the outer surface during apoptosis thus occurs not only at the plasma membrane level but also in mitochondria, reinforcing the hypothesis of mitoptosis as a crucial regulating system for programmed cell death, also occurring in cancer cells after treatment with antineoplastic agents.  相似文献   

7.
Skulachev VP 《IUBMB life》2000,49(5):365-373
The very fact that mitochondria participate in amplification of the cell suicide signals has stimulated interest in the mechanism of this and related phenomena. It seems probable that mitochondria possess an autonomic system that allows them to commit suicide. This mitoptosis is mediated by reactive oxygen species (ROS), causing opening of the permeability transition pores (PTP) in the inner mitochondrial membrane. Mitoptosis can purify the mitochondrial population in a cell from the ROS-overproducing organelles. Massive mitoptosis can result in apoptosis (programmed cell death) because of the release of proapoptotic proteins from the mitochondrial intermembrane space, a mechanism purifying tissues from the ROS-overproducing and other unwanted cells. Large-scale apoptosis can be used by organisms to eliminate some organs during ontogenesis (organoptosis). In adult organisms, organoptosis of organs of vital importance may entail a programmed death of individuals (phenoptosis). This mechanism might purify kins, communities, and populations from individuals becoming dangerous because of, for example, heavy infection (septic shock). It is hypothesized that aging represents a slow ROS-linked phenoptosis that eliminates individuals with damaged genomes and gives reproductive advantage to those who succeeded in a better preservation of their genomes from damage.  相似文献   

8.
Nemorosone, a natural-occurring polycyclic polyprenylated acylphloroglucinol, has received increasing attention due to its strong in vitro anti-cancer action. Here, we have demonstrated the toxic effect of nemorosone (1-25 μM) on HepG2 cells by means of the MTT assay, as well as early mitochondrial membrane potential dissipation and ATP depletion in this cancer cell line. In mitochondria isolated from rat liver, nemorosone (50-500 nM) displayed a protonophoric uncoupling activity, showing potency comparable to the classic protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Nemorosone enhanced the succinate-supported state 4 respiration rate, dissipated mitochondrial membrane potential, released Ca(2+) from Ca(2+)-loaded mitochondria, decreased Ca(2+) uptake and depleted ATP. The protonophoric property of nemorosone was attested by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium in the presence of valinomycin. In addition, uncoupling concentrations of nemorosone in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. Therefore, nemorosone is a new potent protonophoric mitochondrial uncoupler and this property is potentially involved in its toxicity on cancer cells.  相似文献   

9.
The ATP-sensitive K(+) (K(ATP)) channels in both sarcolemmal (sarcK(ATP)) and mitochondrial inner membrane (mitoK(ATP)) are the critical mediators in cellular protection of ischemic preconditioning (IPC). Whereas cardiac sarcK(ATP) contains Kir6.2 and sulfonylurea receptor (SUR)2A, the molecular identity of mitoK(ATP) remains elusive. In the present study, we tested the hypothesis that protein kinase C (PKC) may promote import of Kir6.2-containing K(ATP) into mitochondria. Fluorescence imaging of isolated mitochondria from both rat adult cardiomyocytes and COS-7 cells expressing recombinant Kir6.2/SUR2A showed that Kir6.2-containing K(ATP) channels were localized in mitochondria and this mitochondrial localization was significantly increased by PKC activation with phorbol 12-myristate 13-acetate (PMA). Fluorescence resonance energy transfer microscopy further revealed that a significant number of Kir6.2-containing K(ATP) channels were localized in mitochondrial inner membrane after PKC activation. These results were supported by Western blotting showing that the Kir6.2 protein level in mitochondria from COS-7 cells transfected with Kir6.2/SUR2A was enhanced after PMA treatment and this increase was inhibited by the selective PKC inhibitor chelerythrine. Furthermore, functional analysis indicated that the number of functional K(ATP) channels in mitochondria was significantly increased by PMA, as shown by K(ATP)-dependent decrease in mitochondrial membrane potential in COS-7 cells transfected with Kir6.2/SUR2A but not empty vector. Importantly, PKC-mediated increase in mitochondrial Kir6.2-containing K(ATP) channels was blocked by a selective PKCepsilon inhibitor peptide in both COS-7 cells and cardiomyocytes. We conclude that the K(ATP) channel pore-forming subunit Kir6.2 is indeed localized in mitochondria and that the Kir6.2 content in mitochondria is increased by activation of PKCepsilon. PKC isoform-regulated mitochondrial import of K(ATP) channels may have significant implication in cardioprotection of IPC.  相似文献   

10.
Mammalian mitochondrial DNA (mtDNA) encodes 13 polypeptide components of oxidative phosphorylation complexes. Consequently, cells that lack mtDNA (termed rho degrees cells) cannot maintain a membrane potential by proton pumping. However, most mitochondrial proteins are encoded by nuclear DNA and are still imported into mitochondria in rho degrees cells by a mechanism that requires a membrane potential. This membrane potential is thought to arise from the electrogenic exchange of ATP4- for ADP3- by the adenine nucleotide carrier. An intramitochondrial ATPase, probably an incomplete FoF1-ATP synthase lacking the two subunits encoded by mtDNA, is also essential to ensure sufficient charge flux to maintain the potential. However, there are considerable uncertainties about the magnitude of this membrane potential, the nature of the intramitochondrial ATPase and the ATP flux required to maintain the potential. Here we have investigated these factors in intact and digitonin-permeabilized mammalian rho degrees cells. The adenine nucleotide carrier and ATP were essential, but not sufficient to generate a membrane potential in rho degrees cells and an incomplete FoF1-ATP synthase was also required. The maximum value of this potential was approximately 110 mV in permeabilized cells and approximately 67 mV in intact cells. The membrane potential was eliminated by inhibitors of the adenine nucleotide carrier and by azide, an inhibitor of the incomplete FoF1-ATP synthase, but not by oligomycin. This potential is sufficient to import nuclear-encoded proteins but approximately 65 mV lower than that in 143B cells containing fully functional mitochondria. Subfractionation of rho degrees mitochondria showed that the azide-sensitive ATPase activity was membrane associated. Further analysis by blue native polyacrylamide gel electrophoresis (BN/PAGE) followed by activity staining or immunoblotting, showed that this ATPase activity was an incomplete FoF1-ATPase loosely associated with the membrane. Maintenance of this membrane potential consumed about 13% of the ATP produced by glycolysis. This work has clarified the role of the adenine nucleotide carrier and an incomplete FoF1-ATP synthase in maintaining the mitochondrial membrane potential in rho degrees cells.  相似文献   

11.
Previous studies from this laboratory have shown that mitochondrial bound hexokinase is markedly elevated in highly glycolytic hepatoma cells (Parry, D. M., and Pedersen, P.L. (1983) J. Biol. Chem. 258, 10904-10912). A pore-forming protein, porin, within the outer membrane appears to comprise at least part of the receptor site (Nakashima, R.A., Mangan, P.S., Colombini, M., and Pedersen, P.L. (1986). Biochemistry 25, 1015-1021). In studies reported here experiments were carried out to assess the functional significance of mitochondrial bound tumor hexokinase. Two approaches were used to determine whether the bound enzyme has preferred access to mitochondrially generated ATP relative to cytosolic ATP. The first approach compared the time course of glucose 6-phosphate formation by AS-30D hepatoma mitochondria under conditions where ATP was regenerated endogenously via oxidative phosphorylation or exogenously by added pyruvate kinase and phosphoenolpyruvate. The second approach involved the measurement of the specific radioactivity of glucose 6-phosphate formed following the addition of [gamma-32P]ATP to either phosphorylating or nonphosphorylating AS-30D mitochondria. Both approaches provided results which show that the source of ATP for bound hexokinase is derived preferentially from the ATP synthase residing within the inner mitochondrial membrane compartment rather than from the medium (i.e. from the cytosolic compartment). These results provide the first direct demonstration that the exceptionally high level of hexokinase bound to mitochondria of highly glycolytic tumor cells has preferred access to mitochondrially generated ATP, a finding that may have rather profound metabolic significance for such tumors.  相似文献   

12.
Fission of the mitochondrial reticulum (the thread-grain transition) and following gathering of mitochondria in the perinuclear area are induced by oxidative stress. It is shown that inhibitors of the respiratory chain (piericidin and myxothiazol) cause fission of mitochondria in HeLa cells and fibroblasts, whereas a mitochondria-targeted antioxidant (MitoQ) inhibits this effect. Hydrogen peroxide also induced the fission, which was stimulated by the inhibitors of respiration and suppressed by MitoQ. In untreated cells, the mitochondrial reticulum consisted of numerous electrically-independent fragments. Prolonged treatment with MitoQ resulted in drastic increase in size and decrease in number of these fragments. Local photodamage of mitochondria caused immediate depolarization of a large fraction of the mitochondrial network in MitoQ-treated cells. Our data indicate that the thread-grain transition of mitochondria depends on production of reactive oxygen species (ROS) in initial segments of the respiratory chain and is a necessary step in the process of elimination of mitochondria (mitoptosis).  相似文献   

13.
Microsporidia are obligate intracellular parasites with extremely reduced genomes and a dependence on host‐derived ATP. The microsporidium Encephalitozoon cuniculi proliferates within a membranous vacuole and we investigated how the ATP supply is optimized at the vacuole–host interface. Using spatial EM quantification (stereology), we found a single layer of mitochondria coating substantial proportions of the parasitophorous vacuole. Mitochondrial binding occurred preferentially over the vegetative ‘meront’ stages of the parasite, which bulged into the cytoplasm, thereby increasing the membrane surface available for mitochondrial interaction. In a broken cell system mitochondrial binding was maintained and was typified by electron dense structures (< 10 nm long) bridging between outer mitochondrial and vacuole membranes. In broken cells mitochondrial binding was sensitive to a range of protease treatments. The function of directly bound mitochondria, as measured by the membrane potential sensitive dye JC‐1, was indistinguishable from other mitochondria in the cell although there was a generalized depression of the membrane potential in infected cells. Finally, quantitative immuno‐EM revealed that the ATP‐delivering mitochondrial porin, VDAC, was concentrated atthe mitochondria‐vacuole interaction site. Thus E. cuniculi appears to maximize ATP supply by direct binding of mitochondria to the parasitophorous vacuole bringing this organelle within 0.020 microns of the growing vegetative form of the parasite. ATP‐delivery is further enhanced by clustering of ATP transporting porins in those regions of the outer mitochondrial membrane lying closest to the parasite.  相似文献   

14.
Our previous work in cells and animals showed that mitochondria are involved in the neuroprotective effect of huperzine A (HupA). In this study, the effects of HupA on isolated rat brain mitochondria were investigated. In addition to inhibiting the Aβ25-35 (40 μM)-induced decrease in mitochondrial respiration, adenosine 5′-triphosphate (ATP) synthesis, enzyme activity, and transmembrane potential, HupA (0.01 or 0.1 μM) effectively prevented Aβ-induced mitochondrial swelling, reactive oxygen species increase, and cytochrome c release. More interestingly, administration of HupA to isolated mitochondria promoted the rate of ATP production and blocked mitochondrial swelling caused by normal osmosis. These results indicate that HupA protects mitochondria against Aβ at least in part by preserving membrane integrity and improving energy metabolism. These direct effects on mitochondria further extend the noncholinergic functions of HupA.  相似文献   

15.
Microtubule cytoskeleton is reformed during apoptosis, forming a cortical structure beneath plasma membrane, which plays an important role in preserving cell morphology and plasma membrane integrity. However, the maintenance of the apoptotic microtubule network (AMN) during apoptosis is not understood. In the present study, we examined apoptosis induced by camptothecin (CPT), a topoisomerase I inhibitor, in human H460 and porcine LLCPK-1α cells. We demonstrate that AMN was organized in apoptotic cells with high ATP levels and hyperpolarized mitochondria and, on the contrary, was dismantled in apoptotic cells with low ATP levels and mitochondrial depolarization. AMN disorganization after mitochondrial depolarization was associated with increased plasma membrane permeability assessed by enhancing LDH release and increased intracellular calcium levels. Living cell imaging monitoring of both, microtubule dynamics and mitochondrial membrane potential, showed that AMN persists during apoptosis coinciding with cycles of mitochondrial hyperpolarization. Eventually, AMN was disorganized when mitochondria suffered a large depolarization and cell underwent secondary necrosis. AMN stabilization by taxol prevented LDH release and calcium influx even though mitochondria were depolarized, suggesting that AMN is essential for plasma membrane integrity. Furthermore, high ATP levels and mitochondria polarization collapse after oligomycin treatment in apoptotic cells suggest that ATP synthase works in “reverse” mode during apoptosis. These data provide new explanations for the role of AMN and mitochondria during apoptosis.  相似文献   

16.
Calcium uptake into bovine epididymal spermatozoa is enhanced by introducing phosphate in the suspending medium (Babcock et al. (1975) J. Biol. Chem. 250, 6488-6495). This effect of phosphate is found even at a low extracellular Ca2+ concentrations (i.e., 5 microM) suggesting that phosphate is involved in calcium transport via the plasma membrane. Bicarbonate (2 mM) cannot substitute for phosphate, and a relatively high bicarbonate concentration (20 mM) causes partial inhibition of calcium uptake in absence of Pi. In the presence of 1-2 mM phosphate, 20 mM bicarbonate enhances Ca2+ uptake. The data indicate that the plasma membrane of bovine spermatozoa contains two carriers for Ca2+ transport: a phosphate-independent Ca2+ carrier that is stimulated by bicarbonate and a phosphate-dependent Ca2+ carrier that is inhibited by bicarbonate. Higher phosphate concentrations (i.e., 10 mM) inhibit Ca2+ uptake into intact cells (compared to 1.0 mM phosphate) and this inhibition can be relieved partially by 20 mM bicarbonate. This effect of bicarbonate is inhibited by mersalyl. Calcium uptake into the cells is enhanced by adding exogenous substrates to the medium. There is no correlation between ATP levels in the cells and Ca2+ transport into the cell. ATP levels are high even without added exogenous substrate and this ATP level is almost completely reduced by oligomycin, suggesting that ATP can be synthesized in the mitochondria in the absence of exogenous substrate. Calcium transport into the sperm mitochondria (washed filipin-treated cells) is absolutely dependent upon the presence of phosphate and mitochondrial substrate. Bicarbonate cannot support Ca2+ transport into sperm mitochondria. There is good correlation between Ca2+ uptake into intact epididymal sperm and into sperm mitochondria with the various substrates used. This indicates that the rate of calcium transport into the cells is determined by the rate of mitochondrial Ca2+ uptake and respiration with the various substrates.  相似文献   

17.
T(1), a mutant yeast lacking three regulatory proteins of F(1)F(o)ATPase, namely ATPase inhibitor, 9K protein and 15K protein, grew on non-fermentable carbon source at the same rate as normal cells but was less viable when incubated in water. During the incubation, the cellular ATP content decreased rapidly in the T(1) cells but not in normal cells, and respiration-deficient cells appeared among the T(1) cells. The same mutation was also induced in D26 cells lacking only the ATPase inhibitor. Overexpression of the ATPase inhibitor in YC63 cells, which were derived from the D26 strain harboring an expression vector containing the gene of the ATPase inhibitor, prevented the decrease of cellular ATP level and the mutation. Isolated T(1) mitochondria exhibited ATP hydrolysis for maintenance of membrane potential when antimycin A was added to the mitochondrial suspension, while normal and YC63 mitochondria continued to show low hydrolytic activity and low membrane potential. Thus, it is likely that deletion of the ATPase inhibitor induces ATPase activity of F(1)F(o)ATPase to create a dispensable membrane potential under the non-nutritional conditions and that this depletes mitochondrial and cellular ATP. The depletion of mitochondrial ATP in turn leads to occurrence of aberrant DNA in mitochondria.  相似文献   

18.
For a long time mitochondria have mainly been considered for their role in the aerobic energy production in eukaryotic cells, being the sites of the oxidative phosphorylation, which couples the electron transfer from respiratory substrates to oxygen with the ATP synthesis. Subsequently, it was showed that electron transfer along mitochondrial respiratory chain also leads to the formation of radicals and other reactive oxygen species, commonly indicated as ROS. The finding that such species are able to damage cellular components, suggested mitochondrial involvement in degenerative processes underlying several diseases and aging.More recently, a new role for mitochondria, as a system able to supply protection against cellular oxidative damage, is emerging. Experimental evidence indicates that the systems, evolved to protect mitochondria against endogenously produced ROS, can also scavenge ROS produced by other cellular sources. It is possible that this action, particularly relevant in physio-pathological conditions leading to increased cellular ROS production, is more effective in tissues provided with abundant mitochondrial population. Moreover, the mitochondrial dysfunction, resulting from ROS-induced inactivation of important mitochondrial components, can be attenuated by the cell purification from old ROS-overproducing mitochondria, which are characterized by high susceptibility to oxidative damage. Such an elimination is likely due to two sequential processes, named mitoptosis and mitophagy, which are usually believed to be induced by enhanced mitochondrial ROS generation. However, they could also be elicited by great amounts of ROS produced by other cellular sources and diffusing into mitochondria, leading to the elimination of the old dysfunctional mitochondrial subpopulation.  相似文献   

19.
Eukaryotic cells require mitochondrial compartments for viability. However, the budding yeast Saccharomyces cerevisiae is able to survive when mitochondrial DNA suffers substantial deletions or is completely absent, so long as a sufficient mitochondrial inner membrane potential is generated. In the absence of functional mitochondrial DNA, and consequently a functional electron transport chain and F(1)F(o)-ATPase, the essential electrical potential is maintained by the electrogenic exchange of ATP(4-) for ADP(3-) through the adenine nucleotide translocator. An essential aspect of this electrogenic process is the conversion of ATP(4-) to ADP(3-) in the mitochondrial matrix, and the nuclear-encoded subunits of F(1)-ATPase are hypothesized to be required for this process in vivo. Deletion of ATP3, the structural gene for the gamma subunit of the F(1)-ATPase, causes yeast to quantitatively lose mitochondrial DNA and grow extremely slowly, presumably by interfering with the generation of an energized inner membrane. A spontaneous suppressor of this slow-growth phenotype was found to convert a conserved glycine to serine in the beta subunit of F(1)-ATPase (atp2-227). This mutation allowed substantial ATP hydrolysis by the F(1)-ATPase even in the absence of the gamma subunit, enabling yeast to generate a twofold greater inner membrane potential in response to ATP compared to mitochondria isolated from yeast lacking the gamma subunit and containing wild-type beta subunits. Analysis of the suppressing mutation by blue native polyacrylamide gel electrophoresis also revealed that the alpha(3)beta(3) heterohexamer can form in the absence of the gamma subunit.  相似文献   

20.
In previous study we demonstrated the presence of ATP-sensitive potassium current in the inner mitochondrial membrane, which was sensitive to diazoxide and glybenclamide, in mitochondria isolated from the rat uterus. This current was supposed to be operated by mitochondrial ATP-sensitive potassium channel (mitoK(ATP)). Regulation of the mitoK(ATP) in uterus cells is not studied well enough yet. It is well known that the reactive oxygen species (ROS) can play a dual role. They can damage cells in high concentrations, but they can also act as messengers in cellular signaling, mediating survival of cells under stress conditions. ROS are known to activate mitoK(ATP) during the oxidative stress in the brain and heart, conferring the protection of cells. The present study examined whether ROS mediate the mitoK(ATP) activation in myometrium cells. Oxidative stress was induced by rotenone. ROS generation was measured by 2',7'-dichlorofluorescin diacetate. The massive induction of ROS production was demonstrated in the presence of rotenone. Hyperpolarization of the mitochondrial membrane was also detected with the use of the potential-sensitive dye DiOC6 (3,3'-dihexyloxacarbocyanine iodide). Diazoxide, a selective activator of mitoK(ATP), depolarized mitochondrial membrane either under oxidative stress or under normal conditions, while mitoK(ATP) blocker glybenclamide effectively restored mitochondrial potential in rat myocytes. Estimated value for diazoxide to mitoK(ATP) under normoxia was four times higher than under oxidative stress conditions: 5.01 +/- 1.47-10(-6) M and 1.24 +/- 0.21 x 10(-6) M respectively. The ROS scavenger N-acetylcysteine (NAC) successfully eliminates depolarization of mitochondrial membrane by diazoxide under oxidative stress. These results suggest that elimination of ROS by NAC prevents the activation of mitoK(ATP) under oxidative stress. Taking into account the higher affinity of diazoxide to mitoK(ATP) under stress conditions than under normoxia, we conclude that the oxidative stress conditions are more favourable than normoxia for the activation of mitoK(ATP). Thus we hypothesize that the ROS regulate the activity of the mitoK(ATP) in myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号