首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysophosphatidic acid (LPA) is a serum-borne phospholipid that activates its own G protein-coupled receptors present in numerous cell types. In addition to stimulating cell proliferation, LPA also induces cytoskeletal changes and promotes cell migration in a RhoA- and Rac-dependent manner. Whereas RhoA is activated via Galpha(12/13)-linked Rho-specific guanine nucleotide exchange factors, it is unknown how LPA receptors may signal to Rac. Here we report that the prototypic LPA(1) receptor (previously named Edg2), when expressed in B103 neuroblastoma cells, mediates transient activation of RhoA and robust, prolonged activation of Rac leading to cell spreading, lamellipodia formation, and stimulation of cell migration. LPA-induced Rac activation is inhibited by pertussis toxin and requires phosphoinositide 3-kinase activity. Strikingly, LPA fails to activate Rac in cell types that lack the Rac-specific exchange factor Tiam1; however, enforced expression of Tiam1 restores LPA-induced Rac activation in those cells. Tiam1-deficient cells show enhanced RhoA activation, stress fiber formation, and cell rounding in response to LPA, consistent with Tiam1/Rac counteracting RhoA. We conclude that LPA(1) receptors couple to a G(i)-phosphoinositide 3-kinase-Tiam1 pathway to activate Rac, with consequent suppression of RhoA activity, and thereby stimulate cell spreading and motility.  相似文献   

2.
Action mechanism of lipopolysaccharide (LPS), interleukin-1β (IL-1β), and lysophosphatidic acid (LPA) to regulate motility, an important process of astrogliosis, was investigated in rat astrocytes. While LPA exerted no significant effect on the cell migration, the prior treatment of the cells with LPS or IL-1β resulted in the appearance of migration activity in response to LPA. The LPS induction of the migration response to LPA was associated with the production of IL-1β precursor protein and inhibited by the IL-1 receptor antagonist. The IL-1β treatment also allowed LPA to activate Rac1. The LPA-induced Rac1 activation and migration were inhibited by pertussis toxin, a small interfering RNA specific to LPA(1) receptors, and LPA(1) receptor antagonists, including Ki16425. However, the IL-1β treatment had no appreciable effect on LPA(1) receptor mRNA expression and LPA-induced activation of ERK, Akt, and proliferation. The induction of the migration response to LPA by IL-1β was inhibited by a constitutively active RhoA. Moreover, LPA significantly activated RhoA through the LPA(1) receptor in the control cells but not in the IL-1β-treated cells. These results suggest that IL-1β inhibits the LPA(1) receptor-mediated Rho signaling through the IL-1 receptor, thereby disclosing the LPA(1) receptor-mediated G(i) protein/Rac/migration pathway.  相似文献   

3.
4.
Chen J  Chen Y  Zhu W  Han Y  Han B  Xu R  Deng L  Cai Y  Cong X  Yang Y  Hu S  Chen X 《Journal of cellular biochemistry》2008,103(6):1718-1731
Lysophosphatidic acid (LPA) is a bioactive phospholipid with diverse functions mediated via G-protein-coupled receptors (GPCRs). In view of the elevated levels of LPA in acute myocardial infarction (MI) patients we have conducted studies aimed at identifying specific LPA receptor subtypes and signaling events that may mediate its actions in hypertrophic remodeling. Experiments were carried out in cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and in a rat MI model. In NRCMs, LPA-induced hypertrophic growth was completely abrogated by DGPP, an LPA1/LPA3 antagonist. The LPA3 agonist OMPT, but not the LPA2 agonist dodecylphosphate, promoted hypertrophy as examined by 3[H]-Leucine incorporation, ANF-luciferase expression and cell area. In in vivo experiments, LPA1, LPA2 and LPA3 mRNA levels as well as LPA1 and LPA3 protein levels increased together with left ventricular remodeling (LVRM) after MI. In addition, LPA stimulated the phosphorylation of Akt and p65 protein and activated NF-kappaB-luciferase expression. Inhibitors of PI3K (wortmannin), mTOR (rapamycin), and NF-kappaB (PDTC or SN50) effectively prevented LPA-induced 3[H]-Leucine incorporation and ANF-luciferase expression. Furthermore, ERK inhibitors (U0126 and PD98059) suppressed LPA-stimulated activation of NF-kappaB and p65 phosphorylation whereas wortmannin showed no effect on NF-kappaB activation. Our findings indicate that LPA3 and/or LPA1 mediate LPA-induced hypertrophy of NRCMs and that LPA1 and LPA3 may be involved in LVRM of MI rats. Moreover, Akt and NF-kappaB signaling pathways independently implicate in LPA-stimulated myocardial hypertrophic growth.  相似文献   

5.
G-protein-coupled receptors signal through Rho to induce actin cytoskeletal rearrangement. We previously demonstrated that thrombin stimulates Rho-dependent process retraction and rounding of 1321N1 astrocytoma cells. Surprisingly, while lysophosphatidic acid (LPA) activated RhoA in 1321N1 cells, it failed to produce cell rounding. Thrombin, unlike LPA, decreased Rac1 activity, and activated (GTPase-deficient) Rac1 inhibited thrombin-stimulated cell rounding, while expression of dominant-negative Rac1 promoted LPA-induced rounding. LPA and thrombin receptors appear to differ in coupling to Gi, as LPA but not thrombin-stimulated 1321N1 cell proliferation was pertussis toxin-sensitive. Blocking Gi with pertussis toxin enabled LPA to induce cell rounding and to decrease activated Rac1. These data support the hypothesis that Rac1 and Gi activation antagonize cell rounding. Thrombin and LPA receptors also differentially activated Gq pathways as thrombin but not LPA increased InsP3 formation and reduced phosphatidylinositol 4,5-bisphosphate (PIP2) levels. Microinjection of the plekstrin homology domain of phospholipase C (PLC)delta1, which binds PIP2, enabled LPA to elicit cell rounding, consistent with a requirement for PIP2 reduction. We suggest that Rho-mediated cytoskeletal responses are enhanced by concomitant reductions in cellular levels of PIP2 and Rac1 activation and thus effected only by G-protein-coupled receptors with appropriate subsets of G protein activation.  相似文献   

6.
Lysophosphatidic acid (LPA), a lipid mediator enriched in serum, stimulates cell migration, proliferation and other functions in many cell types. LPA acts on six known G protein-coupled receptors, termed LPA(1-6), showing both overlapping and distinct signaling properties. Here we show that, unexpectedly, LPA and serum almost completely inhibit the transwell migration of B16 melanoma cells, with alkyl-LPA(18:1) being 10-fold more potent than acyl-LPA(18:1). The anti-migratory response to LPA is highly polarized and dependent on protein kinase A (PKA) but not Rho kinase activity; it is associated with a rapid increase in intracellular cAMP levels and PIP3 depletion from the plasma membrane. B16 cells express LPA(2), LPA(5) and LPA(6) receptors. We show that LPA-induced chemorepulsion is mediated specifically by the alkyl-LPA-preferring LPA(5) receptor (GPR92), which raises intracellular cAMP via a noncanonical pathway. Our results define LPA(5) as an anti-migratory receptor and they implicate the cAMP-PKA pathway, along with reduced PIP3 signaling, as an effector of chemorepulsion in B16 melanoma cells.  相似文献   

7.
Mitogenic action of LPA in prostate   总被引:4,自引:0,他引:4  
The lipid growth factor lysophosphatidic acid (LPA) elicits multiple cellular responses, including cell growth and survival. LPA acts upon target cells by activating its cognate receptors, which belong to the G protein-coupled endothelial differentiation gene (EDG) family. To date, three known LPA receptors, termed LPA1, LPA2 and LPA3, have been molecularly characterized and cloned. Here, we review recent data describing the molecular steps involved in the LPA receptor-mediated activation of mitogenic extracellular signal-regulated kinase (ERK) pathway in prostate cancer. Induction of ERK by LPA proceeds via Gbetagamma-dependent activation of tyrosine kinases, including the epidermal growth factor (EGF) receptor and c-Src. Further, LPA-induced ERK activation involves matrix metalloproteinases (MMPs), which cause the release of active EGFR ligands. Finally, we present data demonstrating a correlation between the mitogenic effects of LPA and expression of the lp(A1) gene in the prostate cancer cells.  相似文献   

8.
Lysophosphatidic acid (LPA) activates a family of cognate G protein-coupled receptors and is involved in various pathophysiological processes. However, it is not clearly understood how these LPA receptors are specifically coupled to their downstream signaling molecules. This study found that LPA(2), but not the other LPA receptor isoforms, specifically interacts with Na(+)/H(+) exchanger regulatory factor2 (NHERF2). In addition, the interaction between them requires the C-terminal PDZ domain-binding motif of LPA(2) and the second PDZ domain of NHERF2. Moreover, the stable expression of NHERF2 potentiated LPA-induced phospholipase C-beta (PLC-beta) activation, which was markedly attenuated by either a mutation in the PDZ-binding motif of LPA(2) or by the gene silencing of NHERF2. Using its second PDZ domain, NHERF2 was found to indirectly link LPA(2) to PLC-beta3 to form a complex, and the other PLC-beta isozymes were not included in the protein complex. Consistently, LPA(2)-mediated PLC-beta activation was specifically inhibited by the gene silencing of PLC-beta3. In addition, NHERF2 increases LPA-induced ERK activation, which is followed by cyclooxygenase-2 induction via a PLC-dependent pathway. Overall, the results suggest that a ternary complex composed of LPA(2), NHERF2, and PLC-beta3 may play a key role in the LPA(2)-mediated PLC-beta signaling pathway.  相似文献   

9.
LPA2 receptor mediates mitogenic signals in human colon cancer cells   总被引:6,自引:0,他引:6  
Lysophosphatidic acid (LPA) is a mediator of multiple cellular responses. LPA mediates its effects predominantly through the G protein-coupled receptors LPA1, LPA2, and LPA3. In the present work, we studied LPA2-mediated signaling using human colon cancer cell lines, which predominantly express LPA2. LPA2 activated Akt and Erk1/2 in response to LPA. LPA mediated Akt activation was inhibited by pertussis toxin (PTX), whereas Erk1/2 activation was completely inhibited by a blocker of phospholipase Cbeta, U-73122. LPA also induced interleukin-8 (IL-8) synthesis in the colon cancer cells by primarily activating LPA2 receptor. We also found that LPA2 interacts with Na+/H+ exchanger regulatory factor 2 (NHERF2). Activation of Akt and Erk1/2 was significantly attenuated by silencing of NHERF2 expression by RNA interference, suggesting a pivotal role of NHERF2 in LPA2-mediated signaling. We found that expression of LPA2 was elevated, whereas expression of LPA1 downregulated in several types of cancers, including ovarian and colon cancer. We conclude that LPA2 is the major LPA receptor in colon cancer cells and cellular signals by LPA2 are largely mediated through its ability to interact with NHERF2.  相似文献   

10.
Lysophosphatidic acid (LPA) is a bioactive lipid with diverse physiological effects via activation of G protein-coupled receptors (GPCRs). It has been implicated as a specific dedifferentiation factors that can promote phenotypic modulation of cultured vascular smooth muscle cells (VSMCs) which is critically involved in various vascular disease. However, the role of LPA receptors and details of their signaling in LPA induced phenotypic modulation are largely unexplored. In this study we detect the expression of LPA1 and LPA3 in rat aortic smooth muscle cells (RASMCs). LPA promoted RASMCs phenotypic modulation in a dose-dependent manner and coordinated induced the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK). LPA-induced cell phenotypic modulation was significantly inhibited by specific LPA1/LPA3-receptor antagonist dioctyl-glycerol pyrophosphate (DGPP8:0) at concentration, but this inhibitive effect was lost when the antagonist was coadministered with a highly selective LPA3 agonist,1-oleoyl-2-Omethyl-rac-glycero-phosphothionate (OMPT). In addition, pertussis toxin (PTX), a Gi protein inhibitor had little affect on the LPA-induced phenotypic modulation in RASMC. These data suggest that LPA-induced phenotypic modulation is mediated through the PTX-insensitive G-protein(s), possibly Gq-coupled LPA3 receptor.  相似文献   

11.
12.
Lysophosphatidic acid (LPA) is a ligand of multiple G protein–coupled receptors. The LPA1–3 receptors are members of the endothelial cell differentiation gene (Edg) family. LPA4/p2y9/GPR23, a member of the purinergic receptor family, and recently identified LPA5/GPR92 and p2y5 are structurally distant from the canonical Edg LPA receptors. Here we report targeted disruption of lpa4 in mice. Although LPA4-deficient mice displayed no apparent abnormalities, LPA4-deficient mouse embryonic fibroblasts (MEFs) were hypersensitive to LPA-induced cell migration. Consistent with negative modulation of the phosphatidylinositol 3 kinase pathway by LPA4, LPA4 deficiency potentiated Akt and Rac but decreased Rho activation induced by LPA. Reconstitution of LPA4 converted LPA4-negative cells into a less motile phenotype. In support of the biological relevance of these observations, ectopic expression of LPA4 strongly inhibited migration and invasion of human cancer cells. When coexpressed with LPA1 in B103 neuroblastoma cells devoid of endogenous LPA receptors, LPA4 attenuated LPA1-driven migration and invasion, indicating functional antagonism between the two subtypes of LPA receptors. These results provide genetic and biochemical evidence that LPA4 is a suppressor of LPA-dependent cell migration and invasion in contrast to the motility-stimulating Edg LPA receptors.  相似文献   

13.
Lysophosphatidate (LPA) stimulates cell migration and division through a family of G-protein-coupled receptors. Lipid phosphate phosphatase-1 (LPP1) regulates the degradation of extracellular LPA as well as the intracellular accumulation of lipid phosphates. Here we show that increasing the catalytic activity of LPP1 decreased the pertussis toxin-sensitive stimulation of fibroblast migration by LPA and an LPA-receptor agonist that could not be dephosphorylated. Conversely, knockdown of endogenous LPP1 activity increased LPA-induced migration. However, LPP1 did not affect PDGF- or endothelin-induced migration of fibroblasts in Transwell chamber and "wound healing" assays. Thus, in addition to degrading exogenous LPA, LPP1 controls signaling downstream of LPA receptors. Consistent with this conclusion, LPP1 expression decreased phospholipase D (PLD) stimulation by LPA and PDGF, and phosphatidate accumulation. This LPP1 effect was upstream of PLD activation in addition to the possible metabolism of phosphatidate to diacylglycerol. PLD(2) activation was necessary for LPA-, but not PDGF-induced migration. Increased LPP1 expression also decreased the LPA-, but not the PDGF-induced activation of important proteins involved in fibroblast migration. These included decreased LPA-induced activation of ERK and Rho, and the basal activities of Rac and Cdc42. However, ERK and Rho activation were not downstream targets of LPA-induced PLD(2) activity. We conclude that the intracellular actions of LPP1 play important functions in regulating LPA-induced fibroblast migration through PLD2. LPP1 also controls PDGF-induced phosphatidate formation. These results shed new light on the roles of LPP1 in controlling wound healing and the growth and metastasis of tumors.  相似文献   

14.
Lysophosphatidic acid (LPA) has been implicated in the pathology of human ovarian cancer. This phospholipid elicits a wide range of cancer cell responses, such as proliferation, trans-differentiation, migration, and invasion, via various G-protein-coupled LPA receptors (LPARs). Here, we explored the cellular signaling pathway via which LPA induces migration of ovarian cancer cells. LPA induced robust phosphorylation of ezrin/radixin/moesin (ERM) proteins, which are membrane-cytoskeleton linkers, in the ovarian cancer cell line OVCAR-3. Among the LPAR subtypes expressed in these cells, LPA1 and LPA2, but not LPA3, induced phosphorylation of ERM proteins at their C-termini. This phosphorylation was dependent on the Gα12/13/RhoA pathway, but not on the Gαq/Ca2+/PKC or Gαs/adenylate cyclase/PKA pathway. The activated ERM proteins mediated cytoskeletal reorganization and formation of membrane protrusions in OVCAR-3 cells. Importantly, LPA-induced migration of OVCAR-3 cells was completely abolished not only by gene silencing of LPA1 or LPA2, but also by overexpression of a dominant negative ezrin mutant (ezrin-T567A). Taken together, this study demonstrates that the LPA1/LPA2/ERM pathway mediates LPA-induced migration of ovarian cancer cells. These findings may provide a potential therapeutic target to prevent metastatic progression of ovarian cancer.  相似文献   

15.
The regulation of adrenal function, including aldosterone production from adrenal glomerulosa cells, is dependent on a variety of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). In many cell types, GPCR-mediated MAPK activation is mediated through transactivation of RTKs, in particular the epidermal growth factor (EGF) receptor (EGF-R). However, the extent to which this cross-communication between GPCRs and RTKs is operative in the adrenal glomerulosa has not been defined. Bovine adrenal glomerulosa cells express receptors for lysophosphatidic acid (LPA) and EGF. In cultured bovine adrenal glomerulosa cells, LPA, which is predominantly coupled to Gi and partially to Gq/protein kinase C alpha and epsilon, caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), EGF-R, protein kinase B/Akt, extracellularly regulated signal kinases 1/2, and their dependent protein, p90 ribosomal S6 kinase. Overexpression of dominant negative mutants of Ras or EGF-R, and selective inhibition of EGF-R kinase with AG1478, significantly reduced LPA-induced ERK1/2 phosphorylation. However, this was not impaired by inhibition of matrix metalloproteinase (MMP) and heparin-binding EGF. LPA-induced ERK1/2 activation occurs predominantly through EGF-R transactivation by Gi/Src and partly through activation of protein kinase C, which acts downstream of EGF-R and Ras. In contrast, LPA-induced phosphorylation of Shc and ERK1/2 in clonal hepatocytes (C9 cells) was primarily mediated through MMP-dependent transactivation of the EGF-R. These observations in adrenal glomerulosa and hepatic cells demonstrate that LPA phosphorylates ERK1/2 through EGF-R transactivation in a MMP-dependent or -independent manner in individual target cells. This reflects the ability of GPCRs expressed in cell lines and neoplastic cells to utilize distinct signaling pathways that can elicit altered responses compared with those of native tissues.  相似文献   

16.
Lysophosphatidic acid (LPA) is a low-molecular-weight lysophospholipid (LPL), which regulates endothelial cells participating in inflammation processes via interactions with endothelial differentiation gene (Edg) family G protein-coupled receptors. In this study, we attempted to determine which LPA receptors mediate the inflammatory response in human endothelial cells. Introduction of siRNA against LPA1 significantly suppressed LPA-induced ICAM-1 mRNA, total protein, and cell surface expressions, and subsequent U937 monocyte adhesion to LPA-treated human umbilical endothelial cells (HUVECs). By knock down of LPA1 and LPA3 in HUVECs, LPA-enhanced IL-1β mRNA expression was significantly attenuated. Moreover, LPA1 and LPA3 siRNA also inhibited LPA-enhanced IL-1-dependent long-term IL-8 and MCP-1 mRNA expression, and subsequent THP-1 cell chemotaxis toward LPA-treated HUVEC-conditioned media. These results suggest that the expression of LPA-induced inflammatory response genes is mediated by LPA1 and LPA3. Our findings suggest the possible utilization of LPA1 or LPA3 as drug targets to treat severe inflammation.  相似文献   

17.
Previously we demonstrated that ligation of lysophosphatidic acid (LPA) to G protein-coupled LPA receptors induces transactivation of receptor tyrosine kinases (RTKs), such as platelet-derived growth factor receptor beta (PDGF-Rbeta) and epidermal growth factor receptor (EGF-R), in primary cultures of human bronchial epithelial cells (HBEpCs). Here we examined the role of LPA on c-Met redistribution and modulation of hepatocyte growth factor (HGF)/c-Met pathways in HBEpCs. Treatment of HBEpCs with LPA-induced c-Met serine phosphorylation and redistribution to plasma membrane, while treatment with HGF-induced c-Met internalization. Pretreatment with LPA reversed HGF-induced c-Met internalization. Overexpression of dominant negative (Dn)-PKC delta or pretreatment with Rottlerin or Pertussis toxin (PTx) attenuated LPA-induced c-Met serine phosphorylation and redistribution. Co-immnuoprecipitation and immunocytochemistry showed that E-cadherin interacted with c-Met in HBEpCs. LPA treatment induced E-cadherin and c-Met complex redistribution to plasma membranes. Overexpression of Dn-PKC delta attenuated LPA-induced E-cadherin redistribution and E-cadherin siRNA attenuated LPA-induced c-Met redistribution to plasma membrane. Furthermore, pretreatment of LPA attenuated HGF-induced c-Met tyrosine phosphorylation and downstream signaling, such as Akt kinase phosphorylation and cell motility. These results demonstrate that LPA regulates c-Met function through PKC delta and E-cadherin in HBEpCs, suggesting an alternate function of the cross-talk between G-protein-coupled receptors (GPCRs) and RTKs in HBEpCs.  相似文献   

18.
Jeon ES  Kim JH  Ryu H  Kim EK 《Cellular signalling》2012,24(6):1241-1250
Granular corneal dystrophy type 2 (GCD2) is an autosomal dominant disease caused by a R124H point mutation in the transforming growth factor-β-induced gene (TGFBI). However, the cellular role of TGFBI and the regulatory mechanisms underlying corneal dystrophy pathogenesis are still poorly understood. Lysophosphatidic acid (LPA) refers to a small bioactive phospholipid mediator produced in various cell types, and binds G protein-coupled receptors to enhance numerous biological responses, including cell growth, inflammation, and differentiation. LPA levels are elevated in injured cornea and LPA is involved in proliferation and wound healing of cornea epithelial cells. Accumulating evidence has indicated a crucial role for LPA-induced expression of TGFBI protein (TGFBIp) through secretion of transforming growth factor-beta1 (TGF-β1). In the current study, we demonstrate that LPA induces TGFBIp expression in corneal fibroblasts derived from normal or GCD2 patients. LPA-induced TGFBIp expression was completely inhibited upon pretreatment with the LPA(1/3) receptor antagonists, VPC32183 and Ki16425, as well as by silencing LPA(1) receptor expression with small hairpin RNA (shRNA) in corneal fibroblasts. LPA induced secretion of TGF-β1 in corneal fibroblasts, and pretreatment with the TGF-β type I receptor kinase inhibitor SB431542 or an anti-TGF-β1 neutralizing antibody also inhibited LPA-induced TGFBIp expression. Furthermore, we show that LPA requires Smad2/3 proteins for the induction of TGFBIp expression. LPA elicited phosphorylation of Smad2/3, and Smad3 specific inhibitor SIS3 or siRNA-mediated depletion of endogenous Smad2/3 abrogates LPA-induced TGFBIp expression. Finally, we demonstrate that LPA-mediated TGFBIp induction requires JNK activation, but not ERK signaling pathways. These results suggest that LPA stimulates TGFBIp expression through JNK-dependent activation of autocrine TGF-β1 signaling pathways and provide important information for understanding the role of phospholipids involved in cornea related diseases.  相似文献   

19.
Prostate cancer cell migration is an essential event both in the progression of prostate cancer and in the steps leading to metastasis. We report here that lysophosphatidic acid (LPA), a potent bioactive phospholipid, induces prostate cancer PC3 cell migration via the activation of the LPA(1) receptor, which is linked to a PTX-sensitive activation mechanism of the mitogen-activated protein kinases (MAPK). Our results demonstrate that parallel activation of ERK1/2 and p38, but not JNK, is responsible for LPA-stimulated PC3 cell migration. Furthermore, using small interfering RNA (siRNA) technology, and overexpressing dominant-negative mutants of p38 MAPK isotypes of alpha, beta, gamma and delta, we have identified that the activation of ERK2 (p42) and p38alpha, but not of ERK1 and the other isoforms of p38 MAPK, is required for LPA-induced migration. Our study provides the first evidence for a functional role of p42 and p38alpha in LPA-induced mammalian cell migration, and also demonstrates, for the first time, that the receptor LPA(1) mediates prostate cancer cell migration. The results of the present study suggest that LPA, the receptor LPA(1), ERK2 and p38alpha are important regulators for prostate cancer cell invasion and thus could play a significant role in the development of metastasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号