首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Densities ofAmblyomma americanum (L.) onBos indicus, B. taurus andB. indicus x B. taurus cattle are compared over a 3-year period, and the growth rate (rate of increase or decrease) of parasitic tick populations on each cattle genotype is estimated.Average log10 densities of parasiticA. americanum larvae are significantly (P=0.05) lower onB. indicus cattle than onB. taurus andB. indicus x B. taurus cattle. Average log densities of nymphal and adult ticks onB. taurus cattle are significantly higher than onB. indicus cattle but neither cattle genotype differs in this regard fromB. indicus x B. taurus cattle.Estimated annual tick population growth rates (log10) for parasiticA. americanum are positive onB. taurus cattle (+0.84 larvae, +0.09 nymphs, +0.22 adults calf–1 year–1), but are negative onB. indicus (–0.18 nymphs, –0.14 adults calf–1 year–1) andB. indicus x B. taurus cattle (–0.45 larvae, –0.24 nymphs, –0.14 adults calf–1 year–1). Populations of parasitic larvae were not detected onB. indicus cattle.  相似文献   

2.
A small number of west African Bos taurus cattle breeds, including the N'Dama, constitute a valuable genetic resource by virtue of their ability to remain productive under trypanosomiasis challenge. However, introgression of Bos indicus genes into the trypanotolerant breeds, particularly by introduction of zebu bulls, is a threat to this resource. This work describes the characterization and cloning of a bovine randomly amplified polymorphic DNA (RAPD) that is generated in polymerase chain reaction (PCR) with the 10 base primer ILO1065 from Bos indicus male templates, but not from B. taurus male templates or female templates of either type. Male-specific sequences with homology to the RAPD also occur in B. taurus breeds. This suggests that the polymorphism may be due to base substitution(s) in an ILO1065 priming site, or insertion/deletion events either affecting priming sites or occurring between sites on the cattle Y chromosome. We have shown that cattle, whether of B. indicus or B. taurus phenotype, which possess a typically B. indicus metaphase Y chromosome on the basis of QFQ banding, have a B. indicus ILO1065-generated genotype. The ILO1065-primed RAPD can be used in a simple dot blot assay as a probe of RAPD-PCR products, to provide a convenient, reliable and effective means of detecting introgression of zebu genes in B. taurus cattle populations.  相似文献   

3.
The relative importance of dry- and wet-bulb temperatures on cutaneous function inBos indicus andBos taurus females under humid tropical climatic conditions was evaluated. The parameters investigated were sweating rate and skin temperature, while the species utilised were zebu White Fulani (Bos indicus) and German Brown and German Black and White (Bos taurus).The sweating rate, irrespective of breed, differed with the site of sampling and was more influenced by dry-bulb (59%) than by wet-bulb temperature (41%). Skin temperature responded more to wet-bulb temperature in White Fulani and German Black and White cattle, but not in German Brown cattle.It is concluded that the response of the animals, with respect to sweating, was similar but that the efficiency of sweating, judged by the lowering of skin temperature, was higher inBos indicus than inBos taurus. This, in part, may explain the higher degree of comfort demonstrated byBos indicus under tropical conditions.  相似文献   

4.
Bos taurus indicus cattle are less susceptible to infestation with Rhipicephalus (Boophilus) microplus than Bos taurus taurus cattle but the immunological basis of this difference is not understood. We compared the dynamics of leukocyte infiltrations (T cell subsets, B cells, major histocompatibility complex (MHC) class II-expressing cells, granulocytes) in the skin near the mouthparts of larvae of R. microplus in B. t. indicus and B. t. taurus cattle. Previously naïve cattle were infested with 50,000 larvae (B. t. indicus) or 10,000 larvae (B. t. taurus) weekly for 6 weeks. One week after the last infestation all of the animals were infested with 20,000 larvae of R. microplus. Skin punch biopsies were taken from all animals on the day before the primary infestation and from sites of larval attachment on the day after the first, second, fourth and final infestations. Infiltrations with CD3+, CD4+, CD8+ and γδ T cells followed the same pattern in both breeds, showing relatively little change during the first four weekly infestations, followed by substantial increases at 7 weeks post-primary infestation. There was a tendency for more of all cell types except granulocytes to be observed in the skin of B. t. indicus cattle but the differences between the two breeds were consistently significant only for γδ T cells. Granulocyte infiltrations increased more rapidly from the day after infestation and were higher in B. t. taurus cattle than in B. t. indicus. Granulocytes and MHC class II-expressing cells infiltrated the areas closest to the mouthparts of larvae. A large volume of granulocyte antigens was seen in the gut of attached, feeding larvae.  相似文献   

5.
Chen SY  Liu YP  Wang W  Gao CZ  Yao YG  Lai SJ 《Biochemical genetics》2008,46(3-4):206-215
Tongjiang cattle are a local cattle population of Sichuan Province, China, numbering approximately half a million in 2005. They have long been grouped into the Bashan breed, although they have a unique breeding history and phenotypic characteristics, as well as a restricted geographic distribution. Morphologically, they can be divided into two groups based on the basic coat color (black and russet). In order to dissect the matrilineal components of Tongjiang cattle and to compare the body size traits of the two morphological groups, we measured five body size traits among 59 Tongjiang cattle samples and further sequenced the mtDNA D-loop sequence of 54 individuals. Among the 54 mtDNAs, 37 (68.5%) were Bos taurus types and 17 (31.5%) were Bos indicus types. Four known B. taurus haplogroups (T1–T4) and one B. indicus haplogroup (I1) were detected in these samples. Two body size traits differed significantly (P < 0.05) between the black group and the russet group, although the two groups possessed similar matrilineal genetic structure. This is the first report to identify all four B. taurus haplogroups in one local Chinese cattle population. Our results suggest that the contribution of different matrilineal lineages to Chinese cattle might be more complex than we originally thought.  相似文献   

6.
This study was conducted to compare the relative resistance of crossbred Bos indicus X B. taurus Bonsmara and B. taurus Friesian cattle to Ixodes rubicundus (Karoo paralysis tick) infestations. During periods of peak abundance of the ticks, Friesian oxen harboured almost twice or more than twice as many ticks as either Bonsmara oxen or cows. During periods of low tick abundance tick burdens on both cattle breeds were closely similar. It is envisaged that cattle can play an important role in an integrated control strategy against the Karro paralysis tick.  相似文献   

7.
The complete mitochondrial DNA (mtDNA) molecule of the domestic sheep, Ovis aries, was sequenced, together with part of the mtDNA of a specimen representing the other major O. aries haplotype group. The length of the complete ovine mtDNA presented is 16,616 nucleotides (nt). This length is not absolute, however, due to heteroplasmy caused by the occurrence of different numbers of a 75-nt-long tandem repeat in the control region. The sequence data were included in analyses of intraspecific ovine molecular differences, molecular comparisons with bovine mtDNAs, and phylogenetic analyses based on complete mtDNAs. The comparisons with bovine mtDNAs were based on the central domains of the ovine control regions, representing both major ovine haplotype groups, and the corresponding domains of Bos taurus and B. indicus. The comparisons showed that the difference between the bovids was 1.4 times greater than the intraspecific ovine difference. These findings suggest that the strains of wild sheep from which domestic sheep originated were more closely related than were the B. primigenius subspecies which gave rise to B. indicus and B. taurus cattle. Datings based on complete mtDNAs suggest that the bovine and ovine lineages diverged about 30 million years before present. This dating is considerably earlier than that proposed previously. Received: 5 September 1997 / Accepted: 5 May 1998  相似文献   

8.
9.
A putative functional mutation (rs109231213) near PLAG1 (BTA14) associated with stature was studied in beef cattle. Data from 8199 Bos taurus, Bos indicus and Tropical Composite cattle were used to test the associations between rs109231213 and various phenotypes. Further, 23 496 SNPs located on BTA14 were tested for association with these phenotypes, both independently and fitted together with rs109231213. The C allele of rs109231213 significantly increased hip height, weight, net food intake, age at puberty in males and females and decreased IGF‐I concentration in blood and fat depth. When rs109231213 was fitted as a fixed effect in the model, there was an overall reduction in associations between other SNPs and these traits but some SNPs remained associated (< 10?4). Frequency of the mutant C allele of rs109231213 differed among B. indicus (0.52), B. taurus (0.96) and Tropical Composite (0.68). Most chromosomes carrying the C allele had the same surrounding 10 SNP haplotype, probably because the C allele was introgressed into Brahman from B. taurus cattle. A region of reduced heterozygosity surrounds the C allele; this is small in B. taurus but 20 Mb long in Brahmans, indicating recent and strong selection for the mutant allele. Thus, the C allele appears to mark a mutation that has been selected almost to fixation in the B. taurus breeds studied here and introduced into Brahman cattle during grading up and selected to a frequency of 0.52 despite its negative effects on fertility.  相似文献   

10.
Cattle demonstrate divergent and heritable phenotypes of resistance and susceptibility to infestation with the cattle tick Rhipicephalus (Boophilus) microplus. Bos indicus cattle are generally more resistant to tick infestation than Bos taurus breeds although large variations in resistance can occur within subspecies and within breed. Increased tick resistance has been previously associated with an intense hypersensitivity response in B. taurus breeds; however, the mechanism by which highly resistant B. indicus cattle acquire and sustain high levels of tick resistance remains to be elucidated. Using the commercially available Affymetrix microarray gene expression platform, together with histological examination of the larval attachment site, this study aimed to describe those processes responsible for high levels of tick resistance in Brahman (B. indicus) cattle that differ from those in low-resistance Holstein-Friesian (B. taurus) cattle. We found that genes involved in inflammatory processes and immune responsiveness to infestation by ticks, although up-regulated in tick-infested Holstein-Friesian cattle, were not up-regulated in Brahman cattle. In contrast, genes encoding constituents of the extracellular matrix were up-regulated in Brahmans. Furthermore, the susceptible Holstein-Friesian animals displayed a much greater cellular inflammatory response at the site of larval R. microplus attachment compared with the tick-resistant Brahman cattle.  相似文献   

11.
The Mongolian cattle are one of the most widespread breeds with strictly Bos taurus morphological features in northern China. In our current study, we presented a diversity of mitochondrial DNA (mtDNA) D-loop region and Y chromosome SNP markers in 25 male and 8 female samples of Mongolian cattle from the Xinjiang Uygur autonomous region in Western China, and detected 21 B. taurus and four Bos indicus (zebu) mtDNA haplotypes. Among four B. indicus mtDNA haplotypes, two haplotypes belonged to I1 haplogroup and the remaining two haplotypes belonged to I2 haplogroup. In contrast, all 25 male Mongolian cattle samples revealed B. taurus Y chromosome haplotype and no B. indicus haplotypes were found. Historical and archeological records indicate that B. taurus was introduced to Xinjiang during the second millennium BC and B. indicus appeared in this region by the second century AD. The two types of cattle coexisted for many centuries in Xinjiang, as depicted in clay and wooden figurines unearthed in the Astana cemetery in Turfan (3rd–8th century AD). Multiple lines of evidence suggest that the earliest B. indicus introgression in the Mongolian cattle may have occurred during the 2nd–7th centuries AD through the Silk Road around the Xinjiang region. This conclusion differs from the previous hypothesis that zebu introgression to Mongolian cattle happened during the Mongol Empire era in the 13th century.  相似文献   

12.
Cutaneous evaporation is the main avenue by which cattle dissipate heat via the involvement of sweat glands and other skin components. The difference in skin morphology between B. indicus and B. taurus has been recognized, as well as differences in their ability to tolerate heat. The objective of this study was to compare skin morphology between B. indicus, B. taurus, and their crossbreds. Skin samples of Sahiwal (B. indicus) (n?=?10, reddish brown skin) and Holstein Friesian (HF) (B. taurus) (n?=?10, black and white skin) and crossbred of HF75% (n?=?10, black and white skin) and HF87.5 % (n?=?10, black and white skin) were biopsied for histological study, followed by measurement of skin components. The results indicated that breed significantly affected sweat gland morphology. The shape of the sweat gland, as indicated by the ratio of length/diameter, in Sahiwal was baggier in shape compared to HF (5.99 and 9.52) while values for crossbreds were intermediate (7.82, 8.45). The density and volume of sweat glands in Sahiwal (1,058 glands/cm2; 1.60 μ3?×?10?6) were higher than in HF (920 glands/cm2; 0.51 μ3x10?6) and crossbreds, both HF 75 % (709 glands/cm2; 0.68 μ3?×?10?6) and HF 87.5 % (691 glands/cm2; 0.61 μ3?×?10?6) respectively. However, capillary surface area was greater for HF (2.07 cm2) compared to Sahiwal (1.79 cm2); accordingly, the lower genetic fraction of HF in crossbred cattle showed less capillary surface area (1.83 and 1.9 cm2 for HF75% and HF87.5 %) (P?<?0.01). Nerve density was not significantly different between Sahiwal and HF but was higher in the crossbred (P?<?0.01) cattle. Moreover, the effect of skin color (black and white) was evaluated and it was found that there was an interaction (P?<?0.01) between breed and skin color on the skin components. This study reveals that there are differences in skin morphology among B. indicus, B. taurus and their crossbreds, with these differences being more or less related to the genetic fraction of HF. This may imply that capability for cutaneous evaporative heat loss and tolerance to heat in crossbred cattle could be related to skin morphology.  相似文献   

13.
The number of oocytes recovered from Bos taurus indicus females subjected to ovum pick-up averaged two to four times greater compared to Bos taurus taurus females. The objective of the present study was to test the hypothesis that this difference in oocyte yield was due to more preantral follicles in the ovaries of Bos indicus females. Ovaries (n = 64) from Nelore (Bos indicus) fetuses (n = 10), heifers (n = 12), and cows (n = 10), and Aberdeen Angus (Bos taurus) fetuses (n = 10), heifers (n = 12), and cows (n = 10) were cut longitudinally into halves, fixed, and processed for histological evaluation. The number of preantral follicles was estimated by counting them in each histological section, using the oocyte nucleus as a marker and employing a correction factor. The average number of preantral follicles in the ovaries of Bos indicus vs Bos taurus was (mean ± SD) 143,929 ± 64,028 vs 285,155 ± 325,195 for fetuses, 76,851 ± 78,605 vs 109,673 ± 86,078 for heifers, and 39,438 ± 31,017 vs 89,577 ± 86,315 for cows (P > 0.05). The number of preantral follicles varied greatly among individual animals within the same category, as well as between breeds. In conclusion, we inferred that the higher oocyte yield from Bos indicus females was not due to a greater ovarian reserve of preantral follicles. Therefore, mechanisms controlling follicle development after the preantral stage likely accounted for differences between Bos indicus and Bos taurus females in number of oocytes retrieved at ovum pick-up.  相似文献   

14.
Genetic deversity at the highly polymorphic BoLA-DRB3 locus was investigated by DNA sequence analyses of 18 African cattle from two breeds representing the two subspecies of cattle, Bos primigenius indicus and Bos primigenius taurus. Yhe polymorphism was compared with that found in a sample ofd 32 European cattle from four breeds, all classified as B. p. taurus. Particularly extensive genetic diversity was found among African cattle, in which as many as 18 alleles were recognized in this small random sample of animals from two breeds. The observed similarity in allele frequency distribution between the two African populations, N'Dama and Zebu cattle, is consistent with the recent recognition of gene flow between B. p. indicus and B. P taurus cattle in Africa. A total of 30 DRB3 alleles were documented and as many as 26 of these were classified as major allelic types showing at least five amino acid substitutions compared with other major types. The observation of extensive genetic diversity at MHC loci in cattle, as well as in other farm animals, provides a compelling argument against matin-type preferences as a primary cause in maintaining major histocompatibility complex diversity, since the reproduction of these animals has been controlled by humans for many generations.The nucleotide sequence data reported in this paper have been submitted to the EMBL nucleotide sequence database and have been given the accession numbers X87641-X87670  相似文献   

15.
We describe a polymorphism in the bovine gene PTHG which can be readily typed by PCR assay. The polymorphism is codominantly inherited and the allele frequencies appear characteristic of Bos indicus and B. taurus cattle.  相似文献   

16.
Together with their sister subspecies Bos taurus, zebu cattle (Bos indicus) have contributed to important socioeconomic changes that have shaped modern civilizations. Zebu cattle were domesticated in the Indus Valley 8000 years before present (YBP). From the domestication site, they expanded to Africa, East Asia, southwestern Asia and Europe between 4000 and 1300 YBP, intercrossing with B. taurus to form clinal variations of zebu ancestry across the landmass of Afro‐Eurasia. In the past 150 years, zebu cattle reached the Americas and Oceania, where they have contributed to the prosperity of emerging economies. The zebu genome is characterized by two mitochondrial haplogroups (I1 and I2), one Y chromosome haplogroup (Y3) and three major autosomal ancestral groups (Indian‐Pakistani, African and Chinese). Phenotypically, zebu animals are recognized by their hump, large ears and excess skin. They are rustic, resilient to parasites and capable of bearing the hot and humid climates of the tropics. Many resources are available to study the zebu genome, including commercial arrays of SNP, reference assemblies and publicly available genotypes and whole‐genome sequences. Nevertheless, many of these resources were initially developed to support research and subsidize industrial applications in B. taurus, and therefore they can produce bias in data analysis. The combination of genomics with precision agriculture holds great promise for the identification of genetic variants affecting economically important traits such as tick resistance and heat tolerance, which were naturally selected for millennia and played a major role in the evolution of B. indicus cattle.  相似文献   

17.
Indigenous cattle of India belong to the species, Bos indicus and they possess various adaptability and production traits. However, little is known about the genetic diversity and origin of these breeds. To investigate the status, we sequenced and analyzed the whole mitochondrial DNA (mtDNA) of seven Indian cattle breeds. In total, 49 single-nucleotide variants (SNVs) were identified among the seven breeds analyzed. We observed a common synonymous SNV in the COII gene (m.7583G?>?A) of all the breeds studied. The phylogenetic analysis and genetic distance estimation showed the close genetic relationship among the Indian cattle breeds, whereas distinct genetic differences were observed between Bos indicus and Bos taurus cattle. Our results indicate a common ancestor for European Zwergzebu breed and South Indian cattle. The estimated divergence time demonstrated that the Bos indicus and Bos taurus cattle lineages diverged 0.92 million years ago. Our study also demonstrates that ancestors of present zebu breeds originated in South and North India separately ~30,000 to 20,000 years ago. In conclusion, the identified genetic variants and results of the phylogenetic analysis may provide baseline information to develop appropriate strategies for management and conservation of Indian cattle breeds.  相似文献   

18.

Background

The apparent effect of a single nucleotide polymorphism (SNP) on phenotype depends on the linkage disequilibrium (LD) between the SNP and a quantitative trait locus (QTL). However, the phase of LD between a SNP and a QTL may differ between Bos indicus and Bos taurus because they diverged at least one hundred thousand years ago. Here, we test the hypothesis that the apparent effect of a SNP on a quantitative trait depends on whether the SNP allele is inherited from a Bos taurus or Bos indicus ancestor.

Methods

Phenotype data on one or more traits and SNP genotype data for 10 181 cattle from Bos taurus, Bos indicus and composite breeds were used. All animals had genotypes for 729 068 SNPs (real or imputed). Chromosome segments were classified as originating from B. indicus or B. taurus on the basis of the haplotype of SNP alleles they contained. Consequently, SNP alleles were classified according to their sub-species origin. Three models were used for the association study: (1) conventional GWAS (genome-wide association study), fitting a single SNP effect regardless of subspecies origin, (2) interaction GWAS, fitting an interaction between SNP and subspecies-origin, and (3) best variable GWAS, fitting the most significant combination of SNP and sub-species origin.

Results

Fitting an interaction between SNP and subspecies origin resulted in more significant SNPs (i.e. more power) than a conventional GWAS. Thus, the effect of a SNP depends on the subspecies that the allele originates from. Also, most QTL segregated in only one subspecies, suggesting that many mutations that affect the traits studied occurred after divergence of the subspecies or the mutation became fixed or was lost in one of the subspecies.

Conclusions

The results imply that GWAS and genomic selection could gain power by distinguishing SNP alleles based on their subspecies origin, and that only few QTL segregate in both B. indicus and B. taurus cattle. Thus, the QTL that segregate in current populations likely resulted from mutations that occurred in one of the subspecies and can have both positive and negative effects on the traits. There was no evidence that selection has increased the frequency of alleles that increase body weight.  相似文献   

19.
Cai X  Chen H  Lei C  Wang S  Xue K  Zhang B 《Genetica》2007,131(2):175-183
In order to clarify the origin and genetic diversity of indigenous cattle breeds in China, we carried out phylogenetic analysis of representatives of those breeds by employing mitochondrial gene polymorphism. Complete cyt b gene sequences, 1140 bp in length, were determined for a total of 136 individuals from 18 different breeds and these sequences were clustered into two distinct genetic lineages: taurine (Bos taurus) and zebu (Bos indicus). In analysis of the cyt b gene diversity, Chinese cattle showed higher nucleotide (0.00923) and haplotype diversity (0.848) than the reports from other studies, and the animals from the taurine lineage indicated higher nucleotide diversity (0.00330) and haplotype diversity (0.746) than the ones from the zebu lineage (0.00136; 0.661). The zebu mtDNA dominated in the southern breeds (63.3–100%), while the taurine dominated in the northern breeds (81.8–100%). Six cattle breeds from the central area of China exhibited intermediate frequencies of zebu mtDNA (25–71.4%). This polymorphism revealed a declining south-to-north gradient of female zebu introgression and a geographical hybrid zone of Bos taurus and Bos indicus in China.  相似文献   

20.
The effects ofOstrinia nubilalis(Hübner) (Lepidoptera: Pyralidae) eggs andAcyrthosiphon pisum(Harris) (Homoptera: Aphididae), when provided as single prey species and in combination, on life history characteristics ofColeomegilla maculataDeGeer (Coleoptera: Coccinellidae) larvae and adults were quantified. Preimaginal development was not influenced by the larval prey regime; development at 26 ± 1°C was completed in approximately 13.5 days onO. nubilaliseggs,A. pisum,orA. pisumalternated daily withO. nubilaliseggs. The resulting adults weighed 13.0, 10.7, and 12.5 mg when reared onO. nubilaliseggs,A. pisum,andA. pisumalternated daily withO. nubilaliseggs, respectively. Eighteen percent of the individuals died when reared onA. pisum,28% died when reared onO. nubilaliseggs, and 22% died when fedA. pisumalternated daily withO. nubilaliseggs. Seven adult diet combinations, based on diet regimes of larvae and adults, did not cause significant differences in preoviposition period, interoviposition period, and the number of days on which eggs were laid. Total fecundity was influenced both by larval and adult diet. The diet that resulted in highly fecund females wasA. pisumalternated daily withO. nubilaliseggs for larvae andO. nubilaliseggs for adults. FemaleC. maculatafedO. nubilaliseggs had the highest intrinsic rate of increase and net reproductive rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号