首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Stable carbon (δ13C) and nitrogen (δ15N) isotopes were employed to elucidate energy flows and trophic interactions in Lake Apopka, a hypereutrophic lake in central Florida, U.S.A. Isotope compositions of lake biota ranged from −27·1 to −3·0‰ for δ13C, and from 3·7 to 13·9‰ for δ15N. The food web was based primarily on plankton production with diatoms, Microcystis and zooplankton dominating the diet of fish. Carbon isotope evidence showed that pico- and nano-phytoplankton were not a direct carbon source for fish, but were important to zooplankton. δ15N mass balance estimates indicated that planktivorous fish obtained 48–85% of their diets from zooplankton. The ∼3‰ range of δ15N in gizzard shad reflected increasing dependence on zooplankton as fish grew whereas the positive relationship between total length and δ15N of largemouth bass reflected increasing predation on larger planktivorous fish with growth. The broad ranges of δ13C (−25·9 to −9·5‰) and δ15N (5·8 to 14·4‰) of blue tilapia were indicators of diet diversity. Two presumed omnivores (brown bullhead and white catfish) and piscivores (black crappie, largemouth bass and Florida gar) were found to depend on planktivorous fish. However, stable isotope data revealed no trophic links between blue tilapia, an abundant fish in the near-shore area, and piscivores.  相似文献   

2.
In the present study, profiles of stable isotope composition were characterized for two species with partially migratory populations in rivers along the latitudinal gradient of Patagonia, brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss . The effects of factors ( e.g. ontogeny of fishes, location, species and fasting) that may influence the stable isotope analysis (SIA) were evaluated, as was SIA evaluated as a tool to assign individual fish to their corresponding ecotype. Anadromous fishes exhibited enriched δ15N (15·2 ± 1·0‰; mean ± s . d .) and δ13C (−19·2 ± 1·3‰) relative to resident fishes'δ15N (8·8 ± 1·1‰) and δ13C (−23·2 ± 2·5‰). For both species, the difference in δ15N was larger between resident (range 6·8–10·7‰) and anadromous (range 14·3–17·8‰) fishes than that in δ13C. Values of δ13C, while not as dramatically contrasting in rainbow trout, provided a powerful anadromy marker for brown trout in the region. Increases were found in both δ15N and δ13C during the spawning migration of anadromous rainbow trout, most likely due to fasting. Differences in stable isotopes between location, size and species were found, suggesting different stable isotopes base levels in freshwater environments and different trophic levels and feeding location of anadromous populations. The SIA was demonstrated as a powerful tool for ecotype discrimination in Patagonian Rivers, overriding any effect of sampling location, size or species.  相似文献   

3.
1. We made an empirical test of a recent proposal that feeding niche widths might be determined as variance of stable isotope values. We determined δ 13C and δ 15N values of perch ( Perca fluviatilis ), roach ( Rutilus rutilus ) and their prey from a biomanipulated lake, when the mass removal of fish led to reduced inter- and intra-specific competition and increases in zooplankton abundance and body size.
2. After the first fish removals, both perch and roach mean δ 13C values decreased and mean δ 15N values increased, indicating a greater diet contribution from pelagic sources.
3. Variances of both δ 13C and δ 15N values first increased in both fish populations, indicating a wider food spectrum and expanded feeding niche width following reduced fish abundances. Observed changes were greater for the perch population than for roach.
4. In 2006, the perch population abruptly changed its diet so that most individuals were primarily consuming the abundant young-of-the-year fish, and this was reflected in significantly reduced variances of both δ 13C and δ 15N values.
5. We conclude that isotopic variance can indeed reflect changes in feeding niche width and offers a promising way to study such general ecological concepts.  相似文献   

4.
Stable isotopes of nitrogen (δ15N) and carbon (δ13C) were measured for Atlantic salmon Salmo salar and their intestinal cestode, Eubothrium crassum , sharing the same diet. Atlantic salmon muscle tissues were enriched in 15N and depleted in 13C compared to their prey (sprat Sprattus sprattus sprattus ) and their intestinal cestode. There was no significant difference in δ15N or δ13C between E. crassum and the sprat. Differences in nutrient uptake and intestine physiology between Atlantic salmon and E. crassum are discussed, as well as how these may give rise to different fractionations of stable isotopes between a host and its parasites. Furthermore, Atlantic salmon contained a significantly higher lipid content than their prey, which may partly explain differences in δ13C values between the host and its cestode. In addition, cestodes inhabiting lipid-rich hosts were also lipid rich. Larger Atlantic salmon were enriched in 15N compared to smaller fish. Cestodes inhabiting large hosts were also enriched in 15N compared to parasites living in smaller hosts. The last two results were explained by larger fish possibly feeding from a higher trophic level, or from larger and older prey, that resulted in both a higher lipid content and an enrichment in 15N.  相似文献   

5.
This study investigated the impact of lipid extraction, CaCO3 removal and of both treatments combined on fish tissue δ13C, δ15N and C:N ratio. Furthermore, the suitability of empirical δ13C lipid normalization and correction models was examined. δ15N was affected by lipid extraction (increase of up to 1·65‰) and by the combination of both treatments, while acidification alone showed no effect. The observed shift in δ15N represents a significant bias in trophic level estimates, i.e. lipid-extracted samples are not suitable for δ15N analysis. C:N and δ13C were significantly affected by lipid extraction, proportional to initial tissue lipid content. For both variables, rates of change with lipid content (ΔC:N and Δδ13C) were species specific. All tested lipid normalization and correction models produced biased estimates of fish tissue δ13C, probably due to a non-representative database and incorrect assumptions and generalizations the models were based on. Improved models need a priori more extensive and detailed studies of the relationships between lipid content, C:N and δ13C, as well as of the underlying biochemical processes.  相似文献   

6.
The diet of ruffe Gymnocephalus cernuus was studied in two native populations in lakes of different productivity in south-west Finland using both traditional stomach content analyses and stable isotopes. According to stomach content analyses, chironomids were the most important prey type in both lakes and the diversity of the other prey reflected the zoobenthos community in the lake. Stable isotope analyses of carbon and nitrogen showed distinctive lake-specific and total length ( L T)-related patterns in both δ13C and δ15N values, which could not be explained solely with diet changes. In the large mesotrophic Pyhäjärvi, both 13C and 15N isotopes became slightly enriched with increasing ruffe L T, although stomach contents analyses did not suggest any diet change in larger ruffe. In the hypereutrophic Köyliönjärvi, the carbon isotope signatures of ruffe especially showed wide variation (−33·5 to −24·1‰), which was probably due to variable consumption of prey items with highly negative carbon isotope signatures. Overall, this study emphasizes that the interpretation of stable isotope results requires extensive background data of the system and that even then the diet composition of a consumer may be very difficult to define due to large variation in the signatures.  相似文献   

7.
Stable isotope (δ15N and δ13C) values of individual tooth annuli of female Steller sea lions ( n = 120) collected from the 1960s through the 1980s were used for retrospective analyses of temporal changes in food webs in the Gulf of Alaska and North Pacific Ocean. We also examined isotopically contour feathers of tufted puffins ( n = 135) and crested auklets ( n = 37) through this period to test for broader isotopic patterns indicative of whole food web changes. Steller sea lions decreased slightly in δ13C and increased in δ15N values, suggesting an increasing trophic level and change in foraging location or oceanographic isotopic signature. Steller sea lion first and second tooth annuli were enriched in 15N and depleted in 13C compared with subsequent annuli, indicating the effects of maternal influence through weaning. The general pattern of increasing δ15N values among Steller sea lions supports previous conclusions regarding a reduction or redistribution of forage fishes and an increase of demersal and semi-demersal species in the North Pacific ecosystem. There were no significant changes in δ15N values for either bird species. However, δ13C values in both bird species again suggested changes in foraging location or a shift in oceanographic currents.  相似文献   

8.
The potential trophic impact of introduced brook trout Salvelinus fontinalis on native brown trout Salmo trutta in a mountain stream (south-west France) was investigated using stable isotope analysis (SIA). The isotopic signatures (δ13C and δ15N) of S. fontinalis were similar regardless of the absence or presence of S. trutta , and SIA mixing models revealed that S. fontinalis diet consisted mainly of terrestrial invertebrates. Conversely, a significant shift in S. trutta isotopic signatures (depletion of 1·6‰δ13C and enrichment of 0·6‰δ15N) was observed in sympatry with S. fontinalis ; this may be due to a dietary shift towards terrestrial invertebrates. Contrary to an expected dietary divergence in sympatry, an elevated level of dietary overlap was observed between the non-native and native salmonids when in co-occurrence. This dietary convergence is more likely to be due to behavioural interactions than to variations in food availability or fish displacements.  相似文献   

9.
Enriched δ13C values (annual average – 11.2‰) suggest that in the study site (Stagnone di Marsala, Italy) the sand smelt Atherina boyeri exploited benthic prey throughout the year. In particular, Mysidacea and Isopoda seemed to dominate the diet. Stomach content data from the literature was in partial agreement with the present isotopic analysis suggesting that, while Mysidacea and Isopoda are exploited by A. boyeri , Copepoda Harpacticoida and Amphipoda are the dominant food items of the sand smelt diet. Several hypotheses are proposed to explain such partially different results from the two techniques. Both season and size influenced the δ13C and δ15N values of A. boyeri . Although throughout the sampling year, A. boyeri showed very enriched δ13C and δ15N values consistent with a diet based on benthic resources, it showed significant seasonal differences in both nitrogen and carbon isotope ratios. Such a finding suggests that the food preferences of A. boyeri undergo small seasonal differences, probably as a consequence of prey availability. Size also affected the isotopic composition of the sand-smelt indicating that this species shows ontogenetic diet shifts in the study site. Compared with other Mediterranean trophic data of the sand smelt these results substantiate the great adaptability of A. boyeri to the local environmental resources and its trophic plasticity.  相似文献   

10.
Stable isotope and scat analyses were used in concert to determine trophic level and dietary overlap among California sea lions from different rookeries in the Gulf of California. Isotopic analysis of the fur of sea lion pups revealed differences in δ15N and δ13C values among rookeries during the breeding season. Mean δ15N and δ13C values varied from 20.2‰ to 22.4‰ and from −15.4‰ to −14.0‰, respectively. The pattern of differences among rookeries was similar between years in most cases. Isotopic variations among rookeries were associated with differences in prey consumption. There was a significant correlation between δ15N value and trophic level, as determined by scat analysis. Joint application of isotopic and scat analyses allowed us to identify how the feeding habits of sea lions vary with location. Our results suggest the presence of spatial structure in available prey as well as the localized use of prey by sea lions across the Gulf of California.  相似文献   

11.
1. Nitrogen and carbon stable-isotope ratios (δ15N and δ13C) of body tissues, mound/nest materials and dietary substrates were determined in termite species with differing trophic habits, sampled from the Mbalmayo Forest Reserve, southern Cameroon.
2. δ15N of termite tissues was enriched gradually along a spectrum of species representing a trophic gradient from wood- to soil-feeding. Species that could be identified from their general biology and from gut content analysis as feeding on well-rotted wood or as wood/soil interface feeders showed δ15N intermediate between sound-wood-feeders and soil-feeders. It is proposed that δ15N is therefore a possible indicator of the functional position of species in the humification process. Differences in δ13C were also observed between wood-feeding and soil-feeding forms.
3. High values of δ15N in soil-feeding termites suggest that nitrogen fixation is of little importance in these species.
4. A wide range of isotope effects (the difference in isotope ratios between termites and their diet) was observed for both nitrogen (Δδ15N = –1.6 to + 8.8‰) and carbon (Δδ13C = –2.2 to + 3.0‰), which suggests a diversity of nutrient acquisition mechanisms within termites and diverse relationships between termites and their intestinal micro-organisms.  相似文献   

12.
1. Littoral biota in boreal lakes are known to assimilate epilithon. Being able to predict the stable isotopic composition of these alga will help to identify those systems in which δ13C and δ15N analysis can be used in foodweb investigations of allochthony and biomagnification.
2. In a survey of 15 boreal lakes, the concentration of dissolved organic carbon (DOC) explained 76% of the variation in epilithon δ13C, and 86% of the variation in epilithon δ15N.
3. Because both δ13C and δ15N values were depressed and similar to terrestrial values in humic (high DOC) lakes, it will be more difficult to successfully employ stable isotopic techniques for estimating allochthony in such systems. Lower δ15N values in humic lakes also indicate that trophic positions estimated by stable isotopes are not directly comparable to those of similar biota inhabiting clearwater lakes, unless autochthonous baseline corrections are made.  相似文献   

13.
The effects of preservation on fish tissue stable isotope signatures   总被引:2,自引:0,他引:2  
The effects of formalin and ethanol preservation on the δ13C and δ15N isotope signatures of Arctic charr Salvelinus alpinus muscle tissue were examined. The lipid content of the tissue samples studied ranged from 3·6 to 6·1% and was not correlated with the magnitude of observed isotopic shifts in preserved samples. Ethanol and formalin significantly depleted and enriched, respectively, the δ13C isotope signatures of preserved tissues when compared to control samples. Ethanol did not significantly enrich δ15N signatures in comparison to controls, whereas formalin did. A meta-analysis of multiple species effects further demonstrated significant preservation effects in fish tissue. Statistical analysis of data obtained by correcting preserved tissue isotope signatures with literature, bootstrapped or meta-analysis derived correction factors demonstrated significant differences between corrected and control sample isotope signatures or failure to produce a unity slope when the data sets were regressed against one another. Species-specific, bootstrapped linear correction models resulted in no such errors. Results suggest that species-specific correction methods should be used for fishes because of the known wide variation in fish tissue lipid content and composition. Accordingly, the use of pilot studies will be required to develop correction factors that properly adjust for preservation effects when interpreting temporal patterns in historic analyses of food webs.  相似文献   

14.
The influence of different feeding levels below and slightly above maintenance on whole body δ13C and δ15N values of Nile tilapia Oreochromis niloticus was examined. The energy budget of each fish was determined by indirect calorimetry. The δ13C values of the lipid-free material of Nile tilapia fed below and slightly above maintenance level did not differ between the feeding groups, but the δ13C values in the lipids and the δ15N values of the lipid-free material showed small but significant differences. Those fish with a negative lipid retention had significantly higher δ13C values in the lipid fraction compared to fish that synthesized fatty acids. There was a significant negative correlation between the amount of energy metabolized by the fish and both the δ13C values in the lipids and the δ15N values of the lipid-free material. Fasting and feeding below the maintenance level may influence the isotopic composition of animals and should therefore be considered in ecological and nutritional studies.  相似文献   

15.
1.  The δ13C and δ15N signatures of zooplankton vary with dissolved organic carbon (DOC), but inconsistent and limited taxonomic resolution of previous studies have masked differences that may exist among orders, genera or species and are attributable to dietary and/or habitat differences. Here we investigate differences among the isotopic signatures of five zooplankton taxa ( Daphnia , Holopedium , large Calanoida, small Calanoida and Cyclopoida) in Precambrian shield lakes with a sixfold range of DOC concentration.
2.  δ13C signatures of Daphnia , small calanoids and large calanoids became more depleted with increasing lake DOC, whereas Holopedium and cyclopoid δ13C became enriched with increasing DOC concentration.
3.  The variability of δ13C and δ15N isotopic signatures among zooplankton groups was reduced in high-DOC, compared to low-DOC lakes, especially for δ13C. Differences in δ13C and POM-corrected δ15N accounted for up to 33.7% and 19.5% of the variance, respectively, among lakes of varying DOC concentration.
4.  The narrow range of signatures found in higher DOC lakes suggests that different taxa have similar food sources and/or habitats. In contrast, the wide range of signatures in low-DOC lakes suggests that different taxa are exploiting different food sources and/or habitats. Together with the variable trends in zooplankton isotopic signatures along our DOC gradient, these results suggest that food web dynamics within the zooplankton community of temperate lakes will change as climate and lake DOC concentrations change.  相似文献   

16.
Stable nitrogen (δ15N), carbon (δ13C) and hydrogen (δD) isotope profiles in feathers of nine migratory bird species trapped in Kenya were examined to test the extent to which they were segregated, geographically or by habitat, during an earlier autumn migration stopover in northeast Africa. We examined whether isotopic differences between species varied between years, and whether the isotope profiles of individual species appeared to be consistent. The relationship between mean feather δ13C, δ15N and δD assorted the migrants into several clustered groups. Similar feather isotope values among successive years revealed that each species tended to return to the same or similar stopover areas and selected habitat and diet that generated similar isotopic signatures. Possible explanations are discussed for the existence of these isotopic groups.  相似文献   

17.
The scales of whitefish Coregonus lavaretus were used in place of dorsal muscle, which necessitates killing the fish, to study food webs from the δ13C and δ15N isotopic ratios in the organic fraction. As scales are composed of both organic and calcified fractions, a protocol for scale decalcification was first devised. The δ13C and δ15N values of the decalcified scales were then shown to be closely correlated to those of the dorsal muscle, demonstrating that scales could be used in place of muscle to study food webs. Changes in the δ13C of whitefish were determined from a scale collection that extended over the period during which the trophic state of Lake Geneva was recovering.  相似文献   

18.
The diet, habitat use and mercury concentration of the small fish species, the straight fin barb Barbus paludinosus , were studied in Lake Awassa, Ethiopia, for a period of 1 year from February 2003 to January 2004. Stable isotope signatures of nitrogen and carbon in different total length ( L T) classes were used to determine trophic positions and organic carbon sources, respectively. Barbus paludinosus mainly occupied the protected benthic habitats (littoral and profundal) of the lake. The δ13C values were in the range from −24 to −19‰, indicating that the carbon source for B. paludinosus was benthic, as well. Small individuals (≤ 60 mm L T) mainly preyed upon ostracods, intermediate sizes (60–100 mm) on aquatic insects and gastropods, while a tiny cyprinodont fish Aplocheilichthys antinorii dominated the diet of large individuals (100–160 mm). The progressively increase in δ15N with increasing L T also indicated a diet shift towards piscivory in larger individuals. The mercury concentration ranging from 0·02 to 0·74 mg kg−1 wet mass (wm), was unexpectedly high in this small species, and was significantly positively related to L T, as well as to δ15N. Some large individuals had mercury concentrations < 0·1 mg kg−1 wm, and low δ15N, indicating substantial variations in diet between individuals of same size. The study suggests that other piscivorous species which include B. paludinosus in their diet may have a high mercury intake risk.  相似文献   

19.
Mycorrhizal and saprotrophic (SAP) fungi are essential to terrestrial element cycling due to their uptake of mineral nutrients and decomposition of detritus. Linking these ecological roles to specific fungi is necessary to improve our understanding of global nutrient cycling, fungal ecophysiology, and forest ecology. Using discriminant analyses of nitrogen (δ15N) and carbon (δ13C) isotope values from 813 fungi across 23 sites, we verified collector-based categorizations as either ectomycorrhizal (ECM) or SAP in > 91% of the fungi, and provided probabilistic assignments for an additional 27 fungi of unknown ecological role. As sites ranged from boreal tundra to tropical rainforest, we were able to show that fungal δ13C (26 sites) and δ15N (32 sites) values could be predicted by climate or latitude as previously shown in plant and soil analyses. Fungal δ13C values are likely reflecting differences in C-source between ECM and SAP fungi, whereas 15N enrichment of ECM fungi relative to SAP fungi suggests that ECM fungi are consistently delivering 15N depleted N to host trees across a range of ecosystem types.  相似文献   

20.
Trophic position, and often the source of feeding of predators in food webs, can be estimated using measurements of stable isotope ratios of nitrogen and carbon in predators and their prey. Muscle samples from 60 harp seals ( Pagophilus groenlandicus ) collected during May 1995 in nearshore waters of New foundland, Canada, were analyzed for δ13C and δ15N values. These values were compared with those for 63 prey samples representing seven species generally collected near the same area. Using diet-tissue isotopic fractionation factors derived from previous studies using captive animals, we infer a greater dependence of harp seals on lower trophic-level prey during April compared with results expected from exclusive diets of Atlantic cod ( Gadus morhua ), Atlantic herring ( Clupea harengus ), Greenland halibut ( Reinhardtius hippoglossoides ), or northern shrimp ( Pandalus borealis ). Our mean δ15N value for harp seals is lower than previous findings for seals collected on the winter whelping patch and may be a function of interannual or seasonal differences in diet. Subadult seals (aged 1-4 yr) had significantly lower δ15N values than adults (5 + yr), suggesting that older seals were feeding at a slightly higher trophic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号