首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major surface antigen of the mammalian bloodstream form of Trypanosoma brucei, the variant surface glycoprotein (VSG), is attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. The VSG anchor is susceptible to phosphatidylinositol-specific phospholipase C (PI-PLC). Candidate precursor glycolipids, P2 and P3, which are PI-PLC-sensitive and -resistant respectively, have been characterized in the bloodstream stage. In the insect midgut stage, the major surface glycoprotein, procyclic acidic repetitive glycoprotein, is also GPI-anchored but is resistant to PI-PLC. To determine how the structure of the GPI anchor is altered at different life stages, we characterized candidate GPI molecules in procyclic T. brucei. The structure of a major procyclic GPI, PP1, is ethanolamine-PO4-Man alpha 1-2Man alpha 1-6 Man alpha 1-GlcN-acylinositol, linked to lysophosphatidic acid. The inositol can be labeled with [3H]palmitic acid, and the glyceride with [3H]stearic acid. We have also found that all detectable ethanolamine-containing GPIs from procyclic cells contain acylinositol and are resistant to cleavage by PI-PLC. This suggests that the procyclic acidic repetitive glycoprotein GPI anchor structure differs from that of the VSG by virtue of the structures of the GPIs available for transfer.  相似文献   

2.
3.
The average solution conformation of the glycosylphosphatidylinositol (GPI) membrane anchor of Trypanosoma brucei variant surface glycoprotein (VSG) has been determined by using a combination of two-dimensional 1H-1H NMR methods together with molecular orbital calculations and restrained molecular dynamics simulations. This allows the generation of a model to describe the orientation of the glycan with respect to the membrane. This shows that the glycan exists in an extended configuration along the plane of the membrane and spans an area of 600 A2, which is similar to the cross-sectional area of a monomeric N-terminal VSG domain. Taken together, these observations suggest a possible space-filling role for the GPI anchor that may maintain the integrity of the VSG coat. The potential importance of the GPI glycan as a chemotherapeutic target is discussed in light of these observations.  相似文献   

4.
M C Field  A K Menon    G A Cross 《The EMBO journal》1991,10(10):2731-2739
Cells of the insect (procyclic) stage of the life cycle of the African trypanosome, Trypanosoma brucei, express an abundant stage-specific glycosylated phosphatidylinositol (GPI) anchored glycoprotein, the procyclic acidic repetitive protein (PARP). The anchor is insensitive to the action of bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), suggesting that it contains an acyl-inositol. We have recently described the structure of a PI-PLC resistant glycosylphosphatidylinositol, PP1, which is specific to the procyclic stage, and have presented preliminary evidence that the phosphatidylinositol portion of the protein-linked GPI on PARP has a similar structure. In this paper we show, by metabolic labelling with [3H]fatty acids, that the PARP anchor contains palmitate esterified to inositol, and stearate at sn-1, in a monoacylglycerol moiety, a structure identical to PP1. Using pulse-chase labelling, we show that both fatty acids are incorporated into the GPI anchor from a large pool of metabolic precursors, rather than directly from acyl-CoA. We also demonstrate that the addition of the GPI anchor moiety to PARP is dependent on de novo protein synthesis, excluding the possibility that incorporation of fatty acids into PARP can occur by a remodelling of pre-existing GPI anchors. Finally we show that the phosphatidylinositol (PI) species that are utilized for GPI biosynthesis are a subpopulation of the cellular PI molecular species. We propose that these observations may be of general validity since several other eukaryotic membrane proteins (e.g. human erythrocyte acetylcholine esterase and decay accelerating factor) have been reported to contain palmitoylated inositol residues.  相似文献   

5.
Using transformed procyclic trypanosomes, the synthesis, intracellular transport and secretion of wild-type and mutant variant surface glycoprotein (VSG) is characterized. We find no impediment to the expression of this bloodstream stage protein in insect stage cells. VSG receives a procyclic-type phosphatidylinositol-specific phospholipase C-resistant glycosyl phosphatidylinositol (GPI) anchor, dimerizes and is N-glycosylated. It is transported to the plasma membrane with rapid kinetics (t(1/2) approximately 1 h) and then released by a cell surface zinc-dependent metalloendoprotease activity, a possible homolog of leishmanial gp63. Deletion of the C-terminal GPI addition signal generates a soluble form of VSG that is exported with greatly reduced kinetics (t(1/2) approximately 5 h). Fusion of the procyclic acidic repetitive protein (PARP) GPI anchor signal to the C-terminus of the truncated VSG reporter restores both GPI addition and transport competence, suggesting that GPI anchors play a critical role in the folding and/or forward transport of newly synthesized VSG. The VSG-PARP fusion is also processed near the C-terminus by events that do not involve N-linked oligosaccharides and which are consistent with GPI side chain modification. This unexpected result suggests that GPI processing may be influenced by adjacent peptide sequence or conformation.  相似文献   

6.
The glycosylphosphatidylinositol anchor (GPI) from the membrane form variant surface glycoprotein (mfVSG) of Trypanosoma brucei brucei was isolated and identified after radioactive labeling with [3H]myristic acid, by immunostaining on HPTLC with a polyclonal antibody directed against mfVSG and by negative ion laser desorption and fast atom bombardment mass spectrometry of the GPI anchor before and after peracetylation. For the production of monoclonal antibodies the purified GPI molecule was incorporated into liposomes and injected intrasplenically in BALB/c mice. After fusion with the myeloma cell line X63-Ag 8.653 hybridoma cells were cloned by single cell cloning. The secreted antibodies were characterized by ELISA, Ouchterlony immunodiffusion, and Western blot and used in first immunofluorescent studies.  相似文献   

7.
Trypanosoma brucei variant surface glycoproteins are apparently synthesized with a hydrophobic carboxyl-terminal peptide that is cleaved and replaced by a complex glycosylphosphatidylinositol membrane anchor within 1 min of the completion of polypeptide synthesis. The rapidity of this carboxyl-terminal modification suggests the existence of a prefabricated core glycolipid that would be transferred en bloc to the variant surface glycoprotein polypeptide. We report the purification and chemical characterization of a glycolipid from T. brucei that has properties consistent with a role as a variant surface glycoprotein glycolipid donor. This candidate glycolipid precursor has been defined by thin-layer chromatography of extracts of trypanosomes metabolically labeled with radioactive myristic acid, ethanolamine, glucosamine, mannose, and phosphate and by enzymatic, chemical, and gas chromatographic-mass spectrometric analysis. Mild alkali released 100% of the myristic acid, and reaction with phospholipase A2 released 50%. Nitrous acid deamination generated dimyristylphosphatidylinositol, and periodate oxidation released phosphatidic acid. Treatment of purified glycolipid with phosphatidylinositol-specific phospholipase C released dimyristylglycerol and a water-soluble glycan that was sized on Bio-Gel P-4 columns. The candidate precursor contained mannose, myristic acid, phosphate, and ethanolamine with an unsubstituted amino group, but not galactose.  相似文献   

8.
Syntheses are described of 2-azido-4,6-di-O-benzyl-2,3-dideoxy-d-ribo-hexopyranosyl fluoride, 6-O-acetyl-2-azido-3-O-benzyl-2,4-dideoxy-d-xylo-hexopyranosyl fluoride and 2-azido-3,4-di-O-benzyl-2,6-dideoxy-d-glucopyranosyl fluoride. These glycosyl donors were coupled with the acceptor 1d-2,3,4,5-tetra-O-benzyl-1-O-(4-methoxybenzyl)-myo-inositol and the α-coupled products were transformed into α-d-3dGlcpN-PI, α-d-4dGlcpN-PI and α-d-6dGlcpN-PI by way of the H-phosphonate route. Brief mention is made of the biological evaluation of these deoxy-sugar analogues and their N-acetylated forms as candidate substrate/inhibitors of the N-deacetylase and α-(1→4)-d-mannosyltransferase activities present in trypanosomal and HeLa (human) cell-free system.  相似文献   

9.
10.
11.
The major surface macromolecules of the protozoan parasite Leishmania major, gp63 (a metalloprotease), and lipophosphoglycan (a polysaccharide), are glycosylphosphatidylinositol (GPI) anchored. We expressed a cytoplasmic glycosylphosphatidylinositol phospholipase C (GPI-PLC) in L. major in order to examine the topography of the protein- GPI and polysaccharide-GPI pathways. In L. major cells expressing GPI- PLC, cell-associated gp63 could not be detected in immunoblots. Pulse- chase analysis revealed that gp63 was secreted into the culture medium with a half-time of 5.5 h. Secreted gp63 lacked anti-cross reacting determinant epitopes, and was not metabolically labeled with [3H]ethanolamine, indicating that it never received a GPI anchor. Further, the quantity of putative protein-GPI intermediates decreased approximately 10-fold. In striking contrast, lipophosphoglycan levels were unaltered. However, GPI-PLC cleaved polysaccharide-GPI intermediates (glycoinositol phospholipids) in vitro. Thus, reactions specific to the polysaccharide-GPI pathway are compartmentalized in vivo within the endoplasmic reticulum, thereby sequestering polysaccharide-GPI intermediates from GPI-PLC cleavage. On the contrary, protein-GPI synthesis at least up to production of Man(1 alpha 6)Man(1 alpha 4)GlcN-(1 alpha 6)-myo-inositol-1-phospholipid is cytosolic. To our knowledge this represents the first use of a catabolic enzyme in vivo to elucidate the topography of biosynthetic pathways. GPI-PLC causes a protein-GPI-negative phenotype in L. major, even when genes for GPI biosynthesis are functional. This phenotype is remarkably similar to that of some GPI mutants of mammalian cells: implications for paroxysmal nocturnal hemoglobinuria and Thy-1-negative T-lymphoma are discussed.  相似文献   

12.
The variant surface glycoprotein (VSG) of the ILTat 1.3 variant of Trypanosoma brucei has two asparagine-linked glycan moieties, as well as a phosphatidylinositol glycan membrane anchor. We have investigated the structure and processing of each of these oligosaccharides through analysis of the intact protein and of glycopeptides. Processing has been examined by comparing glycan structures purified from an immature intracellular form (58 kDa) of VSG with those of the mature form (59 kDa) found on the parasite surface. We find exclusively high mannose oligosaccharides (Man4-7-GlcNAc2) at Asn-432 in both the immature 58-kDa and mature 59-kDa forms. In contrast, the "core" oligosaccharide of Asn-419 (Man3-GlcNAc2) appears to be nearly quantitatively processed to a complex biantennary structure [Gal-GlcNAc-Man)2-Man-GlcNAc2) during VSG maturation. The asparagine-linked structures at Asn-419, but not those at Asn-432, are resistant to endo-beta-N-acetylglucosaminidase H within 30 s of biosynthesis. This suggests possible novel and selective mechanisms for glycosylation in African trypanosomes. Finally, we show that the carboxyl-terminal glycolipid is galactosylated (3-4 residues) relatively late in VSG biosynthesis. Phosphatidylinositol glycans have been identified on a growing number of eukaryotic membrane proteins. This report provides a direct demonstration of the processing of such a glycolipid anchor following its attachment to protein.  相似文献   

13.
Many eukaryotic cell-surface proteins are post-translationally modified by a glycosylphosphatidylinositol (GPI) moiety that anchors them to the cell membrane. The biosynthesis of GPI anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from UDP-GlcNAc to phosphatidylinositol. This reaction is catalyzed by GPI GlcNAc transferase, a multisubunit complex comprising the catalytic subunit Gpi3/PIG-A as well as at least five other subunits, including the hydrophobic protein Gpi2, which is essential for the activity of the complex in yeast and mammals, but the function of which is not known. To investigate the role of Gpi2, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism that initially provided the first insights into GPI structure and biosynthesis. We generated insect-stage (procyclic) trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites, (i) GPI GlcNAc transferase activity is reduced, but not lost, in contrast with yeast and human cells, (ii) the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit, and (iii) the GPI anchors of procyclins, the major surface proteins, are underglycosylated when compared with their WT counterparts, indicating the importance of TbGPI2 for reactions that occur in the Golgi apparatus. Immunofluorescence microscopy localized TbGPI2 not only to the endoplasmic reticulum but also to the Golgi apparatus, suggesting that in addition to its expected function as a subunit of the GPI GlcNAc transferase complex, TbGPI2 may have an enigmatic noncanonical role in Golgi-localized GPI anchor modification in trypanosomes.  相似文献   

14.
The cross-reacting determinant (CRD epitope) of the glycosyl-phosphatidylinositol (GPI) membrane anchor of Trypanosoma brucei variant surface glycoprotein has been analysed by selective chemical and enzymic modification of the isolated GPI structure combined with the use of a competitive ELISA inhibition assay for the detection of CRD epitopes. The data show that the CRD consists of at least three overlapping epitopes involving different regions of the molecule including the inositol 1,2-cyclic phosphate, the non-N-acetylated-glucosamine residue and the galactose branch. Although the presence of all three of these structural features is required for quantitative binding of anti-CRD antibodies in ELISA and Western blotting, the Western blot reaction obtained in the presence of any one epitope is still significant. The use of anti-CRD antibodies for the detection of GPI anchors is discussed.  相似文献   

15.
The membrane form of Trypanosoma brucei variant surface glycoprotein (mfVSG) is acylated with ester-linked tetradecanoic (myristic) acid (Ferguson, M. A. J., and Cross, G. A. M. (1984) J. Biol. Chem. 259, 3011-3015). Comparative analysis of Pronase peptides from mfVSG and soluble VSG localizes the site of mfVSG acylation to a COOH-terminal oligosaccharide structure. Chemical and enzymatic treatment of the acylated Pronase mfVSG fragment revealed that the myristic acid is present as a diglyceride (sn-1,2-dimyristin) that is probably linked to the COOH-terminal oligosaccharide via a phosphodiester bond between the sn-3-glycerol hydroxyl and a sugar hydroxyl group. The endogenous membrane-associated enzyme, which quantitatively cleaves myristic acid from mfVSG to produce soluble VSG, releases diglyceride, as would be expected of a phospholipase C.  相似文献   

16.
A series of synthetic analogues of d-GlcN alpha 1-6-d-myo-inositol-1-HPO(4)-sn-1,2-dipalmitoylglycerol, consisting of 22 variants of the d-GlcN or lipid components, were tested in trypanosomal and human (HeLa) cell-free systems. The assays measured the abilities of the analogues to act as substrates or inhibitors of the enzymes of glycosylphosphatidylinositol biosynthesis downstream of GlcNAc-phosphatidylinositol (GlcNAc-PI) de-N-acetylase. One compound, 4-deoxy-d-GlcN alpha 1-6-d-myo-inositol-1-HPO(4)-sn-1,2-dipalmitoylglycerol, proved to be an inhibitor of both the trypanosomal and HeLa pathways, whereas 4-O-methyl-d-GlcN alpha 1-6-d-myo-inositol-1-HPO(4)-sn-1,2-dipalmitoylglycerol and the 4'-epimer, d-GalN-alpha1-6-d-myo-inositol-1-HPO(4)-sn-1,2-dipalmitoylglycerol, were neither substrates nor inhibitors. The results with other analogues showed that the 6-OH of the alpha-d-GlcN residue is not required for substrate recognition in the trypanosomal and human pathways, whereas the 3-OH group is essential for both. Parasite-specific recognition of the beta-linked analogue d-GlcN beta 1-6-d-myo-inositol-1-HPO(4)-sn-1,2-dipalmitoylglycerol is striking. This suggests that, like the GlcNAc-PI de-N-acetylase, the trypanosomal glycosylphosphatidylinositol alpha-mannosyltransferases, inositol acyltransferse and ethanolamine phosphate transferase, do not recognize the 2-, 3-, 4-, and 5-OH groups of the d-myo-inositol residue, whereas the human inositol acyltransferase and/or first alpha-mannosyltransferase recognizes one or more of these groups. All of the various lipid analogues tested served as substrates in both the trypanosomal and HeLa cell-free systems, suggesting that a precise lipid structure and stereochemistry are not essential for substrate recognition. However, an analogue containing a single C18:0 alkyl chain in place of sn-1,2-dipalmitoylglycerol proved to be a better substrate in the trypanosomal than in the HeLa cell-free system. These findings should have a bearing on the design of future generations of specific inhibitors of the trypanosomal glycosylphosphatidylinositol biosynthetic pathway.  相似文献   

17.
The differentiation of mammalian stage Trypanosoma brucei bloodstream forms comprising predominantly parasites of intermediate and stumpy morphology to the procyclic forms characteristic for the insect midgut stage was studied in vitro. Differentiation of the cell population occurred synchronously as judged by the synthesis of the surface glycoprotein, procyclin, characteristic of the arising procyclic forms and the loss of the membrane-form variant surface glycoprotein, the coat protein of bloodstream forms. The change in surface antigens took place within 12 h in the absence of cell growth; subsequently, the procyclic cells divided exponentially. As defined in this study, T. brucei may be a useful model to follow other changes in gene expression, metabolism or ultrastructure during differentiation of a unicellular eucaryote.  相似文献   

18.
In Trypanosoma brucei, there are fourteen enzymatic biotransformations that collectively convert glucose into five essential nucleotide sugars: UDP-Glc, UDP-Gal, UDP-GlcNAc, GDP-Man and GDP-Fuc. These biotransformations are catalyzed by thirteen discrete enzymes, five of which possess putative peroxisome targeting sequences. Published experimental analyses using immunofluorescence microscopy and/or digitonin latency and/or subcellular fractionation and/or organelle proteomics have localized eight and six of these enzymes to the glycosomes of bloodstream form and procyclic form T. brucei, respectively. Here we increase these glycosome localizations to eleven in both lifecycle stages while noting that one, phospho-N-acetylglucosamine mutase, also localizes to the cytoplasm. In the course of these studies, the heterogeneity of glycosome contents was also noted. These data suggest that, unlike other eukaryotes, all of nucleotide sugar biosynthesis in T. brucei is compartmentalized to the glycosomes in both lifecycle stages. The implications are discussed.  相似文献   

19.
Trypanosome variant surface glycoproteins exemplify a class of eukaryotic cell surface glycoproteins that rely on a carboxyl-terminal covalently-attached inositol-containing glycophospholipid for membrane attachment. The glycolipid anchor is acquired soon after translation of the polypeptide, apparently by replacement of a short carboxyl-terminal peptide sequence with a prefabricated glycolipid. A candidate glycolipid precursor (referred to as P2), and a related glycolipid (P3) have been identified recently in polar lipid extracts from trypanosomes. In this paper we describe the synthesis of P2 and P3 by trypanosome membranes. Analyses of organic solvent extracts from membranes incubated with radioactive sugar nucleotides (GDP-[3H]mannose or UDP-[3H]GlcNAc) showed a spectrum of labelled lipids, ranging from partially glycosylated species to the final products, P2 and P3. Structural analyses of these putative biosynthetic intermediates suggest that glycolipid assembly occurs via the sequential glycosylation of phosphatidylinositol.  相似文献   

20.
TbRAB4 is the Trypanosoma brucei orthologue of the small GTPase Rab4, which is implicated in the control of early endocytosis and recycling processes. TbRAB4 is expressed constitutively in the procyclic and bloodstream stages suggesting an important function throughout the trypanosome life-cycle. Previous work from our laboratory has shown TbRAB4 to be essential in the bloodstream form. Induction of double-stranded TbRAB4 RNA expression leads to a specific reduction in TbRAB4 protein levels and inhibition of growth in procyclic form T. brucei, with alterations in uptake and recycling as measured with the fluorophore FM4-64. Trypanosomes overexpressing GTP-locked TbRAB4(QL) mutants exhibit significant perturbations of endocytic and recycling pathways as well as disruption of surface expression of GPI-anchored proteins. Most significantly, both the endogenous GPI-anchored procyclins and an ectopically expressed GPI-anchored protein, the variant surface glycoprotein, are relocated from the surface to internal sites in TbRAB4 mutant cells. These data indicate that TbRAB4 is important in maintenance of normal surface expression of lipid-anchored proteins, and implicate recycling pathways as factors for modulation of surface protein expression in the procyclic trypanosome. The conservation of function of Rab4 throughout eukaryotic evolution demonstrated here indicates that the Rab4-mediated trafficking pathway is an extremely ancient component of the endocytic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号