首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catch force maintenance in invertebrate smooth muscles is probably mediated by a force-bearing tether other than myosin cross-bridges between thick and thin filaments. The phosphorylation state of the mini-titin twitchin controls catch. The C-terminal phosphorylation site (D2) of twitchin with its flanking Ig domains forms a phosphorylation-sensitive complex with actin and myosin, suggesting that twitchin is the tether (Funabara, D., Osawa, R., Ueda, M., Kanoh, S., Hartshorne, D. J., and Watabe, S. (2009) J. Biol. Chem. 284, 18015-18020). Here we show that a region near the N terminus of twitchin also interacts with thick and thin filaments from Mytilus anterior byssus retractor muscles. Both a recombinant protein, including the D1 and DX phosphorylation sites with flanking 7th and 8th Ig domains, and a protein containing just the linker region bind to thin filaments with about a 1:1 mol ratio to actin and K(d) values of 1 and 15 μM, respectively. Both proteins show a decrease in binding when phosphorylated. The unphosphorylated proteins increase force in partially activated permeabilized muscles, suggesting that they are sufficient to tether thick and thin filaments. There are two sites of thin filament interaction in this region because both a 52-residue peptide surrounding the DX site and a 47-residue peptide surrounding the D1 site show phosphorylation-dependent binding to thin filaments. The peptides relax catch force, confirming the region's central role in the mechanism of catch. The multiple sites of thin filament interaction in the N terminus of twitchin in addition to those in the C terminus provide an especially secure and redundant mechanical link between thick and thin filaments in catch.  相似文献   

2.
We have shown previously that myorod, a molluscan thick filament protein of unknown function, is phosphorylated by vertebrate smooth myosin light chain kinase (MLCK) in N-terminal unique region. The aim of the present study was to clarify whether such phosphorylation may occur in molluscan muscles. We detected three kinases endogenous to molluscan catch muscle, namely, to the complex of surface thick filament proteins that consists of twitchin, myosin, and myorod. The first kinase was a protein kinase A because it was inhibited by a specific inhibitor; the second one was associated with twitchin and phosphorylated myorod at its N-terminal unique region independently of Ca2+; and the third kinase was bound to myosin and phosphorylated myorod as well as myosin in the C-terminal part of both proteins. The myosin-associated kinase was inhibited by micromolar concentration of calcium ions. This enzyme could be separated from myosin by chromatography, whereas the kinase associated with twitchin could not be separated from twitchin. Since twitchin has a MLCK-like domain, it is possible that this domain was responsible for myorod phosphorylation. Phosphorylation of myorod within the twitchin–myosin–myorod complex increased the actin-activated Mg2+-ATPase activity of myosin. Taken together, these results indicate that phosphorylation of myorod by kinases associated with key proteins of catch contraction may contribute to the functional activity of myorod in molluscan smooth muscle.  相似文献   

3.
The anterior byssus retractor muscle of Mytilus edulis was used to characterize the myosin cross-bridge during catch, a state of tonic force maintenance with a very low rate of energy utilization. Addition of MgATP to permeabilized muscles in high force rigor at pCa > 8 results in a rapid loss of some force followed by a very slow rate of relaxation that is characteristic of catch. The fast component is slowed 3-4-fold in the presence of 1 mM MgADP, but the distribution between the fast and slow (catch) components is not dependent on [MgADP]. Phosphorylation of twitchin results in loss of the catch component. Fewer than 4% of the myosin heads have ADP bound in rigor, and the time course (0.2-10 s) of ADP formation following release of ATP from caged ATP is similar whether or not twitchin is phosphorylated. This suggests that MgATP binding to the cross-bridge and subsequent splitting are independent of twitchin phosphorylation, but detachment occurs only if twitchin is phosphorylated. A similar dependence of detachment on twitchin phosphorylation is seen with AMP-PNP and ATPgammaS. Single turnover experiments on bound ADP suggest an increase in the rate of release of ADP from the cross-bridge when catch is released by phosphorylation of twitchin. Low [Ca(2+)] and unphosphorylated twitchin appear to cause catch by 1) markedly slowing ADP release from attached cross-bridges and 2) preventing detachment following ATP binding to the rigor cross-bridge.  相似文献   

4.
Twitchin belongs to the titin-like giant proteins family, it is co-localized with thick filaments in molluscan catch muscles and regulates the catch state depending on its level of phosphorylation. The mechanism by which twitchin controls the catch state remains to be established. We report for the first time the ability of twitchin to interact with F-actin. The interaction is observed at low and physiological ionic strengths, irrespective of the presence or absence of Ca(2+). It was demonstrated by viscosity and turbidity measurements, low- and high-speed co-sedimentation, and with the light-scattering particle size analysis revealing the specific twitchin-actin particles. The twitchin-actin interaction is regulated by twitchin phosphorylation: in vitro phosphorylated twitchin does not interact with F-actin. We speculate that the catch muscle twitchin might provide a mechanical link between thin and thick filaments, which contributes to catch force maintenance.  相似文献   

5.
Molluscan smooth muscles exhibit a low energy cost contraction called catch. Catch is regulated by twitchin phosphorylation and dephosphorylation. Recently, we found that the D2 fragment of twitchin containing the D2 site (Ser-4316) and flanking immunoglobulin motifs (TWD2-S) formed a heterotrimeric complex with myosin and with actin in the region that interacts with myosin loop 2 (Funabara, D., Hamamoto, C., Yamamoto, K., Inoue, A., Ueda, M., Osawa, R., Kanoh, S., Hartshorne, D. J., Suzuki, S., and Watabe, S. (2007) J. Exp. Biol. 210, 4399–4410). Here, we show that TWD2-S interacts directly with myosin loop 2 in a phosphorylation-sensitive manner. A synthesized peptide, CAQNKEAETTGTHKKRKSSA, based on the myosin loop 2 sequence (loop 2 peptide), competitively inhibited the formation of the trimeric complex. Isothermal titration calorimetry showed that TWD2-S binds to the loop 2 peptide with a Ka of (2.44 ± 0.09) × 105 m−1 with two binding sites. The twitchin-binding peptide of actin, AGFAGDDAP, which also inhibited formation of the trimeric complex, bound to TWD2-S with a Ka of (5.83 ± 0.05) × 104 m−1 with two binding sites. The affinity of TWD2-S to actin and myosin was slightly decreased with an increase of pH, but this effect could not account for the marked pH dependence of catch in permeabilized fibers. The complex formation also showed a moderate Ca2+ sensitivity in that in the presence of Ca2+ complex formation was reduced.Molluscan smooth muscles, such as mussel anterior byssus retractor muscle (ABRM)2 and adductor muscle, exhibit a low energy cost phase of tension maintenance termed catch. Catch muscle develops active tension following an increase of the intracellular [Ca2+] induced by secretion of acetylcholine. Myosin is activated by direct binding of Ca2+ to the regulatory myosin light chain and initiates a relative sliding between thick and thin filaments (1). After a decrease of intracellular [Ca2+] to resting levels, the catch state is formed where tension is maintained over long periods of time with little energy consumption (2, 3). Catch tension is abolished by secretion of serotonin and an increase of intracellular [cAMP] with the resulting activation of cAMP-dependent protein kinase and phosphorylation of twitchin (4, 5). Twitchin phosphorylation is required for relaxation of the muscle from catch. For this cycle to repeat, dephosphorylation of twitchin is necessary (6). Thus, in this scheme, twitchin is a major regulator of the catch state.Molluscan twitchin is known as a myosin-binding protein belonging to the titin/connectin superfamily. It is a single polypeptide of 530 kDa containing multiple repeats of immunoglobulin (Ig) and fibronectin type 3-like motifs in addition to a single kinase domain homologous to the catalytic domain of myosin light chain kinase of vertebrate smooth muscle (7). There are several possible phosphorylation sites in molluscan twitchin recognized by cAMP-dependent protein kinase, and two, D1 and D2, have been identified. The D1 phosphorylation site (Ser-1075) is in the linker region between the 7th and 8th Ig motifs (numbering from the N terminus). The D2 site (Ser-4316) is in the linker region between the 21st and 22nd Ig motifs. Additional sites are found close to D1, but are thought not to be vital for catch regulation.The molecular mechanisms underlying development and maintenance of the catch state have been controversial for several years. One theory proposes that catch reflected attached frozen or slowly cycling cross-bridges (8, 9). What distinguished the attached cross-bridge from the detached relaxed state is not clear. Also it was suggested that interactions between thick filaments, other than cross-bridges, or between thin and thick filaments are responsible for the catch contraction (10). In either of the latter cases, the cross-bridge (myosin head) was not involved.Recently we found that a twitchin fragment including the D2 phosphorylation site and its flanking Ig motifs (TWD2-S) interacted with myosin and actin in a phosphorylation-sensitive manner, and it was suggested that this trimeric complex contributed to tension maintenance in catch (11). TWD2-S bound to a region of the actin molecule known also to interact with loop 2 of myosin that is involved in the ATP-driven movement of myosin with actin (12). In the present study, we show that the myosin loop 2 binds to TWD2-S using competitive cosedimentation assays and isothermal titration calorimetry (ITC). These techniques were applied to also study in more detail the interactions of the twitchin-binding peptide of actin (identified in the previous study (11)). In addition, the effects of pH and Ca2+ on the binding of TWD2-S to myosin and actin were investigated.  相似文献   

6.
We have examined cyclic nucleotide-regulated phosphorylation of the neuronal type I inositol 1,4,5-trisphosphate (IP3) receptor immunopurified from rat cerebellar membranes in vitro and in rat cerebellar slices in situ. The isolated IP3 receptor protein was phosphorylated by both cAMP- and cGMP-dependent protein kinases on two distinct sites as determined by thermolytic phosphopeptide mapping, phosphopeptide 1, representing Ser-1589, and phosphopeptide 2, representing Ser-1756 in the rat protein (Ferris, C. D., Cameron, A. M., Bredt, D. S., Huganir, R. L., and Snyder, S. H. (1991) Biochem. Biophys. Res. Commun. 175, 192-198). Phosphopeptide maps show that cAMP-dependent protein kinase (PKA) labeled both sites with the same time course and same stoichiometry, whereas cGMP-dependent protein kinase (PKG) phosphorylated Ser-1756 with a higher velocity and a higher stoichiometry than Ser-1589. Synthetic decapeptides corresponding to the two phosphorylation sites (peptide 1, AARRDSVLAA (Ser-1589), and peptide 2, SGRRESLTSF (Ser-1756)) were used to determine kinetic constants for the phosphorylation by PKG and PKA, and the catalytic efficiencies were in agreement with the results obtained by in vitro phosphorylation of the intact protein. In cerebellar slices prelabeled with [32P]orthophosphate, activation of endogenous kinases by incubation in the presence of cAMP/cGMP analogues and specific inhibitors of PKG and PKA induced in both cases a 3-fold increase in phosphorylation of the IP3 receptor. Thermolytic phosphopeptide mapping of in situ labeled IP3 receptor by PKA showed labeling on the same sites (Ser-1589 and Ser-1756) as in vitro. In contrast to the findings in vitro, PKG preferentially phosphorylated Ser-1589 in situ. Because both PKG and the IP3 receptor are specifically enriched in cerebellar Purkinje cells, PKG may be an important IP3 receptor regulator in vivo.  相似文献   

7.
8.
Recent experiments on permeabilized anterior byssus retractor muscle (ABRM) of Mytilus edulis have shown that phosphorylation of twitchin releases catch force at pCa > 8 and decreases force at suprabasal but submaximum [Ca2+]. Twitchin phosphorylation decreases force with no detectable change in ATPase activity, and thus increases the energy cost of force maintenance at subsaturating [Ca2+]. Similarly, twitchin phosphorylation causes no change in unloaded shortening velocity (Vo) at any [Ca2+], but when compared at equal submaximum forces, there is a higher Vo when twitchin is phosphorylated. During calcium activation, the force-maintaining structure controlled by twitchin phosphorylation adjusts to a 30% Lo release to maintain force at the shorter length. The data suggest that during both catch and calcium-mediated submaximum contractions, twitchin phosphorylation removes a structure that maintains force with a very low ATPase, but which can slowly cycle during submaximum calcium activation. A quantitative cross-bridge model of catch is presented that is based on modifications of the Hai and Murphy (1988. Am. J. Physiol. 254:C99-C106) latch bridge model for regulation of mammalian smooth muscle.  相似文献   

9.
Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. This protein is an alternatively spliced product of the myosin heavy-chain gene containing the C-terminal rod part of myosin and a unique N-terminal domain. We have recently reported that this unique domain is a target for phosphorylation by gizzard smooth muscle myosin light chain kinase (MLCK) and molluscan twitchin, which contains a MLCK-like domain. To elucidate the role of myorod phosphorylation in catch muscle, a peptide corresponding to the specific N-terminal region of the protein was synthesized in phosphorylated and unphosphorylated form. We report, for the first time, that unphosphorylated full-length myorod and its unphosphorylated N-terminal synthetic peptide are able to interact with rabbit F-actin and thin filaments from molluscan catch muscle. The binding between thin filaments and the peptide was Ca2+-dependent. In addition, we found that phosphorylated N-terminal peptide of myorod has higher affinity for myosin compared to the unphosphorylated peptide. Together, these observations suggest the direct involvement of the N-terminal domain of myorod in the regulation of molluscan catch muscle.  相似文献   

10.
cAMP-dependent protein kinase (PKA) plays a crucial role in the release of the catch state of molluskan muscles, but the nature of the enzyme in such tissues is unknown. In this paper, we report the purification of the catalytic (C) subunit of PKA from the posterior adductor muscle (PAM) of the sea mussel Mytilus galloprovincialis. It is a monomeric protein with an apparent molecular mass of 40.0+/-2.0kDa and Stoke's radius 25.1+/-0.3A. The protein kinase activity of the purified enzyme was inhibited by both isoforms of the PKA regulatory (R) subunit that we had previously characterized in the mollusk, and also by the inhibitor peptide PKI(5-24). On the other hand, the main proteins of the contractile apparatus of PAM were partially purified and their ability to be phosphorylated in vitro by purified PKA C subunit was analyzed. The results showed that twitchin, a high molecular mass protein associated with thick filaments, was the better substrate for endogenous PKA. It was rapidly phosphorylated with a stoichiometry of 3.47+/-0.24mol Pmol(-1) protein. Also, catchin, paramyosin, and actin were phosphorylated, although more slowly and to a lesser extent. On the contrary, myosin heavy chain (MHC) and tropomyosin were not phosphorylated under the conditions used.  相似文献   

11.
Catch is characterized by maintenance of force with very low energy utilization in some invertebrate muscles. Catch is regulated by phosphorylation of the mini-titin, twitchin, and a catch component of force exists at all [Ca2+] except those resulting in maximum force. The mechanism responsible for catch force was characterized by determining how the effects of agents that inhibit the low to high force transition of the myosin cross-bridge (inorganic phosphate, butanedione monoxime, trifluoperazine, and blebbistatin) are modified by twitchin phosphorylation and [Ca2+]. In permeabilized anterior byssus retractor muscles from Mytilus edulis, catch force was identified as being sensitive to twitchin phosphorylation, whereas noncatch force was insensitive. In all cases, inhibition of the low to high force transition caused an increase in catch force. The same relationship exists between catch force and noncatch force whether force is varied by changes in [Ca2+] and/or agents that inhibit cross-bridge force production. This suggests that myosin in the high force state detaches catch force maintaining structures, whereas myosin in the low force state promotes their formation. It is unlikely that the catch structure is the myosin cross-bridge; rather, it appears that myosin interacts with the structure, most likely twitchin, and regulates its attachment and detachment.  相似文献   

12.
The PKD1-encoded protein, "polycystin-1", has a large N-terminal extracellular portion, multiple transmembrane domains, and a short intracellular C-terminal tail with four tyrosine residues and two putative sites for serine phosphorylation. Its function in kidney development and autosomal dominant polycystic kidney disease (ADPKD) is still unknown. We have subcloned the cDNA encoding the polycystin-1 C-terminal domain (PKD1-CTD) into a prokaryotic expression vector, and site-directed mutagenesis was performed to target the four tyrosine residues and four serine residues in two putative phosphorylation sites. In vitro phosphorylation assays were conducted on both wild type and mutant PKD1-CTD fusion proteins. It was found that the wild type PKD1-CTD and all mutant fusion proteins, except S4251G/S4252G, could be phosphorylated by lysates from cultured normal human renal collecting tubule (NHCT) cells, as well as by commercially purified cAMP-dependent protein kinase (PKA). The phosphorylation of the PKD1-CTD fusion protein by NHCT lysates was greatly enhanced by cAMP and its analog 8-Br-cAMP, and inhibited by the specific PKA inhibitors PKI(6-22) and H-89. Activators and inhibitors of protein kinase C (PKC) had no effects on the phosphorylation of the PKD1-CTD fusion protein. Using commercially purified pp60(c-src) (c-src) it was also shown that the PKD1-CTD fusion protein could be phosphorylated by c-src in vitro, and that this phosphorylation could be abolished by a mutation Y4237F. By comparing the amino acid sequence at 4249-4253 (RRSSR) with the consensus sequence for PKA phosphorylation (RRXSX), we suggest that the serine residue at 4252 is the target of phosphorylation by a cAMP-dependent protein kinase in NHCT cell lysates. In addition, we suggest that Y4237 might be phosphorylated by c-src in living cells.  相似文献   

13.
Spinophilin plays critical roles in regulating trafficking and signaling of the alpha(2)-adrenergic receptor (AR) both in vitro and in vivo (Wang, Q., Zhao, J., Brady, A. E., Feng, J., Allen, P. B., Lefkowitz, R. J., Greengard, P., and Limbird, L. E. (2004) Science 304, 1940-1944). In the present study, we demonstrate that protein kinase A (PKA) phosphorylation of spinophilin modulates the spinophilin-alpha(2A)AR interaction to regulate alpha(2A)AR internalization. Activation of PKA by forskolin abolishes the agonist-enhanced interaction between spinophilin and the alpha(2A)AR, and this event can be blocked by Ser --> Ala mutations at the PKA phosphorylation sites of spinophilin. In addition, a Ser --> Asp mutation that mimics the phosphorylated state at the PKA phosphorylation site Ser-177, which is located within the alpha(2A)AR binding region of spinophilin, is sufficient to block the spinophilin-alpha(2A)AR interaction in intact cells. In cells expressing mutant spinophilin carrying the S177D mutation, agonist-induced internalization of the alpha(2A)AR is accelerated and enhanced, as revealed by both intact cell enzyme-linked immunosorbent assay and quantitative immunofluorescent studies. Furthermore, activation of PKA by forskolin enhances agonist-induced internalization of the alpha(2A)AR in cells expressing wild type spinophilin, but not in cells lacking spinophilin or expressing the spinophilin mutant Sp177D. These results strongly support that PKA phosphorylation of spinophilin is functionally relevant in regulating alpha(2A)AR trafficking. Therefore, modulation of spinophilin-receptor interaction through phosphorylation of spinophilin may represent a novel mechanism whereby PKA regulates G protein-coupled receptor trafficking.  相似文献   

14.
Myorod is expressed exclusively in molluscan catch muscle and localizes on the surface of thick filaments together with twitchin and myosin. Myorod is an alternatively spliced product of the myosin heavy-chain gene that contains the C-terminal rod part of myosin and a unique N-terminal domain. The unique domain is a target for phosphorylation by gizzard smooth myosin light chain kinase (smMLCK) and, perhaps, molluscan twitchin, which contains a MLCK-like domain. To elucidate the role of myorod and its phosphorylation in the catch muscle, the effect of chromatographically purified myorod on the actin-activated Mg2+-ATPase activity of myosin was studied. We found that phosphorylation at the N-terminus of myorod potentiated the actin-activated Mg2+-ATPase activity of mussel and rabbit myosins. This potentiation occurred only if myorod was phosphorylated and introduced into the ATPase assay as a co-filament with myosin. We suggest that myorod could be related to the catch state, a function specific to molluscan muscle.  相似文献   

15.
We recently reported that APOE promoter activity is stimulated by cAMP, this effect being mediated by factor AP-2 [Garcia et al. (1996) J. Neurosci. 16, 7550-7556]. Here, we study whether cAMP-induced phosphorylation modulates the activity of AP-2. Recombinant AP-2 was phosphorylated in vitro by protein kinase A (PKA) at Ser239. Mutation of Ser239 to Ala abolished in vitro phosphorylation of AP-2 by PKA, but not the DNA binding activity of AP-2. Cotransfection studies showed that PKA stimulated the effect of AP-2 on the APOE promoter, but not that of the S239A mutant. Therefore, cAMP may modulate AP-2 activity by PKA-induced phosphorylation of this factor.  相似文献   

16.
Myorod, also known as catchin, a newly discovered component of molluscan smooth muscle thick filaments, is an alternative product of the myosin heavy chain gene. It contains a C-terminal rod part that is identical to that part of myosin and a unique N-terminal domain that is very small relative to the myosin head domain. The role of myorod in contraction or relaxation of this muscle type is unknown. In the present study we demonstrated that myorod was phosphorylated not only by a kinase endogenous to molluscan myosin and twitchin but also to vertebrate smooth muscle myosin light chain kinase (MLCK). The rates and maximal levels of phosphorylation were up to threefold higher than those observed by protein kinase A with clear optima at the physiological salt concentrations. Using a mild digestion with chymotrypsin we isolated an 11 kDa phosphopeptide and showed that the phosphorylation site was located at the N-terminal domain of myorod at Thr 141 position. The sequence around this site exhibited a high degree of similarity to that expected for the substrate recognition site of MLCK. The phosphorylation rates strongly depended on the ionic conditions indicating that this site could be readily sterically blocked during myorod polymerization. Another component of the thick filaments involved in regulation of the catch state, twitchin, was phosphorylated by MLCK and exhibited endogenous myorod kinase and MLCK activities. A possible role of these phosphorylation reactions in the regulation of molluscan smooth muscles is discussed.  相似文献   

17.
Enteropathogenic Escherichia coli virulence is dependent on delivery of the translocated intimin receptor protein (Tir) into host cells. Tir phosphorylation on a single tyrosine (Tyr-474) is essential in mediating cytoskeletal rearrangement correlated with disease. Tir is also phosphorylated on other residues, with cAMP-dependent kinase (PKA) modification shown to play a role in Tir function. However, the mechanism by which nontyrosine phosphorylation affects Tir function remains unclear. In this study, analytical ultracentrifugation, SDS and native gel electrophoresis revealed that both Tir and its C-terminal domain (residues 385-550 of Tir that include the PKA substrate sites) exist in an equilibrium of monomers, dimers, and in the case of Tir, higher oligomers. PKA phosphorylation (1:300, PKA/C-Tir, mol/mol) shifted the equilibrium of C-Tir, but not Tir, predominantly to the dimeric state, whereas, at 100-fold higher concentrations of PKA the phosphorylated C-Tir was largely monomeric. This monomeric state was also produced at the lower PKA concentration and physiological ionic strength. Phosphorylation-mediated effects were achieved without significant changes in secondary structure as determined by circular dichroism spectroscopy. The data presented indicate that PKA-mediated phosphorylation induces changes in the association properties of the C-terminal domain of Tir that may facilitate Tir-Tir interactions and subsequently C-Tir-host protein interactions in vivo.  相似文献   

18.
cAMP-dependent protein kinase (PKA) can modulate synaptic transmission by acting directly on the neurotransmitter secretory machinery. Here, we identify one possible target: syntaphilin, which was identified as a molecular clamp that controls free syntaxin-1 and dynamin-1 availability and thereby regulates synaptic vesicle exocytosis and endocytosis. Deletion mutation and site-directed mutagenesis experiments pinpoint dominant PKA phosphorylation sites to serines 43 and 56. PKA phosphorylation of syntaphilin significantly decreases its binding to syntaxin-1A in vitro. A syntaphilin mutation of serine 43 to aspartic acid (S43D) shows similar effects on binding. To characterize in vivo phosphorylation events, we generated antisera against a peptide of syntaphilin containing a phosphorylated serine 43. Treatment of rat brain synaptosomes or syntaphilin-transfected HEK 293 cells with the cAMP analogue BIMPS induces in vivo phosphorylation of syntaphilin and inhibits its interaction with syntaxin-1 in neurons. To determine whether PKA phosphorylation of syntaphilin is involved in the regulation of Ca(2+)-dependent exocytosis, we investigated the effect of overexpression of syntaphilin and its S43D mutant on the regulated secretion of human growth hormone from PC12 cells. Although expression of wild type syntaphilin in PC12 cells exhibits significant reduction in high K(+)-induced human growth hormone release, the S43D mutant fails to inhibit exocytosis. Our data predict that syntaphilin could be a highly regulated molecule and that PKA phosphorylation could act as an "off" switch for syntaphilin, thus blocking its inhibitory function via the cAMP-dependent signal transduction pathway.  相似文献   

19.
Molluscan catch muscles can maintain tension with low or even no energy utilization, and therefore, they represent ideal models for studying energy-saving holding states. For many decades it was assumed that catch is due to a simple slowing of the force-generating myosin head cross-bridge cycles. However, recently evidences increased suggesting that catch is rather caused by passive structures linking the myofilaments in a phosphorylation-dependent manner. One possible linkage structure is the titin-like thick filament protein twitchin, which could form bridges to the thin filaments. Twitchin is known to regulate the catch state depending on its phosphorylation state. Here, we found that twitchin induces a catch-like stiffness in skinned human skeletal muscle fibres, when these fibres are exposed to this protein. Subsequent phosphorylation of twitchin reduces the stiffness. These findings support the assumption that catch of molluscan smooth muscle involves twitchin linkages between thick and thin filaments.  相似文献   

20.
The Src homology 2 domain-containing inositol 5′-phosphatase 1 (SHIP1) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate to phophatidylinositol 3,4-bisphosphate in hematopoietic cells to regulate multiple cell signaling pathways. SHIP1 can be phosphorylated by the cyclic AMP-dependent protein kinase (PKA), resulting in an increase in SHIP1 activity (Zhang, J., Walk, S. F., Ravichandran, K. S., and Garrison, J. C. (2009) J. Biol. Chem. 284, 20070–20078). Using a combination of approaches, we identified the serine residue regulating SHIP1 activity. After mass spectrometric identification of 17 serine and threonine residues on SHIP1 as being phosphorylated by PKA in vitro, studies with truncation mutants of SHIP1 narrowed the phosphorylation site to the catalytic region between residues 400 and 866. Of the two candidate phosphorylation sites located in this region (Ser440 and Ser774), only mutation of Ser440 to Ala abolished the ability of PKA to phosphorylate the purified, catalytic domain of SHIP1 (residues 401–866). Mutation of Ser440 to Ala in full-length SHIP1 abrogated the ability of PKA to increase the activity of SHIP1 in mammalian cells. Using flow cytometry, we found that the PKA activator, Sp-adenosine 3′,5′-cyclic monophosphorothioate triethylammonium salt hydrate (Sp-cAMPS) blunted the phosphorylation of Akt downstream of B cell antigen receptor engagement in SHIP1-null DT40 B lymphocytes expressing native mouse SHIP1. The inhibitory effect of Sp-cAMPS was absent in cells expressing the S440A mutant of SHIP1. These results suggest that activation of SHIP1 by PKA via phosphorylation on Ser440 is an important regulatory event in hematopoietic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号