首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli O157 and six additional serogroups of Shiga toxin-producing E. coli (STEC) (O26, O45, O103, O111, O121, and O145) account for the majority of STEC infections in the United States. In this study, O serogroup-specific genes (wzx or wzy) were used to design loop-mediated isothermal amplification (LAMP) assays for the rapid and specific detection of these leading STEC serogroups. The assays were evaluated in pure culture and spiked food samples (ground beef, beef trim, lettuce, and spinach) and compared with real-time quantitative PCR (qPCR). No false-positive or false-negative results were observed among 120 bacterial strains used to evaluate assay specificity. The limits of detection of various STEC strains belonging to these target serogroups were approximately 1 to 20 CFU/reaction mixture in pure culture and 10(3) to 10(4) CFU/g in spiked food samples, which were comparable to those of qPCR. Standard curves generated suggested good linear relationships between STEC cell numbers and LAMP turbidity signals. In various beef and produce samples spiked with two low levels (1 to 2 and 10 to 20 CFU/25 g) of respective STEC strains, the LAMP assays consistently achieved accurate detection after 6 to 8 h of enrichment. In conclusion, these newly developed LAMP assays may facilitate rapid and reliable detection of the seven major STEC serogroups in ground beef, beef trim, and produce during routine sample testing.  相似文献   

2.
Aims: We compared the efficiency of universal pre‐enrichment broth (UPB), modified Escherichia coli broth containing novobiocin (mEC + n), modified Tryptic Soy Broth (mTSB) and mTSB with novobiocin (mTSB + n) for the enrichment of non‐O157 Shiga‐toxin‐producing E. coli (STEC). Methods and Results: Freeze‐injured and control non‐O157 STEC (O91, O103, O111, O119, O121, O145 and O165) strains were used to artificially contaminate beef and radish sprout samples, which were then cultivated in each of the four enrichment media. After incubation, STEC strains were detected by loop‐mediated isothermal amplification (LAMP) and plating assays. Enrichment in mEC + n was least effective for facilitating the detection of uninjured STEC strains in radish sprouts, while mTSB + n was least effective for enriching freeze‐injured non‐O157 STEC strains from beef samples for detection by LAMP assay. UPB and mTSB were superior to mEC + n and mTSB + n for the enrichment of non‐O157 STEC from food samples. Conclusions: The enrichment of non‐O157 STEC was negatively affected by the addition of novobiocin to enrichment broths. Significance and Impact of the study: Novobiocin should not be added to media used for the enrichment of non‐O157 STEC in food when cell injury is anticipated.  相似文献   

3.
During a 2.5-year survey of 33 farms and ranches in a major leafy greens production region in California, 13,650 produce, soil, livestock, wildlife, and water samples were tested for Shiga toxin (stx)-producing Escherichia coli (STEC). Overall, 357 and 1,912 samples were positive for E. coli O157:H7 (2.6%) or non-O157 STEC (14.0%), respectively. Isolates differentiated by O-typing ELISA and multilocus variable number tandem repeat analysis (MLVA) resulted in 697 O157:H7 and 3,256 non-O157 STEC isolates saved for further analysis. Cattle (7.1%), feral swine (4.7%), sediment (4.4%), and water (3.3%) samples were positive for E. coli O157:H7; 7/32 birds, 2/145 coyotes, 3/88 samples from elk also were positive. Non-O157 STEC were at approximately 5-fold higher incidence compared to O157 STEC: cattle (37.9%), feral swine (21.4%), birds (2.4%), small mammals (3.5%), deer or elk (8.3%), water (14.0%), sediment (12.3%), produce (0.3%) and soil adjacent to produce (0.6%). stx1, stx2 and stx1/stx2 genes were detected in 63%, 74% and 35% of STEC isolates, respectively. Subtilase, intimin and hemolysin genes were present in 28%, 25% and 79% of non-O157 STEC, respectively; 23% were of the “Top 6″ O-types. The initial method was modified twice during the study revealing evidence of culture bias based on differences in virulence and O-antigen profiles. MLVA typing revealed a diverse collection of O157 and non-O157 STEC strains isolated from multiple locations and sources and O157 STEC strains matching outbreak strains. These results emphasize the importance of multiple approaches for isolation of non-O157 STEC, that livestock and wildlife are common sources of potentially virulent STEC, and evidence of STEC persistence and movement in a leafy greens production environment.  相似文献   

4.
The objectives of this study were to investigate the presence of Shiga toxin-producing Escherichia coli (STEC) strains in wildlife that have spread in Europe, living near human settlements; to analyze their epidemiological role in maintenance and transmission to domestic livestock; and to assess the potential health risk of wildlife-carried strains. STEC strains were recovered from 53% of roe deer, 8.4% of wild boars, and 1.9% of foxes sampled in the northwest of Spain (Galicia). Of the 40 serotypes identified, 21 were classified as seropathotypes associated with human disease, accounting for 81.5% of the wildlife-carried STEC strains, including the enterohemorrhagic serotypes O157:H7-D-eae-γ1, O26:[H11]-B1-eae-β1, O121:H19-B1-eae-ε1, and O145:[H28]-D-eae-γ1. None of the wildlife-carried strains belonged to the highly pathogenic serotype O104:H4-B1 from the recent Germany outbreak. Forty percent of wildlife-carried STEC strains shared serotypes, phylogroups, intimin types, and Stx profiles with isolates from human patients from the same geographic area. Furthermore, wildlife-carried strains belonging to serotypes O5:HNM-A, O26:[H11]-B1, O76:H19-B1, O145:[H28]-D, O146:H21-B1, and O157:H7-D showed pulsed-field gel electrophoresis (PFGE) profiles with >85% similarity to human-pathogenic STEC strains. We also found a high level of similarity among STEC strains of serotypes O5:HNM-A, O26:[H11]-B1, and O145:HNM-D of bovine (feces and beef) and wildlife origins. Interestingly, O146:H21-B1, the second most frequently detected serotype in this study, is commonly associated with human diarrhea and isolated from beef and vegetables sold in Galicia. Importantly, at least 3 STEC isolates from foxes (O5:HNM-A-eae-β1, O98:[H21]-B1-eae-ζ1, and O146:[H21]-B1) showed characteristics similar to those of human STEC strains. In conclusion, roe deer, wild boar, and fox in Galicia are confirmed to be carriers of STEC strains potentially pathogenic for humans and seem to play an important role in the maintenance of STEC.  相似文献   

5.
Shiga toxin-producing Escherichia coli (STEC) strains are important food-borne pathogens capable of causing hemolytic-uremic syndrome. STEC O157:H7 strains cause the majority of severe disease in the United States; however, there is a growing concern for the amount and severity of illness attributable to non-O157 STEC. Recently, the Food Safety and Inspection Service (FSIS) published the intent to regulate the presence of STEC belonging to serogroups O26, O45, O103, O111, O121, and O145 in nonintact beef products. To ensure the effective control of these bacteria, sensitive and specific tests for their detection will be needed. In this study, we identified single nucleotide polymorphisms (SNPs) in the O-antigen gene cluster that could be used to detect STEC strains of the above-described serogroups. Using comparative DNA sequence analysis, we identified 22 potentially informative SNPs among 164 STEC and non-STEC strains of the above-described serogroups and designed matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) assays to test the STEC allele frequencies in an independent panel of bacterial strains. We found at least one SNP that was specific to each serogroup and also differentiated between STEC and non-STEC strains. Differences in the DNA sequence of the O-antigen gene cluster corresponded well with differences in the virulence gene profiles and provided evidence of different lineages for STEC and non-STEC strains. The SNPs discovered in this study can be used to develop tests that will not only accurately identify O26, O45, O103, O111, O121, and O145 strains but also predict whether strains detected in the above-described serogroups contain Shiga toxin-encoding genes.  相似文献   

6.
There has been no culture method of choice for detecting non-O157 Shiga toxin-producing Escherichia coli strains (STEC) because of their biochemical diversity The aim of this study was the assessment of verotoxin gene detection (VT1/VT2) within STEC PCR compared with the Vero cells cytotoxicity among O157 and non-O157 STEC serotypes. Stool cultures were performed on Tryptic Soy Broth and sorbitol MacConkey agar with cefixitime and tellurite supplements which were identified as Escherichia coli (E. coli) by BBL crystal. Further identifications were performed including verotoxin production assessment by Vero cells cytotoxicity assay, PCR for specific VT1/VT2 genotyping, and isolates were plated on blood agar and tested for enterohemolysis. Vero cells cytotoxicity assay revealed that 58 of E. coli isolates (71.6%) were STEC. In PCR, 33 (56.9%) of the 58 strains were positive for the VT2 gene, 24 (41.4%) were positive for the VT1 gene and one isolate was positive for both genes. In comparison to Vero cells cytotoxicity, the sensitivity, specificity of PCR were 100%. In comparative study between verotoxin assessment by Vero cells cytotoxicity and enterohemolytic activity, concordance positive results between both were 53 (91.4%). The most common serogroups of STEC were O157 (33%) and O26 (20%). From this study we can conclude that enterohemolysin production can be used as surrogate marker for STEC. The most rapid and promising approach for detection of STEC is by molecular method.  相似文献   

7.
The main pathogenic enterohemorrhagic Escherichia coli (EHEC) strains are defined as Shiga toxin (Stx)-producing E. coli (STEC) belonging to one of the following serotypes: O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Each of these five serotypes is known to be associated with a specific subtype of the intimin-encoding gene (eae). The objective of this study was to evaluate the prevalence of bovine carriers of these “top five” STEC in the four adult cattle categories slaughtered in France. Fecal samples were collected from 1,318 cattle, including 291 young dairy bulls, 296 young beef bulls, 337 dairy cows, and 394 beef cows. A total of 96 E. coli isolates, including 33 top five STEC and 63 atypical enteropathogenic E. coli (aEPEC) isolates, with the same genetic characteristics as the top five STEC strains except that they lacked an stx gene, were recovered from these samples. O157:H7 was the most frequently isolated STEC serotype. The prevalence of top five STEC (all serotypes included) was 4.5% in young dairy bulls, 2.4% in young beef bulls, 1.8% in dairy cows, and 1.0% in beef cows. It was significantly higher in young dairy bulls (P < 0.05) than in the other 3 categories. The basis for these differences between categories remains to be elucidated. Moreover, simultaneous carriage of STEC O26:H11 and STEC O103:H2 was detected in one young dairy bull. Lastly, the prevalence of bovine carriers of the top five STEC, evaluated through a weighted arithmetic mean of the prevalence by categories, was estimated to 1.8% in slaughtered adult cattle in France.  相似文献   

8.
AIMS: To determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) and serotypes and virulence markers of the STEC isolates from beef and dairy cattle in Rio Grande do Sul, Brazil. METHODS AND RESULTS: Faecal samples from beef cattle were collected at slaughterhouses. The isolates were submitted to colony hybridization assay with specific DNA probes for stx1, stx2 and eae genes, and serotyped for the identification of O and H antigens. Thirty-nine per cent of beef cattle surveyed harboured at least one STEC strain. Among the distinct serotypes identified, 10 were shared by both beef and dairy cattle. Most of the strains isolated harboured stx2. Genotypic and phenotypic profiles allowed the identification of 34 and 31 STEC strains, isolated from beef and dairy cattle, respectively. Serotypes O10:H14, O15:H21, O96:H21, O119:H4, O124:H11, O128:H21, O137:H-, O141:H19, O159:H42, O160:H2 and O177:H11, identified in this study, have not been previously reported as STEC isolated from cattle. CONCLUSIONS: Cattle are an important reservoir of STEC strains associated with human diseases in South America. SIGNIFICANCE AND IMPACT OF THE STUDY: Determining the prevalence, genotypic profile and serotypes of STEC strains isolated from cattle enables the prediction of possible risk for public health.  相似文献   

9.
AIMS: To provide information on detection of Shiga toxin-producing Escherichia coli (STEC) in retail-minced beef using an approach combining (i) PCR-based techniques and automated immunoassay for stx screening and detection of the five major serogroups associated with human infection, and (ii) immunomagnetic separation (IMS) and colony hybridization assays for bacterial strain isolation. METHODS AND RESULTS: Twenty-seven out of 164 minced beef samples were stx-positive by PCR-ELISA, nine of which were also positive by real-time PCR for at least one marker of the five main serogroups tested (O26, O103, O111, O145 and O157). Two E. coli O103 stx-negative strains were isolated from two out of 10 IMS and nine STEC strains that did not belong to the five main serogroups were isolated by colony hybridization. CONCLUSIONS: PCR techniques are applicable for rapid screening of samples containing both an stx gene and an O-group marker of the five main pathogenic STEC serogroups. Isolation of STEC strains belonging to the main non-O157 serogroups remains difficult. SIGNIFICANCE AND IMPACT OF THE STUDY: This study presents an evaluation of a multi-faceted approach for the detection of the most frequently reported human pathogenic STEC serogroups. The advantages and limits of this strategy are presented.  相似文献   

10.
AIMS: To study the incidence of Shiga-toxigenic Escherichia coli (STEC) in seafoods from India. METHODS AND RESULTS: Escherichia coli isolated from various seafoods such as fresh fish, clams and water were screened for the presence of stx, hlyA and rfbO157 genes by PCR; 5% of clams and 3% of fresh fish samples were positive for non-O157 STEC. CONCLUSIONS: STEC is prevalent in seafoods in India, and non-O157 serotype is more common. SIGNIFICANCE AND IMPACT OF THE STUDY: Seafood could be a vehicle for transmission of STEC even in tropical countries.  相似文献   

11.
In Mellassine (a major city in the state of Tunis) and Ben Arous state (south east of Tunis), a total of 212 stool samples were collected from children and adults (symptomatic and asymptomatic groups) between November 2001 and November 2004. Three hundred and twenty-seven E. coli strains were isolated and studied, to look for shiga toxin-producing Escherichia coli (STEC) strains, which were further analysed to investigate and determine clonal relationship among Tunisian STEC strains isolated from different sources (diarrheal cases and food products). They were analysed to characterize their serotypes, virulence genes by PCR, cytotoxic effect on Vero cell, plasmid profiles, and pulsed-field gel electrophoresis (PFGE) patterns. Eleven isolates (10 nontypeable, one O157:H7) carried stx gene and shared Stx restriction fragment length polymorphism (RFLP) patterns (stx1 ( + ), stx2 ( + )). Seven of these strains were isolated from acute diarrheal cases, and four were isolated from a control group (among which the only isolated STEC O157:H7). Two of the STEC strains harboured both eae and ehxA genes. Analysis of the cytotoxic effect on Vero cells showed that a correlation exists between carrying stx1 ( + ), stx2 ( + ) genes and cytotoxicity. Also a correlation was noticed between STEC strains recovered from different sources regarding plasmid profiles and PFGE patterns. All stool samples positive for STEC were nonbloody. None of the STEC-positive patients developed severe diseases. These data demonstrate that although STEC is not a major cause of acute diarrhea in Tunis, it should not be overlooked. Measures should be taken to improve the detection and isolation of STEC from acute diarrheal cases as well as carriers.  相似文献   

12.
We report the frequency of the different diarrheagenic Escherichia coli (DEC) categories isolated from children with acute endemic diarrhea in Salvador, Bahia. The E. coli isolates were investigated by colony blot hybridization with the following genes probes: eae, EAF, bfpA, Stx1, Stx2, ST-Ih, ST-Ip, LT-I, LT-II, INV, and EAEC, as virulence markers to distinguish typical and atypical EPEC, EHEC/STEC, ETEC, EIEC, and EAEC. Seven of the eight categories of DEC were detected. The most frequently isolated was atypical EPEC (10.1%) followed by ETEC (7.5%), and EAEC (4.2%). EHEC, STEC, EIEC, and typical EPEC were each detected once. The strains of ETEC, EAEC, and atypical EPEC belonged to a wide variety of serotypes. The serotypes of the others categories were O26:H11 (EHEC), O21:H21 (STEC), O142:H34 (typical EPEC), and O:H55 (EIEC). We also present the clinical manifestations and other pathogenic species observed in children with DEC. This is the first report of EHEC and STEC in Salvador, and one of the first in Brazil.  相似文献   

13.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains are a diverse group of food-borne pathogens with various levels of virulence for humans. In this study, we describe the use of a combination of multiple real-time PCR assays for the screening of 400 raw-milk cheeses for the five main pathogenic STEC serotypes (O26:H11, O103:H2, O111:H8, O145:H28, and O157:H7). The prevalences of samples positive for stx, intimin-encoding gene (eae), and at least one of the five O group genetic markers were 29.8%, 37.3%, and 55.3%, respectively. The H2, H7, H8, H11, and H28 fliC alleles were highly prevalent and could not be used as reliable targets for screening. Combinations of stx, eae variants, and O genetic markers, which are typical of the five targeted STEC serotypes, were detected by real-time PCR in 6.5% of the cheeses (26 samples) and included stx-wzx(O26)-eae-β1 (4.8%; 19 samples), stx-wzx(O103)-eae-ε (1.3%; five samples), stx-ihp1(O145)-eae-γ1 (0.8%; three samples), and stx-rfbE(O157)-eae-γ1 (0.3%; one sample). Twenty-eight immunomagnetic separation (IMS) assays performed on samples positive for these combinations allowed the recovery of seven eaeβ1-positive STEC O26:H11 isolates, whereas no STEC O103:H2, O145:H28, or O157:H7 strains could be isolated. Three stx-negative and eaeβ1-positive E. coli O26:[H11] strains were also isolated from cheeses by IMS. Colony hybridization allowed us to recover STEC from stx-positive samples for 15 out of 45 assays performed, highlighting the difficulties encountered in STEC isolation from dairy products. The STEC O26:H11 isolates shared the same virulence genetic profile as enterohemorrhagic E. coli (EHEC) O26:H11, i.e., they carried the virulence-associated genes EHEC-hlyA, katP, and espP, as well as genomic O islands 71 and 122. Except for one strain, they all contained the stx1 variant only, which was reported to be less frequently associated with human cases than stx2. Pulsed-field gel electrophoresis (PFGE) analysis showed that they displayed high genetic diversity; none of them had patterns identical to those of human O26:H11 strains investigated here.  相似文献   

14.
Some Shiga toxin-producing Escherichia coli (STEC) strains produce extracellular cellulose, a long polymer of glucose with β-1-4 glycosidic bonds. This study evaluated the efficacies of selected enzymatic and chemical treatments in inactivating STEC and degrading/removing the cellulose on STEC surfaces. Six cellulose-producing STEC strains were treated with cellulase (0.51 to 3.83 U/15 ml), acetic and lactic acids (2 and 4%), as well as an acidic and alkaline sanitizer (manufacturers' recommended concentrations) under appropriate conditions. Following each treatment, residual amounts of cellulose and surviving populations of STEC were determined. Treatments with acetic and lactic acids significantly (P < 0.05) reduced the populations of STEC, and those with lactic acid also significantly decreased the amounts of cellulose on STEC. The residual amounts of cellulose on STEC positively correlated to the surviving populations of STEC after the treatments with the organic acids (r = 0.64 to 0.94), and the significance of the correlations ranged from 83 to 99%. Treatments with cellulase and the sanitizers both degraded cellulose. However, treatments with cellulase had no influence on the fate of STEC, and those with the sanitizers reduced STEC cell populations to undetectable levels. Thus, the correlations between the residual amounts of cellulose and the surviving populations of STEC caused by these two treatments were not observed. The results suggest that the selected enzymatic and chemical agents degraded and removed the cellulose on STEC surfaces, and the treatments with organic acids and sanitizers also inactivated STEC cells. The amounts of cellulose produced by STEC strains appear to affect their susceptibilities to certain sanitizing treatments.  相似文献   

15.
A total of 107 Shiga toxin-producing Escherichia coli strains (STEC) isolated from different origins in S?o Paulo, Brazil, and belonging to different serotypes were characterized regarding stx subtypes and susceptibility to antimicrobial agents. Most of the human STEC strains harbored stx1 (85.7%), while stx2, associated or not to stx1, was identified preferentially in the animal and food strains. None of the STEC strains carried stx1c. Some genotypes occurred exclusively among strains of bovine origin as stx2c, stx1+2+2c (16.5% each), and stx2d (0.9%), whereas stx2+2c2vha) was only identified among the O157:H7 human strains. Moreover, the stx(2c2vhb) subtype was found more frequently among bovine than human strains (39% vs. 4.8%). The highest frequencies of susceptibility to antimicrobial agents were observed among bovine (87%) and food (100%) STEC strains, while 47.6% of the human isolates were resistant to at least one drug. Multiresistance occurred among O111 STEC strains from human and bovine origin. The antimicrobials to which resistance was most frequently observed were tetracycline (90%) and streptomycin (75%) among human strains, and also sulphazotrin (88%) in animal strains. A few serotypes were commonly identified among STEC strains isolated from diverse sources in Brazil, but in general the strains presented distinct stx subtypes and/or antimicrobial resistance profiles.  相似文献   

16.
Shiga toxin 2 (Stx2)-producing Escherichia coli (STEC) O104:H4 caused one of the world's largest outbreaks of hemorrhagic colitis and hemolytic uremic syndrome in Germany in 2011. These strains have evolved from enteroaggregative E. coli (EAEC) by the acquisition of the Stx2 genes and have been designated enteroaggregative hemorrhagic E. coli. Nucleotide sequencing has shown that the Stx2 gene is carried by prophages integrated into the chromosome of STEC O104:H4. We studied the properties of Stx2-encoding bacteriophages which are responsible for the emergence of this new type of E. coli pathogen. For this, we analyzed Stx bacteriophages from STEC O104:H4 strains from Germany (in 2001 and 2011), Norway (2006), and the Republic of Georgia (2009). Viable Stx2-encoding bacteriophages could be isolated from all STEC strains except for the Norwegian strain. The Stx2 phages formed lysogens on E. coli K-12 by integration into the wrbA locus, resulting in Stx2 production. The nucleotide sequence of the Stx2 phage P13374 of a German STEC O104:H4 outbreak was determined. From the bioinformatic analyses of the prophage sequence of 60,894 bp, 79 open reading frames were inferred. Interestingly, the Stx2 phages from the German 2001 and 2011 outbreak strains were found to be identical and closely related to the Stx2 phages from the Georgian 2009 isolates. Major proteins of the virion particles were analyzed by mass spectrometry. Stx2 production in STEC O104:H4 strains was inducible by mitomycin C and was compared to Stx2 production of E. coli K-12 lysogens.  相似文献   

17.
Retail raw meat was sampled for the presence of Shiga toxin-producing Escherichia coli (STEC) using enrichment culture and Vero cell assay. The STEC obtained were serotyped and tested for enterohaemolysin (Ehly) production and the eae gene. The presence of Shiga toxin genes (stx) was confirmed by polymerase chain reaction. A total of 18 STEC were isolated accounting for 12% of beef, 17% of lamb and 4% of pork samples. Five isolates produced Ehly but none possessed the eae gene. Five isolates were identified which possessed the stx2 gene and belonged to serotypes associated with severe infection.  相似文献   

18.
This study reports two novel selective differential media. A first differential medium can be applied in methods for the isolation of non-O157 Shiga toxin-producing Escherichia coli (STEC) serotypes (O26, O103, O111 and O145) from food or faeces. A second differential medium was designed for both sorbitol-positive and -negative O157 STEC strains. Selective differential media are based on a chromogenic compound to signal beta-galactosidase activity and one or more fermentative carbon sources. The chromogenic marker and carbohydrates were combined with a pH indicator and several inhibitory components, which resulted in highly specific differentiation media. Consecutive use of a serotype-dependent choice of confirmation media resulted in a very low incidence of false-positive isolates when comparing clinical STEC strains with a collection of commensal E. coli strains.  相似文献   

19.
Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event.  相似文献   

20.
Two separate animal populations consisting of a herd of cattle (19 animals) and a flock of sheep (25 animals) were investigated for strains of Escherichia coli producing Shiga toxins (STEC) over a time period of 6 months. Thirty-three STEC were isolated from 63.2% of cattle and grouped into 11 serotypes and eight electrophoretic types (ETs) by multilocus enzyme analysis. In sheep, 88% of the animals excreted STEC (n = 67 isolates) belonging to 17 different serotypes and 12 different ETs. STEC from cattle and sheep differed with respect to serotype, and only 4 of the 16 ETs occurred in both animal populations. In cattle, ET14 (O116:H21) strains predominated, whereas other STEC serotypes occurred only sporadically. The predominating STEC types in sheep were ET4 (O125 strains), ET11 (O128:H2 and others), and ET14 (O146:H21). In contrast to their diversity, STEC originating from the same animal population were similar with respect to Shiga toxin (stxy genes. Almost all STEC isolated from cattle were positive for stx2 and stx2c; only one was positive for stx1. In sheep, almost all STEC isolated were positive for stx1 and stx2, whereas stx2c was not found. XbaI-digested DNAs of genetically closely related O146:H21 strains have different restriction profiles which were associated with size alterations in XbaI fragments hybridizing with stx1- and stx2-specific DNA probes. Our results indicate that stx-encoding bacteriophages might be the origin of the genetic heterogeneity in STEC from animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号