首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用实验动物或细胞模型完全模拟人类的中风十分困难,动物模型与临床的拟合具有重要意义。本文对目前缺血性中风动物模型研究中的实验动物选择、模型评价标准及造模方法 ,以及主要局灶缺血模型的优缺点进行述评,为缺血性中风的基础和应用研究选择合适的实验动物模型提供参考。  相似文献   

2.
The current review focuses on pathophysiology, animal models and molecular analysis of stroke and retinal ischemia, and the role of stem cells in recovery of these disease conditions. Research findings associated with ischemic stroke and retinal ischemia have been discussed, and efforts towards prevention and limiting the recurrence of ischemic diseases, as well as emerging treatment possibilities with endothelial progenitor cells (EPCs) in ischemic diseases, are presented. Although most neurological diseases are still not completely understood and reliable treatment is lacking, animal models provide a major step in validating novel therapies. Stem cell approaches constitute an emerging form of cell-based therapy to treat ischemic diseases since it is an attractive source for regenerative therapy in the ischemic diseases. In this review, we highlight the advantages and limitations of this approach with a focus on key observations from preclinical animal studies and clinical trials. Further research, especially on treatment with EPCs is warranted.  相似文献   

3.
4.
The use of rodent models for research and testing on endocrine-active compounds necessitates an awareness of a number of laboratory animal science issues to standardize bioassay methods and facilitate reproducibility of results between laboratories. These issues are not unique to endocrine research but are particularly important in this field due to the complexities and interdependencies of the endocrine system, coupled with the inherently sensitive and variable nature of physiological endpoints. Standardization of animal models and the control of animal environments depend on the establishment of strong scientific partnerships between research investigators and laboratory animal scientists. Laboratory animal care and use programs are becoming increasingly complex and are constantly changing, fueled in part by technological advances, changes in regulations concerning animal care and use, and economic pressures. Since the early 1980s, many institutions have moved to centralization of animal facility operations concomitant with numerous changes in housing systems, barrier concepts, equipment, and engineering controls of the macro- and microenvironment. These and other changes can have an impact on animals and the conduct of endocrine experiments. Despite the potential impact of animal care and use procedures on research endpoints, many investigators are surprisingly naive to the animal facility conditions that can affect in vivo studies. Several key animal care and use issues that are important to consider in endocrine experiments with rodent models are described.  相似文献   

5.
Ischemic stroke represents a leading cause of morbidity and mortality in the developed world. This disabling and sometimes fatal event puts an ever increasing burden on the family members and medical professionals who care for stroke victims. Preclinical ischemic stroke research has predominantly utilized young adult, healthy animals, a clear discrepancy when considering the clinical population affected by stroke. A broad spectrum of risk factors such as age, obesity, diabetes, and hypertension has been associated with an increased stroke risk. The effect of these comorbidities on both stroke pathophysiology and outcome has not been emphasized and has been recognized as a shortcoming of preclinical studies. By addressing these conditions in experimental models of ischemic stroke, it may be possible to more accurately represent the clinical scenario and improve therapeutic translation from bench-to-bedside. In this work, we review many of the risk factors associated with increased stroke risk, particularly as each risk factor relates to inflammation. Additionally, we explore potential animal models that could be utilized in identifying the contribution of these risk factors to stroke outcome. By investigating the risk factors for stroke and how these may alter stroke pathophysiology, the present discrepancies between preclinical studies and the clinical reality can be reconciled in an effort to improve therapeutic development and translation from bench-to-bedside.  相似文献   

6.
Animal models of movement disorders can present special challenges for the research institutions that use them. Such models often affect the animals' ability to ambulate and perform normal body functions, and these potential effects on health and well-being mandate additional steps to ensure humane animal care and use. Indeed, the appropriate level of care for these models may call for actions that go beyond what is required or considered standard for other protocols. A proactive team approach to animal use protocol development and animal management is important. Through the commitment and involvement of the entire team-researchers, facility personnel, and institutional animal care and use committee members--institutions that use these valuable models can ensure both the fulfillment of research objectives and the implementation of the best practices for animal care. Among the most commonly used animal models of movement disorder are models of stroke, brain and spinal cord injury, dystonia, Parkinson's disease, and Huntington's disease. Despite their relatively wide use, there is very little in the literature that describes the specific needs of individual models and the challenges those needs may present in today's regulatory environment. In this article, we discuss animal use considerations and provide the available animal care information on specific models. Interested readers are also referred to the additional information in the accompanying articles in this issue of ILAR Journal.  相似文献   

7.
Stroke remains the leading cause of adult disability, with upper extremity motor impairments being the most prominent functional deficit in surviving stroke victims. The development of animal models of upper extremity dysfunction after stroke has enabled investigators to examine the neural mechanisms underlying rehabilitation-dependent motor recovery as well as the efficacy of various adjuvant therapies for enhancing recovery. Much of this research has focused on rat models of forelimb motor function after experimentally induced ischemic or hemorrhagic stroke. This article provides a review of several different methods for inducing stroke, including devascularization, photothrombosis, chemical vasoconstriction, and hemorrhagia. We also describe a battery of sensorimotor tasks for assessing forelimb motor function after stroke. The tasks range from measures of gross motor performance to fine object manipulation and kinematic movement analysis, and we offer a comparison of the sensitivity for revealing motor deficits and the amount of time required to administer each motor test. In addition, we discuss several important methodological issues, including the importance of testing on multiple tasks to characterize the nature of the impairments, establishing stable baseline prestroke motor performance measures, dissociating the effects of acute versus chronic testing, and verifying lesion location and size. Finally, we outline general considerations for conducting research using rat models of stroke and the role that these models should play in guiding clinical trials.  相似文献   

8.
Data from pre-clinical and clinical studies provide evidence that colony-stimulating factors (CSFs) and other growth factors (GFs) can improve stroke outcome by reducing stroke damage through their anti-apoptotic and anti-inflammatory effects, and by promoting angiogenesis and neurogenesis. This review provides a critical and up-to-date literature review on CSF use in stroke. We searched for experimental and clinical studies on haemopoietic GFs such as granulocyte CSF, erythropoietin, granulocyte-macrophage colony-stimulating factor, stem cell factor (SCF), vascular endothelial GF, stromal cell-derived factor-1α and SCF in ischemic stroke. We also considered studies on insulin-like growth factor-1 and neurotrophins. Despite promising results from animal models, the lack of data in human beings hampers efficacy assessments of GFs on stroke outcome. We provide a comprehensive and critical view of the present knowledge about GFs and stroke, and an overview of ongoing and future prospects.  相似文献   

9.
脑卒中严重影响着患者的生存质量,然而其病理生理机制尚不清晰.研究发现,长链非编码RNAs(long non-coding RNAs,lncRNAs)参与了机体多种生理或病理生理过程.在脑卒中患者或缺血性动物模型中,亦发现数百种异常表达的lncRNAs.因此,本综述主要讲述研究比较清晰并与脑卒中相关的lncRNAs的研究...  相似文献   

10.
Stroke pathophysiology: management challenges and new treatment advances   总被引:1,自引:0,他引:1  
Stroke is the second leading cause of death and the first cause of lost disability-adjusted years in developed countries. During the past decade, new developments in thrombolytic therapy have led to the implementation of emergency intervention protocols for the treatment of ischemic stroke, replacing the widespread sense of therapeutic nihilism in the past. Treatment with rtPA has shown to be effective within the first 3 hours following stroke onset and the FDA and the European Medical Agency (EMEA) have approved its use. Acknowledging the urgency and intricacies of stroke, Stroke Units allow the monitoring of physiological parameters in the acute phase of stroke and are considered an important management tool that can significantly improve the quality of care provided to the patient. The concept of neuroprotective therapy for acute ischemic stroke to salvage tissue at risk and improve functional outcome is based on sound scientific principles and extensive preclinical animal studies demonstrating efficacy. However, most neuroprotective drugs in clinical trials have failed, possibly due to inadequate preclinical testing or flawed clinical development programs. Several new treatment strategies are under development and are being tested. This review is directed at understanding the management of acute ischemic stroke pathophysiology. We address the management challenges and new treatment advances by integrating the knowledge of possible pharmacological targets for acute ischemic stroke. We hope to shed new light upon the controversy surrounding the management of acute ischemic stroke in an attempt to elucidate why failed clinical trials continue to occur despite promising neuroprotective preclinical studies.  相似文献   

11.
In the last decades, the interest in the association between body temperature and stroke outcome has reemerged, and the use of animal models has made it possible to know the underlying pathogenic mechanisms involved, most of them with pending confirmation in human clinics. In this work, we will review the effects of hyperthermia and hypothermia and its pathogenesis on ischemic stroke, and the evidence of the efficacy and safety of anti-hyperthermic and hypothermic treatments. We will describe how treatment of hyperthermia on ischemic stroke patients, improves patient comfort and outcome, both in the short and the long term, but new clinical studies are needed in this field. Despite the theoretical and experimental bases in favor of hypothermia for the treatment of brain ischemia, there is no definitive clinical evidence that has proved its benefits, so far. With current knowledge, an objective of a body temperature between 35.5 and 36.5 °C seems an optimal therapeutic target for both hyperthermic and normothermic patients.  相似文献   

12.
The translational potential of pre-clinical stroke research depends on the accuracy of experimental modeling. Cerebral perfusion monitoring in animal models of acute ischemic stroke allows to confirm successful arterial occlusion and exclude subarachnoid hemorrhage. Cerebral perfusion monitoring can also be used to study intracranial collateral circulation, which is emerging as a powerful determinant of stroke outcome and a possible therapeutic target. Despite a recognized role of Laser Doppler perfusion monitoring as part of the current guidelines for experimental cerebral ischemia, a number of technical difficulties exist that limit its widespread use. One of the major issues is obtaining a secure and prolonged attachment of a deep-penetration Laser Doppler probe to the animal skull. In this video, we show our optimized system for cerebral perfusion monitoring during transient middle cerebral artery occlusion by intraluminal filament in the rat. We developed in-house a simple method to obtain a custom made holder for twin-fibre (deep-penetration) Laser Doppler probes, which allow multi-site monitoring if needed. A continuous and prolonged monitoring of cerebral perfusion could easily be obtained over the intact skull.  相似文献   

13.
IACUC issues associated with amphibian research   总被引:1,自引:0,他引:1  
Numerous species of amphibians are frequently utilized as animal models in biomedical research. Despite their relatively common occurrence as laboratory animals, the regulatory guidelines that institutional animal care and use committees (IACUCs) must employ provide little in the way of written standards for ectothermic animals. Yet, as vertebrates, laboratory amphibians are covered by the National Research Council Guide for the Care and Use of Laboratory Animals and the Public Health Service (PHS) Policy for federally funded research. This article focuses on three issues that are relevant to IACUC oversight of the use of amphibians in research: (1) recommended educational requirements of investigators and animal care staff engaged in research with amphibians, (2) zoonoses and other issues of occupational health importance, and (3) indicators of stress and disease. Addressing these issues should enable investigators, IACUCs, and animal care staff to meet the regulatory expectations of the PHS and accrediting bodies such as the Association for Assessment and Accreditation of Laboratory Animal Care International.  相似文献   

14.
Chemical safety is an essential element of an effective occupational health and safety program. Controlling exposures to chemical agents requires a careful process of hazard recognition, risk assessment, development of control measures, communication of the risks and control measures, and training to ensure that the indicated controls will be utilized. Managing chemical safety in animal care and use presents a unique challenge, in part because research is frequently conducted in two very different environments--the research laboratory and the animal care facility. The chemical agents specific to each of these environments are typically well understood by the employees working there; however, the extent of understanding may not be adequate when these individuals, or chemicals, cross over into the other environment. In addition, many chemicals utilized in animal research are not typically used in the research laboratory, and therefore the level of employee knowledge and proficiency may be less compared with more routinely used materials. Finally, the research protocol may involve the exposure of laboratory animals to either toxic chemicals or chemicals with unknown hazards. Such animal protocols require careful review to minimize the potential for unanticipated exposures of the research staff or animal care personnel. Numerous guidelines and regulations are cited, which define the standard of practice for the safe use of chemicals. Key chemical safety issues relevant to personnel involved in the care and use of research animals are discussed.  相似文献   

15.
With more than 795,000 cases occurring every year, stroke has become a major problem in the United States across all demographics. Stroke is the leading cause of long-term disability and is the fifth leading cause of death in the US. Ischemic stroke represents 87% of total strokes in the US, and is currently the main focus of stroke research. This literature review examines the risk factors associated with ischemic stroke, changes in cell morphology and signaling in the brain after stroke, and the advantages and disadvantages of in vivo and in vitro ischemic stroke models. Classification systems for stroke etiology are also discussed briefly, as well as current ischemic stroke therapies and new therapeutic strategies that focus on the potential of stem cells to promote stroke recovery.  相似文献   

16.
Clinically, thrombolytic therapy with use of recombinant tissue plasminogen activator (tPA) remains the most effective treatment for acute ischemic stroke. However, the use of tPA is limited by its narrow therapeutic window and by increased risk of hemorrhagic transformation. There is an urgent need to develop suitable stroke models to study new thrombolytic agents and strategies for treatment of ischemic stroke. At present, two major types of ischemic stroke models have been developed in rats and mice: intraluminal suture MCAO and embolic MCAO. Although MCAO models via the intraluminal suture technique have been widely used in mechanism-driven stroke research, these suture models do not mimic the clinical situation and are not suitable for thrombolytic studies. Among these models, the embolic MCAO model closely mimics human ischemic stroke and is suitable for preclinical investigation of thrombolytic therapy. This embolic model was first developed in rats by Overgaard et al.1 in 1992 and further characterized by Zhang et al. in 19972. Although embolic MCAO has gained increasing attention, there are technical problems faced by many laboratories. To meet increasing needs for thrombolytic research, we present a highly reproducible model of embolic MCAO in the rat, which can develop a predictable infarct volume within the MCA territory. In brief, a modified PE-50 tube is gently advanced from the external carotid artery (ECA) into the lumen of the internal carotid artery (ICA) until the tip of the catheter reaches the origin of the MCA. Through the catheter, a single homologous blood clot is placed at the origin of the MCA. To identify the success of MCA occlusion, regional cerebral blood flow was monitored, neurological deficits and infarct volumes were measured. The techniques presented in this paper should help investigators to overcome technical problems for establishing this model for stroke research.  相似文献   

17.
A role for CD36 in the pathogenesis of atherosclerosis, inflammation and lipid metabolism has been well-documented. However, little is known about the role of CD36 in cerebral ischemia. The intent of this review is to develop the concept that CD36, whose functions have been implicated in other pathological events, is a prototypic inflammatory receptor that contributes to the pathogenesis of cerebral ischemia. The importance of CD36 as a treatment target is indicated by the fact that many treatment strategies that are effective in experimental models of stroke exhibit little or no efficacy in clinical trials. The failure of clinical trials may be due to the use of animal models of stroke that do not reflect traditional risk factors for stroke in humans. The discussion will be focused on two risk factors, hyperlipidemia and diabetes, that modulate CD36 responses. Blocking the expression and function of CD36 by pharmacological or genetic means will provide insight not only toward identifying CD36 as a novel molecular target but also for developing effective therapeutic strategies to treat stroke victims. More importantly, coupling clinically relevant conditions with CD36-mediated ischemic injury may provide an appropriate animal model paradigm and develop a scientific understanding that could lead to clinical translational studies involving human subjects.  相似文献   

18.
Studies using animal models of stroke have demonstrated that free radicals are highly reactive molecules generated predominantly during cellular respiration and normal metabolism. Imbalance between cellular production of free radicals and the ability of cells to defend against them is referred to as oxidative stress. After ischemic brain damage introduced by ischemic stroke or reperfusion, production of reactive oxygen species may increase, sometimes drastically, leading to tissue damage via several different cellular molecular pathways. The damage can become more widespread due to weakened cellular antioxidant defense systems after ischemic stroke. These experimental findings have important implications for the treatment of human cerebral ischemia. Agents directed at eliminating oxygen radicals must be administered before, or in the early stages of, reperfusion after ischemia. The therapeutic window seems to be narrow and limited to, at most, a few hours. Future research may clarify the current hypothesis that the accuracy of gene expression could account for the recovery of cellular function after ischemic stroke. This may open the window to the future use of drug combinations that may be rationally administered sequentially. If the phenomenon of ischemic tolerance plays a role in this concept is still a matter of debate.  相似文献   

19.
缺血性脑卒中是一种血液循环障碍疾病,可导致严重的神经功能缺损。卒中病人中约有87%的病例为缺血性卒中。神经炎症是中风损伤的主要病理状态之一。CKLF1是2001年发现的非经典CC型趋化因子,对单核细胞、中性粒细胞和淋巴细胞表现出很强的趋化活性。CKLF1在胎儿大脑中含量最高,但在健康成人阶段不存在。越来越多的证据表明,CKLF1表达在成年卒中动物模型中,并被重新激活,参与神经炎症反应的多个过程。然而,其生物活性和药物发现的发展仍缺乏系统的文献报道。因此,我们收集已发表的资料并做此综述,简要阐明CKLF1在缺血性脑卒中中的作用,并解释其加重缺血性脑卒中的机制。此外,还发现了一些潜在的抗卒中药物,表明CKLF1是治疗缺血性卒中的潜在靶点。  相似文献   

20.
缺血性脑卒中是一种血液循环障碍疾病,可导致严重的神经功能缺损.卒中病人中约有87%的病例为缺血性卒中.神经炎症是中风损伤的主要病理状态之一.CKLF1是2001年发现的非经典CC型趋化因子,对单核细胞、中性粒细胞和淋巴细胞表现出很强的趋化活性.CKLF1在胎儿大脑中含量最高,但在健康成人阶段不存在.越来越多的证据表明,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号