首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Formation of abandoned penguin rookery ecosystems in the maritime Antarctic   总被引:2,自引:2,他引:0  
Due to regional glacio-isostatic uplift of land during the Holocene period, a large number of penguin populations from several rookeries began to nest on the newly formed beaches and emerged rocks, leaving previously colonized higher cliffs. Chronology and extent of raised beaches, lichenometric age estimation of Usnea antarctica and radiocarbon-dating of guano and subfossil penguin bones in the abandoned nesting sites suggest the progress of the downward movement of many rookeries about 2500 years ago, accelerated during the last millennium, when wide bands of 4 to 6 m raised beaches were formed. Patterns of relic ornithogenic soil formation in the abandoned rookeries (focussed on leaching, erosion processes and humus horizon creation), as well as the succession of vegetation in the age sequence of abandoned nesting sites, were investigated in detail at Stranger Point, King George Island. The chemical composition of Deschampsia antarctica growing in the area of active, abandoned rookeries and in control sites provides direct and indirect evidence of current and past ornithogenic manuring on nutrition of vegetation. Received: 10 January 1996 / Accepted: 8 September 1996  相似文献   

3.
4.
Carbon and nitrogen dynamics in a maritime Antarctic stream   总被引:1,自引:0,他引:1  
  • 1 The carbon and nitrogen dynamics in a maritime Antarctic lake outflow stream were investigated. The stream and the algal communities could be split into two zones: a semi-aquatic margin consisting of a perennial cyanobacteria/diatom mat and a flowing channel with a similar perennial mat that was overgrown by annual filamentous chlorophytes during the course of the summer.
  • 2 Neither algal community was limited by nutrient availability. Major nutrients were always available in the stream water. There were slight differences in the atomic ratios of the mats, the N:P ratios in the channel mat being lower than those in the marginal mat. However, both these and the total dissolved N:P ratio in the stream water were all close to those that indicate a balanced supply.
  • 3 There was no net carbon or nitrogen accumulation by the marginal mat suggesting that uptake processes were balanced by loss processes.
  • 4 Maximum rates of carbon fixation (0.1–0.5mgCg?1 dry weight h?1) were similar to those of other perennial Antarctic algal mats. Productivity appeared to be limited by physical factors, but the effects of irradiance and temperature could not be separated.
  • 5 There were no heterocystous cyanobacteria in the mat communities and rates of atmospheric nitrogen fixation were very low (0–10ngNmg?1 mat Nh?1). Fixation accounted for only 0.3% of the nitrogen accumulation of the channel mats, but was higher in the marginal mat where uptake of other sources of nitrogen was also low.
  • 6 Nitrogen accumulation by the channel mat averaged 0.34gNm?2 day?1. Only 0.05gNm?2 day?1 was accounted for by the uptake of dissolved inorganic nitrogen (nitrate plus ammonium). The major (80%) source of nitrogen appeared to be dissolved organic nitrogen. Recycling of nitrogen within the stream ecosystem may also be important.
  相似文献   

5.
利用中子活化分析技术,得到南极西湖沉积岩芯中水生植物(镰刀藓)的22种化学元素含量,发现南极水生植物的地球化学元素含量范围变化较大,而且在沉积层次上,各个元素的变异系数也较大,水生植物吸收和累积元素的特征为:稀土元素,U,As极容易为植物吸收同化,Ca,Co,Sc为水生植物容易吸收的元素,Th,Hf,Na为水生植物难以同化的元素。同时,研究发现水生植物的直接营养物源为湖水中的可溶性离子;对水生植物的22种化学元素进行聚类分析,发现稀土元素,Ca,Zn,U之间,As,Fe,Co之间共生关系密切,对水生植物具有相似的生理作用。  相似文献   

6.
Small ponds and puddles are extremely common throughout the ice-free areas of the maritime Antarctic. The carbon and nitrogen dynamics in a typical pond on Livingston Island, South Shetland Islands were investigated during summer 1991. The pond vegetation consisted of a benthic mat of cyanobacteria, diatoms and chlorophytes. The mat was not limited by nutrient availability, both phosphorus and nitrogen being available in the overlying water and N:P ratios in both the water and the mat indicating a roughly balanced supply. Maximal rates of carbon fixation of 0.1–0.2 mgC g–1 dry weight h–1 were similar to those of other perennial Antarctic mat communities. Productivity appeared to be limited by physical factors, but the effects of irradiance and temperature could not be separated. Although carbon fixation rates were low, carbon loss processes were minimal leading to an accumulation of material in the mat approximating to one doubling per year. Atmospheric nitrogen fixation was not a significant component of the nitrogen budget of the pond, accounting for only 0.1 % of the nitrogen accumulation by the mat. Nitrogen uptake was largely from dissolved nitrogen sources, in particular as dissolved organic nitrogen. It is concluded that ephemeral water bodies may play a significant role in the nutrient dynamics of maritime Antarctic ecosystems.  相似文献   

7.
A geochemical method, mainly based upon analyses of bio-elements in the sediments from the inter-zone depression between a penguin colony and tundra vegetation, was proposed and applied to reconstruct the occupation history of a penguin colony in the maritime Antarctic. The results from the samples of Ardley Island and Barton Peninsula revealed a general, seesaw-like relationship between a penguin colony and tundra vegetation and several basic occupation patterns. This method and the results may provide new and valuable information about the history of penguin-colony occupation and the paleoenvironment in the maritime Antarctic.  相似文献   

8.
An empirical model of carbon fluxes in Russian tundra   总被引:1,自引:0,他引:1  
This study presents an empirical model based on a GIS approach, which was constructed to estimate the large‐scale carbon fluxes over the entire Russian tundra zone. The model has four main blocks: (i) the computer map of tundra landscapes; (ii) data base of long‐term weather records; (iii) the submodel of phytomass seasonal dynamics; and (iv) the submodel of carbon fluxes. The model uses exclusively original in situ diurnal CO2 flux chamber measurements (423 sample plots) conducted during six field seasons (1993–98). The research sites represent the main tundra biome landscapes (arctic, typical, south shrub and mountain tundras) in the latitudinal diapason of 65–74°N and longitudinal profile of 63°E?172°W. The greatest possible diversity of major ecosystem types within the different landscapes was investigated. The majority of the phytomass data used was obtained from the same sample plots. The submodel of carbon fluxes has two dependent [GPP, Gross Respiration (GR)] and several input variables (air temperature, PAR, aboveground phytomass components). The model demonstrates a good correspondence with other independent regional and biome estimates and carbon flux seasonal patterns. The annual GPP of Russian tundra zone for the area of 235 × 106 ha was estimated as ?485.8 ± 34.6 × 106 tC, GR as +474.2 ± 35.0 × 106 tC, and NF as ?11.6 ± 40.8 × 106 tC, which possibly corresponds to an equilibrium state of carbon balance during the climatic period studied (the first half of the 20th century). The results advocate that simple regression‐based models are useful for extrapolating carbon fluxes from small to large spatial scales.  相似文献   

9.
Petermann Island (65°10′S, 64°10′W), one of the Antarctic Peninsula’s most frequently visited locations, is at the epicenter of a rapid shift in which an Adélie penguin dominated fauna is becoming gentoo penguin dominated. Over the course of five seasons, the breeding productivity of Adélie and gentoo penguins breeding at Petermann Island were monitored to identify drivers of this rapid community change. The impact of tourist visitation on breeding success was also investigated. Consistent with larger trends in this region, the Adélie penguin population decreased by 29% and the gentoo penguin population increased by 27% between the 2003/2004 and 2007/2008 seasons. Reproductive success among Adélie penguins ranged from 1.09 to 1.32 crèched chicks/nest, which was higher than or comparable to other sites and is an unlikely explanation for the precipitous decline of Adélie penguins at Petermann Island. Whereas gentoo penguin reproductive success was lowest in colonies frequently visited by tourists, Adélie penguin colonies frequently visited by tourists had higher reproductive success than those visited only occasionally. These results are placed in the context of other studies on reproductive success and the impact of tourist visitation on breeding colonies of Adélie and gentoo penguins.  相似文献   

10.
Microbial communities can play a critical role in soil development and succession at glacial forelands through their contribution to soil carbon (C) and nitrogen (N) cycling. Using a combination of molecular fingerprinting techniques and metabolic rate measurements, we examined the soil microbial community composition and key transformations in the C and N cycles at a glacial foreland on Anvers Island along the Antarctic Peninsula. Soils were sampled along transects representing a chronosequence of <1 to approximately 10?years since deglaciation. The soil microbial community was active adjacent to the receding edge of the glacier, where soil had been ice-free for <1?year. A survey of the microbial community composition identified typical soil bacterial species such as Arthrobacter and Sphingomonas, as well as known Antarctic heterotrophs, cyanobacteria and fungi. The soil C cycle over this zone was dominated by phototrophic microbial activity, while the N cycle was dominated by heterotrophic N2-fixation and not cyanobacterial N2-fixation as found at other recently deglaciated forelands. Other N transformations such as ammonia oxidation and denitrification appeared to be of limited relevance.  相似文献   

11.
Summary Four major functional units have been identified in the Southern Ocean and the mechanisms that control the dynamics of nutrients and phytoplankton are detailed for the different sub-systems. The very productive Coastal and Continental Shelf Zone (CCSZ, 0.9 M km 2) can experience severe macronutrient depletion paralleling intense diatom-dominated phytoplankton blooming (maximum > 8 mg Chl a m–3) at the ice edge. In the Seasonal Ice Zone (SIZ, 16 M km 2), dramatic variations in the hydrological structure occur in surface waters during the spring to summer retreat of the pack-ice, changing from a well-mixed system to a stratified one within the reaches of the ice edge. Grazing activity of euphausiids limits phytoplankton biomass to a moderate level (Chl a maximum around 4 mg m–3). A shift from new production to a regenerated production regime has been demonstrated during spring, along with the key role played by protozoans in controlling high ammonium concentrations (maximum > 2 M) in the surface layers. The well-mixed Permanently Open Ocean Zone (POOZ, 14 M km 2) is characterised by variable N/Si ratios in surface waters along a north-south transect: at the northern border of the POOZ (N/Si = 0.25) silicate concentrations as low as < 10 M could help limit the phytoplankton growth. Although favourable conditions have been demonstrated for the initiation of blooms in spring in the Antarctic Circumpolar Current, it appears that critical-depth/ mixing-depth relationships control maximum chlorophyll a concentrations < 1 g l–1 during summer. The POOZ is usually not influenced directly by euphausiids, except for the Scotia Sea and Drake Passage where migrations of krill from the adjacent SIZ are usual. Mesoscale eddies are typical of the Polar Front Zone (FPZ, 3 M km 2): significant increases in phytoplankton biomass have been reported in this frontal area (maximum Chl a = 2 mg m–3). Food web and biogeochemical cycles in this sub-system are poorly documented. The question of limitation of the primary production by eolian-transported trace-metals in these different sub-systems is still a matter of debate, although clear iron limitation has been evidenced for offshore waters of the Ross Sea.Data presented here were partly collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

12.
Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.  相似文献   

13.
We examined the temperature response of CO2 exchange and soil biogeochemical processes in an Antarctic tundra ecosystem using laboratory incubations of intact tundra cores. The cores were collected from tundra near Anvers Island along the west coast of the Antarctic Peninsula that was dominated by the vascular plants Colobanthus quitensis and Deschampsia antarctica. After the initial 8-week incubation at moderate growth temperatures (12/7°C, day/night), the tundra cores were incubated for another 8 weeks at either a higher (17/12°C) or lower (7/4°C) temperature regime. Temperature responses of CO2 exchange were measured at five temperatures (4, 7, 12, 17, and 27°C) following each incubation and soil leachates were collected biweekly over the second incubation. Daytime net ecosystem CO2 exchange (NEE) per unit core surface area was higher across the five measurement temperatures after the warmer incubation (17/12°C > 7/4°C). Responses of ecosystem respiration (ER) were similar at each measurement temperature irrespective of incubation temperature regimes. ER, expressed on a leaf-area basis, however, was significantly lower following the warmer incubation, suggesting a downregulation of ER. Warmer incubation resulted in a greater specific leaf area and N concentration, and a lower δ13C in live aboveground C. quitensis, but a higher δ13C in D. antarctica, implying species-specific responses to warming. Concentrations of dissolved organic C and N and inorganic N in soil leachates showed that short-term temperature changes had no noticeable effect on soil biogeochemical processes. The results suggest that downregulation of ER, together with plant species differences in leaf-area production and N use, can play a crucial role in constraining the C-cycle response of Antarctic tundra ecosystems to warming.  相似文献   

14.
Carbon pools and fluxes along an environmental gradient in northern Arizona   总被引:15,自引:4,他引:11  
Carbon pools and fluxes were quantified along an environmentalgradient in northern Arizona. Data are presented on vegetation, litter, andsoil C pools and soil CO2 fluxesfrom ecosystems ranging from shrub-steppe through woodlands to coniferousforest and the ecotones in between. Carbon pool sizes and fluxes in thesesemiarid ecosystems vary with temperature and precipitation and are stronglyinfluenced by canopy cover. Ecosystem respiration is approximately 50percent greater in the more mesic, forest environment than in the dryshrub-steppe environment. Soil respiration rates within a site varyseasonally with temperature but appear to be constrained by low soilmoisture during dry summer months, when approximately 75% of totalannual soil respiration occurs. Total annual amount of CO2 respired across all sites ispositively correlated with annual precipitation and negatively correlatedwith temperature. Results suggest that changes in the amount and periodicityof precipitation will have a greater effect on C pools and fluxes than willchanges in temperature in the semiarid Southwestern United States.  相似文献   

15.
An urban watershed continuum framework hypothesizes that there are coupled changes in (1) carbon and nitrogen cycling, (2) groundwater-surface water interactions, and (3) ecosystem metabolism along broader hydrologic flowpaths. It expands our understanding of urban streams beyond a reach scale. We evaluated this framework by analyzing longitudinal patterns in: C and N concentrations and mass balances, groundwater-surface interactions, and stream metabolism and carbon quality from headwaters to larger order streams. 52 monitoring sites were sampled seasonally and monthly along the Gwynns Falls watershed, which drains 170 km2 of the Baltimore Long-Term Ecological Research site. Regarding our first hypothesis of coupled C and N cycles, there were significant inverse linear relationships between nitrate and dissolved organic carbon (DOC) and nitrogen longitudinally (P < 0.05). Regarding our second hypothesis of coupled groundwater-surface water interactions, groundwater seepage and leaky piped infrastructure contributed significant inputs of water and N to stream reaches based on mass balance and chloride/fluoride tracer data. Regarding our third hypothesis of coupled ecosystem metabolism and carbon quality, stream metabolism increased downstream and showed potential to enhance DOC lability (e.g., ~4 times higher mean monthly primary production in urban streams than forest streams). DOC lability also increased with distance downstream and watershed urbanization based on protein and humic-like fractions, with major implications for ecosystem metabolism, biological oxygen demand, and CO2 production and alkalinity. Overall, our results showed significant in-stream retention and release (0–100 %) of watershed C and N loads over the scale of kilometers, seldom considered when evaluating monitoring, management, and restoration effectiveness. Given dynamic transport and retention across evolving spatial scales, there is a strong need to longitudinally and synoptically expand studies of hydrologic and biogeochemical processes beyond a stream reach scale along the urban watershed continuum.  相似文献   

16.
Winter regulation of tundra litter carbon and nitrogen dynamics   总被引:4,自引:3,他引:4  
Mass and nitrogen (N) dynamics of leaf litter measured in Alaskan tussock tundra differed greatly from measurements of these processes made in temperate ecosystems. Nearly all litter mass and N loss occurred during the winter when soils were mostly frozen. Litter lost mass during the first summer, but during the subsequent two summers when biological activity was presumably higher than it is during winter, litter mass remained constant and litter immobilized N. By contrast, litter lost significant mass and N over both winters of measurement. Mass loss and N dynamics were unaffected by microsite variation in soil temperature and moisture. Whether wintertime mass and N loss resulted from biological activity during winter or from physical processes (e.g., fragmentation or leaching) associated with freeze-thaw is unknown, but has implications for how future climate warming will alter carbon (C) and N cycling in tundra. We hypothesize that spring runoff over permafrost as soils melt results in significant losses of C and N from litter, consistent with the observed influx of terrestrial organic matter to tundra lakes and streams after snow melt and the strong N limitation of terrestrial primary production.  相似文献   

17.
Here, soil CO(2) efflux, minirhizotron fine root production (FRP), and estimated total below-ground carbon allocation (TBCA) were examined along an elevation and hybridization gradient between two cottonwood species. FRP was 72% greater under high-elevation Populus angustifolia, but soil CO(2) efflux and TBCA were 62% and 94% greater, respectively, under low-elevation stands dominated by Populus fremontii, with a hybrid stand showing intermediate values. Differences between the responses of FRP, soil CO(2) efflux and TBCA may potentially be explained in terms of genetic controls; while plant species and hybridization explained variance in carbon flux, we found only weak correlations of FRP and TBCA with soil moisture, and no correlations with soil temperature or nitrogen availability. Soil CO(2) efflux and TBCA were uncorrelated with FRP, suggesting that, although below-ground carbon fluxes may change along environmental and genetic gradients, major components of below-ground carbon flux may be decoupled.  相似文献   

18.
In the nearshore coastal waters along the Antarctic Peninsula, a recurrent shift in phytoplankton community structure, from diatoms to cryptophytes, has been documented. The shift was observed in consecutive years (1991–1996) during the austral summer and was correlated in time and space with glacial melt‐water runoff and reduced surface water salinities. Elevated temperatures along the Peninsula will increase the extent of coastal melt‐water zones and the seasonal prevalence of cryptophytes. This is significant because a change from diatoms to cryptophytes represents a marked shift in the size distribution of the phytoplankton community, which will, in turn, impact the zooplankton assemblage. Cryptophytes, because of their small size, are not grazed efficiently by Antarctic krill, a keystone species in the food web. An increase in the abundance and relative proportion of cryptophytes in coastal waters along the Peninsula will likely cause a shift in the spatial distribution of krill and may allow also for the rapid asexual proliferation of carbon poor gelatinous zooplankton, salps in particular. This scenario may account for the reported increase in the frequency of occurrence and abundance of large swarms of salps within the region. Salps are not a preferred food source for organisms that occupy higher trophic levels in the food web, specifically penguins and seals, and thus negative feedbacks to the ecology of these consumers can be anticipated as a consequence of shifts in phytoplankton community composition.  相似文献   

19.
Summary Stomach contents of crabeater (Lobodon carcinophagus) and leopard (Hydrurga leptonyx) seals collected in the pack ice west of the antarctic Peninsula in August–September 1985 were analyzed. Food remains were found in 7 of 56 crabeater seals and 5 of 29 leopard seals. The primary foods were krill (Euphausia superba) which occurred in all 12 stomachs, and fish (Pleuragramma antarcticum) which occurred in 3. Eleven of the seals with food in their stomachs were collected in the southern portion of Bismark Strait. The incidence of feeding seemed highest in pregnant females. These results, and comparisons with previous collections, suggest that krill were not abundant or widely distributed in the area at the time the seals were collected. The sizes of krill eaten by crabeater and leopard seals were very similar, and were significantly larger than krill found in 2 samples taken by midwater trawls in nearby open water.  相似文献   

20.
Forest fire dramatically affects the carbon storage and underlying mechanisms that control the carbon balance of recovering ecosystems. In western North America where fire extent has increased in recent years, we measured carbon pools and fluxes in moderately and severely burned forest stands 2 years after a fire to determine the controls on net ecosystem productivity (NEP) and make comparisons with unburned stands in the same region. Total ecosystem carbon in soil and live and dead pools in the burned stands was on average 66% that of unburned stands (11.0 and 16.5 kg C m−2, respectively, P<0.01). Soil carbon accounted for 56% and 43% of the carbon pools in burned and unburned stands. NEP was significantly lower in severely burned compared with unburned stands (P<0.01) with an increasing trend from −125±44 g C m−2 yr−1 (±1 SD) in severely burned stands (stand replacing fire), to −38±96 and +50±47 g C m−2 yr−1 in moderately burned and unburned stands, respectively. Fire of moderate severity killed 82% of trees <20 cm in diameter (diameter at 1.3 m height, DBH); however, this size class only contributed 22% of prefire estimates of bole wood production. Larger trees (> 20 cm DBH) suffered only 34% mortality under moderate severity fire and contributed to 91% of postfire bole wood production. Growth rates of trees that survived the fire were comparable with their prefire rates. Net primary production NPP (g C m−2 yr−1, ±1 SD) of severely burned stands was 47% of unburned stands (167±76, 346±148, respectively, P<0.05), with forb and grass aboveground NPP accounting for 74% and 4% of total aboveground NPP, respectively. Based on continuous seasonal measurements of soil respiration in a severely burned stand, in areas kept free of ground vegetation, soil heterotrophic respiration accounted for 56% of total soil CO2 efflux, comparable with the values of 54% and 49% previously reported for two of the unburned forest stands. Estimates of total ecosystem heterotrophic respiration (Rh) were not significantly different between stand types 2 years after fire. The ratio NPP/Rh averaged 0.55, 0.85 and 1.21 in the severely burned, moderately burned and unburned stands, respectively. Annual soil CO2 efflux was linearly related to aboveground net primary productivity (ANPP) with an increase in soil CO2 efflux of 1.48 g C yr−1 for every 1 g increase in ANPP (P<0.01, r2= 0.76). There was no significant difference in this relationship between the recently burned and unburned stands. Contrary to expectations that the magnitude of NEP 2 years postfire would be principally driven by the sudden increase in detrital pools and increased rates of Rh, the data suggest NPP was more important in determining postfire NEP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号