首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This paper is the first in a pair investigating potential mechanisms for ecological regime change in salinising wetlands. In this first paper, we investigated some of the factors responsible for the formation and maintenance of a macrophyte-dominated ecological regime by studying the germination and flowering of four submerged macrophyte species common in saline Western Australian wetlands; Ruppia polycarpa R. Mason, Ruppia megacarpa R. Mason, Lamprothamnium macropogon (A. Braun) Ophel and L. cf. succinctum (A. Braun in Ascherson) Wood, and by following the survival of adult R. polycarpa as salinities were increased to a range of endpoints (6, 15, 45, 70 and 100 ppt). Increased salinity led to a decrease in the number of germinating plants, an increase in the time to emergence of germinating plants and a decrease in the number of inflorescences (or fertile plants) produced by R. polycarpa, L. macropogon and L. cf. succinctum. Germination of R. megacarpa was low, providing limited information with regard to salinity response. The survival of adult plants also decreased as salinity increased and was negatively affected by faster rates of salinity increase. The upper salinity limits for germination, within the 70 day experiment, were 40–50 ppt for R. polycarpa and L. cf. succinctum, and 30–40 ppt for L. macropogon. Survival of adult R. polycarpa also declined markedly at above 45 ppt.  相似文献   

2.
Plant–soil water relations were examined in the context of a selective removal study conducted in tree–shrub communities occupying different but contiguous soil types (small discrete clusters on shallow, duplex soils versus larger, extensive groves on deep, sandy soils) in a subtropical savanna parkland. We (1) tested for the occurrence of soil moisture redistribution by hydraulic lift (HL), (2) determined the influence of edaphic factors on HL, and (3) evaluated the significance of HL for overstory tree–understory shrub interactions. Diel cycling and nocturnal increases in soil water potential (Ψsoil), characteristic signatures of HL, occurred intermittently throughout an annual growth cycle in both communities over a range of moisture levels (Ψsoil=−0.5 to −6.0 MPa) but only when soils were distinctly stratified with depth (dry surface/wet deep soil layers). The magnitude of mean (±SE) diel fluctuations in Ψsoil (0.19±0.01 MPa) did not differ on the two community types, though HL occurred more frequently in groves (deep soils) than clusters (shallow soils). Selective removal of either Prosopis glandulosa overstory or mixed-species shrub understory reduced the frequency of HL, indicating that Prosopis and at least one other woody species was conducting HL. For Zanthoxylum fagara, a shallow-rooted understory shrub, Prosopis removal from clusters decreased leaf water potential (Ψleaf) and net CO2 exchange (A) during periods of HL. In contrast, overstory removal had neutral to positive effects on more deeply-rooted shrub species (Berberis trifoliolata and Condalia hookeri). Removal of the shrub understory in groves increased A in the overstory Prosopis. Results indicate the following: (a) HL is common but temporally dynamic in these savanna tree–shrub communities; (b) edaphic factors influencing the degree of overstory/understory development, rooting patterns and soil moisture distribution influence HL; (c) net interactions between overstory and understory elements in these woody patches can be positive, negative and neutral over an annual cycle, and (d) Prosopis-mediated HL is an important mechanism of faciliation for some, but not all, understory shrubs.  相似文献   

3.
Jie Song  Gu Feng  Fusuo Zhang 《Plant and Soil》2006,279(1-2):201-207
The effects of three salinities (0, 100 and 500 mM NaCl) and four constant temperatures (10, 20, 30 and 35 °C) on seed germination of Halostachys caspica (M. B.) C. A. Mey., Kalidium foliatum (Pall.) Mop. and Halocnemum strobilaceum (Pall.) Bieb. were investigated. After seeds were treated with different concentrations of NaCl at constant temperatures of 10–35 °C for 16 days, ungerminated seeds were transferred to distilled water for 10 days to investigate the total germination; after this time, the ungerminated seeds from the 10 and 20 °C treatments were then moved to 35 °C for another 5 days to determine the final germination. The three plant species in the present experiment are salt-resistant euhalophytes growing in high saline soils in the Zhungur Basin in Xinjiang, a northwest province of China.Compared with germination under control conditions, germination percentages of all three species were not affected by 100 mM NaCl at 10–35 °C, while severely inhibited by 500 mM NaCl; germination percentages were very low at 10 °C up to 100 mM NaCl for all species; the optimum temperature for germination of H. caspica and K. foliatum was 20–30 °C, while 35 °C for H. strobilaceum, up to 100 mM NaCl; seeds did not suffer ion toxicity for all species, as evidenced by the high total germination after ungerminated seeds pretreated with 500 mM NaCl were transferred to distilled water at constant temperatures of 10–35 °C for 10 days, and the high final germination after the ungerminated seeds from the 10 and 20 °C treatments were subsequently moved to 35 °C for another 5 days; Halostachys caspica had greater sensitivity to increasing temperatures from 10 and 20 °C to 35 °C compared with the other two species.  相似文献   

4.
Phosphite is a cost-effective fungicide used to control the pathogen Phytophthora cinnamomi which is damaging the diverse flora of the southwest of Western Australia. Three annual species of the southwest jarrah (Eucalyptus marginata) forest of Western Australia (Pterocheata paniculata, Podotheca gnaphalioides and Hyalosperma cotula), were studied to determine the effect of the fungicide phosphite on the species’ reproduction. Phosphite at concentrations of 2.5, 5 and 10 g L–1 reduced pollen fertility of Pt. paniculata when plants were sprayed at the vegetative stage. Pollen fertility of all three species was reduced when plants were sprayed at anthesis with 10 g L–1 phosphite. Seed germination was reduced by phosphite in Pt. paniculata and H. cotula when plants were sprayed in the vegetative stage. Phosphite when sprayed at anthesis at a concentration of 5 g L–1 reduced seed germination of H. cotula. Phosphite at concentrations of 5 and 10 g L–1 killed a proportion of plants from all three species and up to 90% of Po. gnaphalioides plants. The frequent application of phosphite, therefore, may reduce the abundance of annual plants in this ecosystem. Received: 14 December 2000 / Revision accepted: 10 March 2001  相似文献   

5.
Seeds, young plants and adult plants of the perennial Mediterranean leguminous shrub Dorycnium pentaphyllum Scop. were exposed to Cd (1–100 μM) or Zn (10–10,000 μM) on nutrient solution. This species is resistant to Cd and Zn at different phenological stages. The lowest doses of Zn and Cd improved seed germination and young seedling growth, while only the highest doses of both heavy metals inhibited germination and decreased growth. High doses of Cd reduced seed imbibition and young seedling water content, while Zn did not. Osmotic adjustment was more efficient in Zn-treated young plants than in Cd-treated ones, while chlorophyll concentrations decreased in the former but not in the latter. Those differences were not observed anymore in adult plants. Exclusion processes were more efficient at the adult stage than at the young seedling stage and were more marked in response to Zn than to Cd. It is concluded that D. pentaphyllum could be used for phytostabilization of heavy metal-contaminated areas. The physiological strategies of tolerance, however, differ according to the age of the plants and the nature of the metal.  相似文献   

6.
How much seed remains in the soil after a fire?   总被引:2,自引:0,他引:2  
Soil seed banks that persist after a fire are important in fire-prone habitats as they minimise the risk of decline or local extinction in plants, should the fire-free interval be less than the primary juvenile periods of the species. In two common woody plant genera (Acacia and Grevillea) in southeastern Australia, we examined the size and location of the residual seed bank after fire across areas of varying seedling densities at three locations in comparison to the distribution of seeds in the soil at an unburnt site. We found viable dormant seeds remaining in the soil after fire (evidence of residual soil seed bank). A significantly lower proportion of seeds remained in the top 5 cm of soil than at 5–10 cm or 10–15 cm soil depths, independent of seedling density or plant genus. This was due to greater germination, and possibly some seed mortality, near the soil surface. Reduced germination below 5 cm was probably due to the reduced efficacy of the fire cues that break seed dormancy, a declining ability of seeds to emerge successfully from such depths, and the lower abundance of seeds in the soil at such depths. The magnitude of the residual seed bank was similar across 0–5, 5–10 and 10–15 cm soil depths in Acacia suaveolens. For two Grevillea species, most residual seeds were at 0–5 and 5–10 cm. The residual soil seed bank in the top 10 cm of soil after fire varied across sites with estimates of 0, 19 and 27% in G. speciosa and 23, 35, and 55% in A. suaveolens. At two sites, both species had similar residual seed bank sizes, while at a third, there were large differences between the species (0–55%). The observed patterns imply that the fire-related cues that break seed dormancy generally declined with soil depth. For Acacia, seed dormancy is broken by heat shock, a fire-cue that declines with soil depth. Some 250 species (approx 15% of the fire-prone flora) in the region are thought to have dormancy broken by heat shock. For Grevillea, where seed dormancy is broken by the interaction of smoke and heat shock, at two sites, we suggest three possibilities: (i) the smoke cue declined with soil depth; (ii) both heat and smoke are obligatory for breaking seed dormancy; or (iii) the cues may be independent and additive and below the zone of soil heating, only a proportion of available seeds had dormancy broken by smoke alone. At a third site (no residual seed bank detected) the smoke cue was predicted not to have declined with soil depth. Up to 900 species (just under half the fire-prone flora) in the study region are thought to have seed dormancy broken by the interaction of heat and smoke during the passage of a fire.  相似文献   

7.
Recently, it was argued that extrinsic factors, such as high foraging costs, lead to elevated field metabolic rates (FMR). We tested this suggestion by comparing the FMR of nectar-feeding and fruit-eating bats. We hypothesized that the foraging effort per energy reward is higher for nectar-feeding mammals than for fruit-eating mammals, since energy rewards at flowering plants are smaller than those at fruiting plants. Using the doubly labelled water method, we measured the FMR of nectar-feeding Glossophaga commissarisi and fruit-eating Carollia brevicauda, which coexisted in the same rainforest habitat and shared the same daytime roosts. Mass-specific FMR of G. commissarisi exceeded that of C. brevicauda by a factor of almost two: 5.3±0.6 kJ g−1 day−1 for G. commissarisi and 2.8±0.4 kJ g−1 day−1 for C. brevicauda. Since nectar-feeding bats imbibe nectar droplets of only 193 J energy content during each flower visit, a G. commissarisi bat has to perform several 100 flower visits per night to meet its energy requirement. The fruit-eating C. brevicauda, on the other hand, needs to harvest only 3–12 Piper infructescenses per night, as the energy reward per Piper equals ca. 6–30 kJ. We argue that the flowering and fruiting plants exert different selective forces on the foraging behaviour and energetics of pollinators and the seed dispersers, respectively. A comparison between nectar-feeding and non-nectar-feeding species in various vertebrate taxa demonstrates that pollinators have elevated FMRs.  相似文献   

8.
A plant growth–promoting Paenibacillus lentimorbus NRRL B-30488 (B-30488) was isolated from cows’ milk. Bacterial colonization and growth responses of different plant species after inoculation with B-30488 were evaluated in a controlled environment and in microplot assays. Survival and colonization of B-30488 in the phytosphere of plants and soil was monitored using a chromosomally located rifampicin-marked mutant B-30488 (B-30488R). The strain showed variable ability to invade plants. The interaction between B-30488R and Fusarium oxysporum f. sp. ciceri was studied by scanning electron microscopy. Chitinase and β-1,3-glucanase enzymes were produced when B-30488R was grown in the presence of colloidal chitin as sole carbon source. Deliberate dilution of B-30488R with field soil offers a reliable process for decreasing the cost of bacterial inoculants in developing countries. Seed treatment of chickpea demonstrated significantly (P = 0.05) greater seedling mortality in nonbacterized compared with bacterized seedlings. Bacterization significantly (P = 0.05) improved seed germination, plant height, number of pods/plant–1, and seed dry weight.  相似文献   

9.
Hoarding food is an important strategy of rodents in desert environments characterized by unpredictable and poor food resource availability. In the Monte Desert, Prosopis produces abundant food, unevenly in time and space, in the form of pods and seeds. Sigmodontine rodents (Graomys griseoflavus, Akodon molinae, Eligmodontia typus and Calomys musculinus) use Prosopis propagules extensively, and they could be predators or dispersers depending on how they handle and where they leave the propagules. The objectives of this study were: (1) to know what rodent species transported propagules; (2) to evaluate what hoarding pattern was used by species that transport propagules (larder and scatterhoarding); and (3) to analyse in which condition were propagules left by the rodent species, both at the food source and in caches. Our results showed that all four species transported propagules, with G. griseoflavus and E. typus being the species that carried more seeds. Our study supported the evidence that food caching is common among species and that many species both larderhoard and scatterhoard food. Graomys griseoflavus and A. molinae, the largest species, larderhoarded more than did the smaller E. typus. These results uphold the hypothesis that larger species will show greater propensity to larderhoard than smaller species. Considering the interaction between seed‐hoarding patterns and plants, E. typus was the species that could most improve germination because it scatterhoarded propagules and left seeds out of pods. In contrast, G. griseoflavus could have a negative impact on plant populations because this was the species that predated more seeds and larderhoarded a high percentage of them. The smallest C. musculinus was the species that transported propagules least, and left them as seeds inside pods or pod segments mainly at the food source, which makes seeds more vulnerable to predation.  相似文献   

10.
We compared various aspects of the seed biology of eight non-pioneer tree species from a tropical seasonal rain forest in Xishuangbanna, SW China, that differ in time of dispersal, size and fresh seed moisture content (MC). Seeds were tested for germination under laboratory conditions after dehydration to different moisture levels and under 3.5, 10 and 30% solar irradiances in neutral-shade houses. For six species, germination was also compared in forest understory (3.5% light) and center of a forest gap (32.5% light). Under continuous dehydration over activated silica gel, 100% of seeds of four species had lost the ability to germinate after 48 h, and those of all species except Castanopsis hystrix (decreased from >90 to 30% germination) had lost the ability to germinate after 120 h. Four species did not differ in final germination percentages at the three irradiances (i.e. uniform germination). However, final germination percentages of Horsfieldia pandurifolia and Litsea pierrei var. szemaois were significantly lower in 30% than in 10 or 3.5% light, and seeds of Antiaris toxicaria and C. hystrix germinated to higher percentages in 30 and 10% than in 3.5% light. Mean time to germination (MTG) of the eight species (forest and shade house data combined) ranged from 5–5 days for Pometia tomentosa to 72–207days for L. pierrei; MTG for four species was ≤21 days. There was no obvious relationship between relative desiccation resistance and either time of dispersal, MTG or uniformity of germination at the three light levels, or between seed size and MC or MTG. However, the relationship between seed MC at maturity (25–60% fresh mass basis) and MC at 50% loss of seed viability (12.4–42.5%) was significant. Seven of the species fit Garwood’s (Ecol Monogr 53:159–181, 1983) rapid-rainy germination syndrome and one, L. pierrei, either her delayed-rainy or intermediate-dry germination syndrome. However, fresh, non-dehydrated seeds of all eight species germinated in ≤30 days at constant 30°C in light.  相似文献   

11.
12.
Asymbiotic seedling propagation and introduction of seedlings into a natural habitat were achieved for Cephalanthera falcata. For immature seeds collected 65 days after pollination, high germination rate (av. 50%) was achieved on Hyponex agar medium plates. Root development occurred in about 10% of the protocorms 5 months after seed sowing. Rooted protocorms were transferred to a culture bottle containing 100 ml of the Hyponex agar medium and incubated continually. In about 30% of the transferred individuals, shoot height reached 1.5–2 cm 8 months after the transfer. After acclimatization in wet vermiculite at 4°C for 6 months, 135 individuals were planted in a natural stand of C. falcata in mid February 2001. Shoot appearance rate was 44.4% at the first year and flowering was noted in some plants. At the fifth year, shoots with an average height of 21.6 cm still appeared in four plants, and flowering was noted in three of them. Colonization of mycorrhizal fungi was examined in two of them as well as one wild plant, in which the mycorrhizal fungi were identified to be in Thelephoraceae or Russulaceae. These fungi are known to form ectomycorrhiza with trees, and thus a tripartnership symbiosis consisting of C. falcata, mycorrhizal fungi and trees was suggested. The involvement of ectomycorrhizal fungi might be the reason for the low survival rate in the field experiment, because the distribution of ectomycorrhizal fungi relevant to this orchid is assumed to be uneven. The possibility of introducing artificially propagated orchids into natural habitats was discussed.  相似文献   

13.
The survivorship of a monocarpic bamboo grass,Sasa kurilensis, during the early regeneration process was documented by a 10 year observation of the seedling population after mass flowering in the Hakkoda Mountains, northern Japan. Three phases were recognized: the establishment, density-stable and thinning phases. The mortality of the densely germinated seedlings (932.9m−2 in aBetula ermanii forest and 1222.3 m−2 in aSasa grassland) was high, up to 0.5 year−1, in the establishment phase (0–1 year after germination) and low in the density-stable phase (1–3 years after germination). After reaching full density state, the seedling population showed a nearly constant mortality of 0.18 year−1 due to self-thinning (the thinning phase). The high C/F ratio presumably caused suppressed seedlings to die. Recovery of theS. kurilensis population was estimated to requireca 20 years in the study plots, judging from the height growth and the decrease in culm density of the seedling population. The illuminance on the ground was higher in the flowered population than in the unflowered one for 5 years after mass death. The duration of high ground illuminance is an important factor affecting the dynamics of forests withSasa undergrowth, because tree seedlings need to establish under high ground illuminance for the successful regeneration of the forests.  相似文献   

14.
There are five wild populations of Cycas fairylakea in Guangdong Province, China, three of which are newly found. A study of the biological characteristics of C. fairylakea populations showed that this species had a narrow colonization area within 300 hm2, and an island pattern of distribution. Because of the overexploitation, urbanization, environment pollution, plant diseases, and insect pests, the wild populations and individuals of C. fairylakea decreased markedly in the past decades. All five populations have an opposite pyramid age structure, few coning plants, few seed production, and low level of seed germination rate or sterility. In conclusion, C. fairylakea in Guangdong Province was threatened seriously and an urgent need to take effective efforts to protect the plants and habitats in its location sites was required. __________ Translated from Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005, 44(6): 97–100 [译自: 中山大学学报 (自然科学版), 2006, 44(6): 97–100]  相似文献   

15.
Polyamine contents in xylem (root) and phloem (leaf) exudates in two diverse species of rose, viz. Rosa damascena Mill and Rosa bourboniana Desport, were analyzed before, during, and after flowering in the main flowering season, that is, April–May. Only free putrescine (Put) was detected in the xylem and phloem exudates at these time points, and it was high during the peak flowering period. In phloem, Put content was significantly higher in R. bourboniana than in R. damascena at all three stages; whereas in the xylem exudate it was relatively higher in R. damascena at the peak flowering period. A spray of α-difluoromethylornithine (DFMO), an irreversible inhibitor of the putrescine biosynthetic inhibitor ornithine decarboxylase (ODC), markedly decreased the flowering. This effect was reversed by application of Put alone or in combination with DFMO. The significance of this finding is discussed in light of polyamine translocation during flowering. *IHBT Communication: 0354  相似文献   

16.
Citrus FT (CiFT) cDNA, which promoted the transition from the vegetative to the reproductive phase in Arabidopsis thaliana, when constitutively expressed was introduced into trifoliate orange (Poncirus trifoliata L. Raf.). The transgenic plants in which CiFT was expressed constitutively showed early flowering, fruiting, and characteristic morphological changes. They started to flower as early as 12 weeks after transfer to a greenhouse, whereas wild-type plants usually have a long juvenile period of several years. Most of the transgenic flowers developed on leafy inflorescences, apparently in place of thorns; however, wild-type adult trifoliate orange usually develops solitary flowers in the axils of leaves. All of the transgenic lines accumulated CiFT mRNA in their shoots, but there were variations in the accumulation level. The transgenic lines showed variation in phenotypes, such as time to first flowering and tree shape. In F1 progeny obtained by crossing ‘Kiyomi’ tangor (C. unshiu × sinensis) with the pollen of one transgenic line, extremely early flowering immediately after germination was observed. The transgene segregated in F1 progeny in a Mendelian fashion, with complete co-segregation of the transgene and the early flowering phenotype. These results showed that constitutive expression of CiFT can reduce the generation time in trifoliate orange.  相似文献   

17.
The effects of light on the spore germination of a hornwort species,Anthoceros miyabeanus Steph., were investigated. Spores of this species were photoblastic, but their sensitivities to light quality were different. Under either continuous white, red or diffused daylight, more than 80% of the spores germinated, but under blue light none or a few of them germinated. Under continuous far-red light or in total darkness, the spores did not germinate at all.Anthoceros spores required red light irradiation for a very long duration, i.e., over 12–24 hr of red light for saturated germination. However, the spore germination showed clear photo-reversibility by repeated irradiation of red and far-red light. The germination pattern clearly varied with the light quality. There were two fundamental patterns; (1) cell mass type in white or blue light: spores divide before germination, and the sporelings divide frequently and form 1–2 rhizoids soon after germination, and (2) germ tube type in red light: spores germinate without cell division, and the single-cell sporelings elongate without cell division and rhizoid formation.  相似文献   

18.
Reproductive phenology of gorse (Ulex europaeus L., Genisteae, Fabaceae) is unusual in that the onset and duration of flowering vary greatly among individuals within populations: some plants initiate flowering in autumn or winter and continue flowering through spring, others initiate flowering in early spring. To understand the origin of this diversity and its ecological consequences, we investigated flowering phenology of randomly sampled individuals from five different natural populations in Brittany (France). Reproductive success was evaluated for individuals with contrasting flowering patterns, from 16 natural populations. Flower production, pod production, seed production and seed predation were estimated. Plants initiating flowering in spring produced larger numbers of flowers and pods over a shorter period than plants flowering from winter to spring, which produced few flowers and pods at a time but over a longer period. Pod production of long-flowering plants did not differ significantly between winter and spring, but their pods were more intensively attacked by seed predators in spring than in winter. We discuss our results in relation to biotic and abiotic parameters. We postulate that long-flowering can be interpreted as a bet-hedging strategy, spreading the risk of pod failure (rotting or freezing) in winter and of seed predation in spring.  相似文献   

19.
Summary A protocol for high-frequency callus, somatic embryogenesis, and plant regeneration for Tripsacum is described. Plants were regenerated from complete shoot meristems (3–4 mm) via organogenesis and embryogenesis. In organogenesis, the shoot meristems were cultured directly on a high cytokinin medium comprising 5–10 mgl−1 (22.2–44.4 μM) 6-benzyladenine (BA). The number of multiple shoots varied from six to eight from each meristem. The time required for production of plants from organogenesis was rapid (4–6 wk). In contrast, callus was induced on an auxin medium and continuously cultured on an auxin medium for production of somatic embryos. Prolific callus with numerous somatic embryos developed within 3–4 wk when cultured on an auxin medium containing 5 mgl−1 (22.6μM), 2,4-dichlorophenoxyacetic acid (2,4-D). The number of shoots induced varied from two to five per callus. Regardless of the cultivars used, the frequency of callus induction and plant regeneration was between 48% and 94%. The seed germination procedures also were modified and resulted in a maximum of 60–80% seed germination. Finally, the rate of T-DNA transfer to complete shoot meristems of Tripsacum was high on the auxin medium and was independent of whether super-virulent strains of Agrobacterium were used or not.  相似文献   

20.
Turnerella (Gigartinales) withT. mertensiana known from northern Japan was studied to determine its life history. Carpospores cultured from foliose female plants gave rise on germination to crustose plants containing tetrasporangia, as noted previously inT. pennyi from the Atlantic. The crusts were slow to develop and required 3–5 years to achieve reproductive maturity. Tetraspores liberated in culturedT. mertensiana gave rise on germination eventually to thalli similar to gametophyticT. mertensiana. Thus this species may be said to adhere to the pattern of life history in which a large, foliose gametophyte alternates with a small crustose tetrasporophyte. The erect filaments of the small sporophytes branch laterally and tetrasporangial mother cells are found there, exemplifying an unusual method for crustose species to produce tetrasporangia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号