首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
通过对紧凑大穗型玉米品种陕单902的研究发现,保证适宜种植密度,增加群体总粒数是陕单902高产的基础;建立合理的群全结构和干物质生产体系,提高吐丝至成熟期的干物质生产能力是陕单902高产的关键;协调群体库源关系,提高成粒率是陕单902高产的根本。采用合理密植(不超过60000株/hm^2),宽窄行和双株栽培,保证足量氮肥和适宜氮,磷,钾配比等主要配套技术可改善大穗型玉米品种陕单902的群体库源性状,提高产量潜和。  相似文献   

2.
不同群体结构夏玉米灌浆期光合特征和产量变化   总被引:7,自引:0,他引:7  
大田试验以夏玉米为试料,采用裂裂区试验设计,密度设计包含75000、90000\,105000株/hm2 3个密度作为主区,每个密度处理包括: ①等行距60 cm×单株留苗,②等行距60 cm×双株三角留苗,③宽窄行距(宽行70 cm + 窄行距50 cm)×单株留苗和 ④宽窄行距×双株三角留苗共12种方式进行处理,测定光合及叶绿素荧光参数。研究不同群体结构对夏玉米灌浆期群体光合特性的影响。结果表明,在吐丝期,随着种植密度的增加,群体光合速率提高;蜡熟期以90000株/hm2最高,种植方式上表现为宽窄行大于等行距种植,双株留苗种植方式大于单株种植方式,差异均达到显著水平;随着种植密度的提高,群体内3个层次叶片最大光能转换效率(Fv/Fm)、光化学猝灭系数(qP)逐渐降低,种植方式基本表现为宽窄行大于等行距,留苗方式表现为双株大于单株。试验条件下,以90000株/hm2,宽窄行,双株三角留苗产量最高。  相似文献   

3.
密植条件下种植方式对夏玉米群体根冠特性及产量的影响   总被引:14,自引:0,他引:14  
选用平展大穗型品种鲁单981(Ludan981,LD981)和紧凑中穗型品种鲁单818(Ludan818,LD818),在两种种植密度(60000和90000株/hm2)和两种种植方式(单株和双株)下,研究了密植及种植方式对夏玉米冠层和根系结构与功能以及子粒产量等的影响.研究发现,随种植密度增加,冠层垂直分布呈现干重比例权重上移的趋势,根系则呈现下移的趋势.密植条件下,LD981冠层对生长空间更为敏感,其根系对生长空间的竞争强于冠层,其群体产量限制因素是子粒库容;LD818根系对生长空间更为敏感,冠层对生长空间的竞争强于根系,其群体产量限制因素是单位面积穗数.60000株/hm2下,LD981的群体结构质量和功能较优,双株种植可缓解其冠层竞争,根、冠协调,表现增产;在90000株/hm2下,LD818的群体结构质量和功能较优,双株种植可缓解其根系竞争,部分改善冠层群体结构质量和功能,根、冠协调,表现增产.  相似文献   

4.
Grain yield per plant (GYP) and mean kernel weight (KW) of maize (Zea mays L.) are sensitive to changes in the environment during the lag phase of kernel growth (the time after pollination in which the potential kernel size is determined), and during the phase of linear kernel growth. The aim of this study was to assess genotypic differences in the response to environmental stresses associated with N and/or carbohydrate shortage at different phases during plant development. The rate and timing of N and carbohydrate supply were modified by application of fertilizer, shading, and varying the plant density at sowing, at silking or at 14 d after silking. The effects of these treatments on the photosynthetic capacity, grain yield and mean kernel weight were investigated in two hybrids differing in N use efficiency. The total above-ground biomass and grain yield per plant of the efficient hybrid responded little to altered environmental conditions such as suboptimal N supply, enhanced inter-plant competition, and shading for 14 d during flowering, when compared to the less efficient genotype. We conclude that grain yields in the efficient genotype are less sensitive not only to N stress, but also to carbohydrate shortage before grain filling. Shading of N deficient plants from 14 d after silking to maturity did not significantly reduce grain yield in the non-efficient genotype, indicating complete sink limitation of grain yield during grain filling. In the efficient genotype, in contrast, grain yield of N-deficient plants was significantly reduced by shading during grain filling. The rate of photosynthesis declined with decreasing foliar N content. No genotypic differences in photosynthesis were observed at high or low foliar N contents. However, at high plant density and low N supply, the leaf chlorophyll content after flowering in the efficient genotype was higher than that in the non-efficient genotype. Obviously, the higher source capacity of the efficient genotype was not due to higher photosynthetic N use efficiency but due to maintenance of high chlorophyll contents under stressful conditions. In the efficient genotype, the harvest index was not significantly affected by N fertilization, plant density, or shading before the grain filling period. In contrast, in the non-efficient genotype the harvest index was diminished by N deficiency and shading during flowering. We conclude that the high yielding ability of the efficient genotype under stressful conditions was associated with formation of a high sink capacity of the grains under conditions of low carbohydrate and N availability during flowering and with maintenance of high source strength during grain filling under conditions of high plant density and low N availability.  相似文献   

5.
种植密度对夏玉米产量和源库特性的影响   总被引:36,自引:0,他引:36  
Liu W  Lü P  Su K  Yang JS  Zhang JW  Dong ST  Liu P  Sun QQ 《应用生态学报》2010,21(7):1737-1743
以高产玉米品种郑单958(ZD958)和登海661(DH661)为试验材料,在4个不同区域(山东农业大学、汶口、兖州和莱州)设置22500、45000、67500、90000和112500株.hm-25个种植密度,研究了种植密度对夏玉米产量及源库特性的影响.结果表明:两品种在112500株.hm-2密度条件下玉米籽粒产量和生物产量最高,分别为19132和36965kg.hm-2,与22500和67500株.hm-2密度相比,籽粒产量分别增加了72%和48%,生物产量分别增加了152%和112%.两品种单株叶面积、最大花丝数、穗粒数和千粒重随密度增大而减小,但叶面积指数随密度增大而显著提高.收获指数与粒叶比随密度增大而显著减小,当密度超过67500株.hm-2时差异不显著,表明高密度条件下玉米通过增加群体库来提高产量.  相似文献   

6.
The free proline content in maize ear-leaves, silk and pollen were analyzed in field grown plants which had matured to the pollination stage. Using maize hybrids PR34F02, PR35P12 and PR36B08 field trials were set up at two locations in eastern Croatia in two different years. Two enzymes of proline metabolism were analyzed in the same leaf samples and specific activities of synthetase (P5CS) and proline dehydrogenase (PDH). Plant productivity was evaluated at harvest by the estimation of total and fully developed grain number per ear and per plant, the mean single grain mass, and the mass of grain per plant. The year in which the plants were grown had a very significant effect on the free proline content in the leaf and pollen, as well as on the enzyme activities assayed. The differences between the plants from the two localities were very significant in all tested parameters of plant grain productivity. There was a significant genotype effect on proline content and P5CS total activity in leaf and on all the productivity parameters. Some of the correlations established suggest that the rate of proline synthesis and degradation in maize ear-leaf at pollination might contribute to the final grain production of the maize plant. Multiple regression analyses was used to further analyze the relationship between proline and grain productivity, but it is clear that future work should include other environmental conditions, plant species and organs such as roots.Key words: maize, maize silk, plant productivity, pollen, proline, proline dehydrogenase, Δ1-pyrroline-5-carboxylate synthetase, Zea mays L.  相似文献   

7.
Boron (B) deficiency depresses wheat, barley and triticale yield through male sterility. On the basis of field responses to B fertilization, maize (Zea mays L.) is affected by B deficiency in five continents. In a series of sand culture trials with maize subject to B0 (nil added B) and B20 (20???M added B) treatments, we described how B deficiency depressed maize grain yield while showing an imperceptible effect on vegetative dry weight. With manual application of pollen to the silk of each plant, B0 plants produced 0.4 grain ear?1 compared with 410 grains ear?1 in B20 plants. Symptoms of B deficiency was observed only in B0 plants, which exhibited symptoms of narrow white to transparent lengthwise streaks on leaves, multiple but small and abnormal ears with very short silk, small tassels with some branches emerging dead, and small, shrivelled anthers devoid of pollen. Tassels, silk and pollen of B0 plants contained only 3?C4?mg B kg?1 DW compared with twice or more B in these reproductive tissues in B20 plants. A cross-fertilization experiment showed that, although the tassels and pollen were more affected, the silk was more sensitive to B deficiency. Pollen from B20 plants applied to B0 silk produced almost no grains, while pollen from B0 on B20 silk increased the number of grains to 37% of the 452 grains plant?1 produced from B20 pollen on B20 silk. Therefore, the silk of the first ear may be targeted for precise diagnosis of B status at maize reproduction, for timely correction by foliar B application, and even for B-efficient genotype selection.  相似文献   

8.
探讨遮阴对玉米穗部特性的影响及其产量效应,可以为应对气候变化与密植栽培条件下的玉米品种选育和高产栽培提供参考依据.本研究选用2个品种(紧凑型‘中单909’、平展型‘内单4’)和2个种植密度(4.5、9.0万株·hm-2),在吉林省公主岭市开展田间遮阴试验,设置遮阴(遮阴度65%,小喇叭口期-成熟期)和不遮阴(对照)2个处理,研究遮阴和种植密度对不同株型玉米的穗部发育和植株生产力的影响.结果表明: 遮阴显著影响春玉米雌穗发育,造成散粉和吐丝期推迟,导致散粉吐丝间隔期延长3~15 d;遮阴显著降低春玉米干物质积累,籽粒产量下降50%以上(50.8%~87.0%);密植条件下春玉米穗部特性和产量性能受遮阴的影响显著高于稀植栽培;不同玉米品种相比,紧凑型品种的穗部特性和产量受遮阴和种植密度的影响低于平展型品种,紧凑型品种对生态环境变化的适应性较强,耐阴性和耐密性表现出一致性.  相似文献   

9.
The effect of genotype and plant density, over the range from100 to 277 plants m–2, on plant to plant variation inprecision sown microplots has been assessed for three ‘leafless’(afafstst) pea (Pisum sativum) lines. This range of plantingdensities did not significantly affect the total above groundbiological yield per unit area of two of the genotypes (BS5and BS4) whereas the biological yield of the third (BS151) declinedat densities above 156 plants m–2. The differences weredue to changes in seed yield. The effect of planting densityon the variation between plants for biological yield withinthe microplots differed between the genotypes. The distributionpattern of BS4 and BS5 changed from normal to skewed with increaseddensity, while the distribution for BS151 remained skewed atall planting densities. The differences between the three genotypes in the proportionof biological yield partitioned into seed yield (harvest index)on a unit area basis was due almost entirely to the differencesin structure of the plant populations. The maximum level ofpartitioning by individual plants was similar for all threelines. The difference between this maximum for an individualand the crop harvest index therefore represents the area forimprovement of crop harvest index through breeding. It is suggestedthat improvements in dried pea yields will come, therefore,by selecting plants which form more uniform populations withregard to plant size and to the proportion of plant biomasspartitioned into seed (plant harvest index). Pisum sativum, leafless pea, population, genetic variation, distribution patterns, harvest index  相似文献   

10.
播种时期与密度对关中灌区夏玉米群体生理指标的影响   总被引:47,自引:1,他引:46  
采用二次饱和D最优试验设计,运用作物群体生理学方法,研究了关中灌区玉米密度、播期与群体生理指标的关系及其影响效应.结果表明,关中灌区夏播条件下,在6月13日—7月22日,播期与玉米籽粒产量、干物质积累量(DMA)、吐丝期叶面积指数(LAImax)、总光合势(LAD)、群体净同化率(NAR)、作物生长率(CGR)呈负相关,播期对CGR、LAD的影响较大,对LAImax和NAR的影响较小;在45000~65918株·hm-2范围内,密度与玉米籽粒产量、DMA、LAImax、LAD、CGR呈正相关,而与NAR呈负相关,密度对CGR、LAImax和LAD的影响较大,而对NAR的影响较小.播期对玉米群体生理指标的总影响效应显著大于密度,实际生产中应力争早播.对密度和播期与玉米群体生理指标建立的回归模型表明,陕单8806玉米在关中灌区夏播中实现高产的适宜播期为6月10—20日,密度应控制在57767~71706株·hm-2.  相似文献   

11.
密度、种植方式和品种对夏玉米群体发育特征的影响   总被引:20,自引:0,他引:20  
在豫北高产灌区的生产条件下,以郑单958和浚单20为试验材料,研究了不同密度和种植方式对夏玉米群体发育特征的影响。结果表明:密度和种植方式对两个品种的株高、茎粗、穗位、叶面积指数(LAI)、叶绿素含量、干物质积累量、穗部性状、籽粒产量和经济系数的影响达到极显著水平。郑单958在宽窄行种植方式和90000株/hm2的密度下产量最高,达到14236.97kg/hm2,浚单20在宽窄行种植方式和82500株/hm2的密度下产量最高,达到13333.51kg/hm2。  相似文献   

12.
为了探讨东北雨养区不同颜色地膜覆盖与种植密度对春玉米干物质积累和产量的影响机制,以良玉99为试验材料,设置3种覆盖处理(裸地、无色透明地膜和黑色地膜覆盖)和5个种植密度(60000、67500、75000、82500和90000株·hm-2)完全组合的田间小区试验,对春玉米水热效应、干物质积累和产量性状等进行分析.结果表明: 黑膜覆盖明显提高拔节后玉米干物质积累量和生物量,其生物量较其他处理增加3.2%~8.2%;成熟期生物量随着种植密度的增加先增大后减小,以82500株·hm2最大,较其他密度处理增加5.2%~28.3%.无色透明地膜覆盖处理的前期平均土壤温度较其他处理分别提高0.4~2.7 ℃,加快了生育进程,提高了玉米茎叶干物质转运量(T)、转运率(TE)和对籽粒产量贡献率(TC);叶和茎+叶干物质的T、TE和TC均以60000株·hm-2密度处理最大,而茎干物质转运效果以75000株·hm-2最优.在抽穗期,黑膜处理的耗水量和日耗水强度最大,分别较其他处理增加10.6%~14.9%和10.6%~24.5%;耗水量和日耗水强度均以90000株·hm-2密度处理最大,较其他处理分别高6.8%~15.7%和7.0%~20.0%.黑膜和82500株·hm-2密度处理组合明显提高了玉米的水分利用效率,较其他处理增加了4.6%~40.9%,其产量较其他处理增加3.0%~39.7%.在抽穗期,玉米茎叶干物质量与玉米产量和产量构成要素的相关性最大;茎叶干物质量每减少1 kg·hm-2,群体产量下降约0.79 kg·hm-2;茎叶干物质量每降低10%,产量下降10%左右.在增加种植密度的基础上,采用黑色地膜覆盖可以增加春玉米干物质积累量、提高春玉米产量和水分利用效率.  相似文献   

13.
为了探讨不同密度混播对玉米植株13C同化物分配和产量的影响,选用‘郑单958’(ZD)和‘登海605’(DH)为试验材料,在不同密度下(LD,67500株·hm-2;HD,97500株·hm-2)设置单播(SZD、SDH)与混播(M、1∶1、2∶2)处理,研究玉米品种不同密度混播对植株光合特性、13C同化物分配、干物质积累量和产量的影响.结果表明: 随密度增加,籽粒产量、13C同化物在籽粒中的分配、干物质积累量和叶面积指数均提高;而叶绿素含量和净光合速率则降低.在67500株·hm-2下,混播较单播处理无显著优势,但在97500株·hm-2下,两品种混播提高了叶面积指数、叶绿素含量和穂位叶净光合速率,干物质积累量增加.混播促进茎等营养器官的干物质向籽粒的转运,提高了13C同化物在籽粒中的分配比例.混播处理较单播产量增加,主要因为千粒重显著增加.在高密度种植条件下,混播有助于扩大光合面积,维持较高的净光合速率,提高群体干物质积累量,改善干物质的分配状况,增加同化物向籽粒的分配,最终提高夏玉米产量.可见,混播栽培可显著增加黄淮海区密植夏玉米产量.  相似文献   

14.
胡旦旦  张吉旺  刘鹏  赵斌  董树亭 《生态学杂志》2018,29(10):3229-3236
为了探讨不同密度混播对玉米植株13C同化物分配和产量的影响,选用‘郑单958’(ZD)和‘登海605’(DH)为试验材料,在不同密度下(LD,67500株·hm-2;HD,97500株·hm-2)设置单播(SZD、SDH)与混播(M、1∶1、2∶2)处理,研究玉米品种不同密度混播对植株光合特性、13C同化物分配、干物质积累量和产量的影响.结果表明: 随密度增加,籽粒产量、13C同化物在籽粒中的分配、干物质积累量和叶面积指数均提高;而叶绿素含量和净光合速率则降低.在67500株·hm-2下,混播较单播处理无显著优势,但在97500株·hm-2下,两品种混播提高了叶面积指数、叶绿素含量和穂位叶净光合速率,干物质积累量增加.混播促进茎等营养器官的干物质向籽粒的转运,提高了13C同化物在籽粒中的分配比例.混播处理较单播产量增加,主要因为千粒重显著增加.在高密度种植条件下,混播有助于扩大光合面积,维持较高的净光合速率,提高群体干物质积累量,改善干物质的分配状况,增加同化物向籽粒的分配,最终提高夏玉米产量.可见,混播栽培可显著增加黄淮海区密植夏玉米产量.  相似文献   

15.
目前,我国种植的夏玉米品种收获时籽粒含水率过高,限制了玉米机械粒收技术的发展。喷施脱水剂可以调控作物籽粒灌浆生理过程,降低收获时的籽粒含水率。本试验研究了喷施脱水剂对不同熟期夏玉米品种脱水过程、收获期籽粒含水率和籽粒品质的调控作用。结果表明: 喷施脱水剂减少了玉米各器官的干物质积累量,促进了植株向籽粒中的干物质转移,提高了收获指数,而且对籽粒品质没有显著影响。相关性分析显示,籽粒脱水速率与各器官脱水速率呈正相关,喷施脱水剂后籽粒脱水速率与茎鞘脱水速率呈极显著正相关。喷施脱水剂在产量没有显著降低的前提下提高了总脱水速率,缩短了开花期至生理成熟期的时间,增加了生理成熟期到收获的时间,有利于后期籽粒含水率的进一步降低,为玉米机械粒收提供了更大的可能性。不同熟期夏玉米品种喷施脱水剂进行机械粒收的经济效益与机械穗收相比没有显著差异,中晚熟品种的经济效益高于早熟品种。因此,收获前合理喷施脱水剂可以作为玉米机收籽粒的一种可行性配套技术。  相似文献   

16.
Harvest index: a review of its use in plant breeding and crop physiology   总被引:7,自引:0,他引:7  
This review charts the use of the concept of harvest index in crop improvement and physiology, concentrating on the literature from the last 20 years. Evidence from abstract journals indicates that the term has been applied most to small grain cereal crops and pulses, in India, Western Europe and the USA, and that it has been less useful for maize and tuber crops. Standard methods of measuring harvest index, the associated problems of measurement and interpretation, and representative values for a range of world species are reviewed. The values for modern varieties of most intensively-cultivated grain crops fall within the range 0.4 to 0.6. Variation between varieties of the same species is illustrated by trends in the harvest indices of old, outclassed and recent varieties of temperate and mediterranean wheat and barley (compared under uniform conditions); this shows a progressive increase throughout the present century, although improvement has been much slower in Australia and Canada than in the UK. In most cases, the improvement in harvest index has been a consequence of increased grain population density coupled with stable individual grain weight. The high heritability of harvest index is explored by examining its (rather weak) response to variation in environmental factors (fertilisation, population density, application of growth regulators) in the absence of severe stress. A fuller perspective is gained by reviewing aspects of the harvest index of rice, maize and tropical pulses. With rice, attention must be paid to the fact that the adhering lemma and palea (not primarily part of economic yield) can make up 20% of grain weight; and there are important interactions among biomass, grain yield and season length. Maize differs from most small grain crops in that harvest index (in N. American varieties) was already high at the start of this century, and increases in yield potential have been largely the consequence of increased biomass production. The harvest index of many pulse species and varieties tends to be low because selection has been for some yield in all seasons. Extension of the harvest index concept to express the partitioning of mineral nutrients as well as dry matter (e.g. the nitrogen harvest index) has provided a range of responses whose implications for production and breeding remain to be explored. It is concluded that even though the principal cereal crops appear to be approaching the upper limit of harvest index, and future yield gains will have to be sought by increased biomass production, there will still be a need for the concept of harvest index as a tool in interpreting crop response to different environments and climatic change.  相似文献   

17.
Ding L  Wang KJ  Jiang GM  Biswas DK  Xu H  Li LF  Li YH 《Annals of botany》2005,96(5):925-930
BACKGROUND AND AIMS: New maize (Zea mays) hybrids outperformed old ones even at reduced N rates. Understanding the mechanisms of the differences in performance between newer and older hybrids under N deficiency could provide avenues for breeding maize cultivars with large yield under N deficiency, and reduce environmental pollution caused by N fertilizers. METHODS: N deficiency effects on grain weight, plant weight, harvest index, leaf area and photosynthetic traits were studied in the field for six maize hybrids released during the past 50 years to compare their tolerance and to explore their physiological mechanisms. KEY RESULTS: N deficiency decreased grain yield and plant weight in all hybrids, especially in the older hybrids. However, there was no significant difference in harvest index, rate of light-saturated photosynthesis (Psat) 20 d before flowering, leaf area or plant weight at flowering between the N-deficient and control plants of all hybrids. Dry matter production after flowering of the N-deficient plants was significantly lower than that of the control plants in all hybrids, especially in the older hybrids, and was mostly due to differences in the rate of decrease in photosynthetic capacity during this stage. The lower Psat of the older hybrids was not due to stomatal limitation, as there was no significant difference in stomatal conductance (gs) and intercellular CO2 concentration (Ci) between the hybrids. N deficiency accelerated senescence, i.e. decreased chlorophyll and soluble protein contents, after anthesis more for the earlier released hybrids than for the later ones. N deficiency decreased phosphoenolpyruvate carboxylase (PEPCase) activity significantly more in older hybrids than newer hybrids, and affected the maximal efficiency of PSII photochemistry (Fv/Fm) only in the old hybrids and at the late stage. CONCLUSIONS: Compared with older (earlier released) hybrids, newer (later released) hybrids maintained greater plant and grain weight under N deficiency because their photosynthetic capacity decreased more slowly after anthesis, associated with smaller non-stomatal limitations due to maintenance of PEPCase activity, and chlorophyll and soluble protein content.  相似文献   

18.
Hydroponic studies under controlled environmental conditions indicated that maize plants respond better to combinations of nitrate and ammonium nutrition than to either form supplied separately but that this response depended upon the total N concentration. An attempt was made to maintain different nitrate: ammonium ratios and concentrations in the soil by the addition of a nitrification inhibitor. Five nitrate: ammonium ratios at three N application rates were tested with and without dicyandiamide (H2NC(NH)NHCN) on a low-pH, sandy soil for two years. Treatments were applied to field-grown maize in two applications, one at planting and the other at 21 to 30 days after planting. Under favourable climatic conditions for crop growth the optimum nitrate: ammonium ratio for grain yield was between 3:1 and 1:1 over all N rates. Under unfavourable climatic conditions, ratios of 3:1 and 1:1 showed in contrast to all other ratios no grain yield depressions at high N rates. Dicyandiamide did not interact with N rates or ratios, but did increase grain yield over all N treatments under favourable conditions. N ratio interactions with N rates and dicyandiamide were also shown for N concentrations of the leaves at anthesis, for the grain at harvest and for mineral N in different soil layers at anthesis. These results imply that nitrate: ammonium ratios between 3:1 and 1:1 should be recommended at the optimum N rate on a low-pH sandy soil in a high rainfall area for maize production.  相似文献   

19.
黑龙港流域夏玉米产量提升限制因素   总被引:1,自引:0,他引:1  
从产量构成因素及物质生产着手分析了黑龙港流域夏玉米产量进一步提高的限制因子.分析结果显示:穗数、穗粒数和千粒重均与产量显著相关,说明该地区夏玉米仍有继续增产的潜力;但在再高产过程中,单纯依靠穗数增加,产量增产幅度较小,应稳定在一定适宜的密度下,注重单位面积穗粒数和粒重的提高,但在穗数确定的情况下,穗粒数相对稳定,增加粒重成为再高产重要因素.因此,采取措施增强灌浆速率和延长灌浆时间是关键,即增强或稳定叶片在花后的有效光合能力.结果表明,增加叶片数量对产量贡献很小,而改善叶片质量、提高叶片功能,进而增加花后同化物合成至关重要.因此,茎秆和叶片的质量是再高产实现的关键技术突破点.同时,提高茎秆的花前物质转运比例也有助于提高于粒重,促进产量提升.在生产实践中,进一步挖掘产量必须搞清楚地上和地下两方面的关系,但目前对“根系-土壤”复合体的结构和功能研究相对较少.不合理耕作方式造成了土壤耕层太浅,严重影响了玉米根系生长发育,使生育后期吸收功能减弱,不利于产量形成.加之,吐丝前后阴雨寡照,造成穗粒数形成决定期的“源”不足,同时也限制了灌浆速率,提前播期,躲避灾害天气或推迟收获时期,延长灌浆时间等逆境栽培措施就显得尤为重要.  相似文献   

20.
Under field conditions, population density of the root lesion nematode, Pratylenchus zeae in soil and roots of maize cv. Single Hybrid 10 fluctuated throughout its growing season and reached the peak in September, harvest stage of maize. There were negative correlations (r) between the population densities of P. zeae in maize roots and grain yield of maize according to the data collected at all growing seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号